Knowledge (XXG)

Arbuscular mycorrhiza

Source 📝

1145:
morphological analysis is fraught with complicating issues due to the various strategies and forms of AM fungi, e.g., lack of sporulation in certain species, seasonality, high unculturability, possible misidentification (human error), and new evidence of multi-nucleate spores and high genetic variation within clonal AM species. Because of these various problems, in the past researchers likely misrepresented the true composition of AM fungal communities present at any one point in time or place. Additionally, by following the traditional extraction, culture and microscopic identification methods, there is no way to determine active/functioning AM fungal populations, which are likely the most important when attempting to relate plant-AM symbiotic interactions and mechanisms to ecological or ecosystem function. This is especially true in the case of root colonization analyses, which can determine percentage of roots colonized by AM fungi. The major problem with this analysis is in field soils, which contain multiple species of AM fungi in association with a target plant at the same time (see Ecology of AM). The identification of the associated fungal symbionts is impossible without the use of molecular methods. Though genetic analysis of AM fungal communities has advanced a great deal in the past decade, the methodology is not yet completely refined. Below is an overview of the methods used in molecular genetic analyses of AM fungi, along with applications to research, future directions and some of their problems.
1321: 234: 1056:. Their tolerance to freezing and drying is known to shift between AM fungal taxa. AM fungi become less prevalent and diverse at higher soil nutrient and moisture concentrations, presumably because both plants allocate less carbon to AM fungi and AM fungi reallocate their resources to intraradical hyphae in these environmental conditions. Over the long term, these environmental conditions can even create local adaptation between plant hosts, AM fungi and the local soil nutrient concentrations. AM composition often becomes less diverse on mountain tops than at lower elevations, which is driven by the composition of plant species. 79: 67: 860: 31: 739:
be much more efficient than plant roots at taking up phosphorus. Phosphorus travels to the root or via diffusion and hyphae reduce the distance required for diffusion, thus increasing uptake. The rate of phosphorus flowing into mycorrhizae can be up to six times that of the root hairs. In some cases, the role of phosphorus uptake can be completely taken over by the mycorrhizal network, and all of the plant's phosphorus may be of hyphal origin. Less is known about the role of
492: 6104: 1905: 1199:
functionally important in microbial processes such as carbon, nitrogen or phosphorus cycling. FGAs have the ability to simultaneously examine many functional genes. This technique is typically used for general analysis of functional microbial genes, but when complemented with genetic sequencing, inferences can be made about the connection between fungal community composition and microbial functionality.
1222:
acid concentration in soils, and that phospholipids are correlated to an organism's membrane area, and the surface to volume ratio can vary widely between organisms such as bacteria and fungi. More work must be done to identify the efficacy of this method in field soils with many genera and species of AM fungi to discern the methods ability to discriminate between many varying fatty acid compositions.
340:. This conserved morphology may reflect the ready availability of nutrients provided by the plant hosts in both modern and Miocene mutualisms. However, it can be argued that the efficacy of signaling processes is likely to have evolved since the Miocene, and this can not be detected in the fossil record. A finetuning of the signaling processes would improve coordination and nutrient exchange between 579:
turn on AM fungal genes required for the respiration of spore carbon compounds. In experiments, transcription rate of 10 genes increased half-hour after exposure and at an even greater rate after 1 hour. after 4 hours exposure AM respond with morphological growth. Genes isolated from that time are involved in mitochondrial activity and enzyme production. The fungal respiration rate, measured by O
1214:
proportions of specific fatty acids can be organism specific. For example, in AM fungi the proportion of the fatty acids, 16:1ω5 and 18:1ω7, in the phospholipid portion account for approximately 58% of total fatty acid composition. The fatty acid, 16:1ω5 is the most commonly used acid to characterize AM fungi in soils and can be used as a strong indicator of mycelial biomass in soil sample.
1141:
communities and ecosystems. Genetic analyses of AM fungi have been used to explore the genetic structure of single spores using multilocus genotyping, AM fungal diversity and adaptation across multiple grassland communities, all the way up to a global investigation of AM fungal diversity, which greatly increased the described molecular diversity within the phylum Glomeromycota.
1014:
nitrogen. The diversity of AM fungal communities has been positively linked to plant diversity, plant productivity and herbivory. Arbuscular mycorrhizal fungi can be influenced by small scale interactions with the local plant community. For example, the plant neighborhood around a focal plant can alter AM fungal communities as can the order of plant establishment within sites.
1234:) is a technique that can be used to determine the active metabolic function of individual taxa within a complex system of microbes. This level of specificity, linking microbial function and phylogenetics, has not been achieved previously in microbial ecology. This method can also be used independently of classical culture methods in microbial ecology, allowing for 670:
have a high surface-to-volume ratio, making their absorptive ability greater than that of plant roots. AMF hyphae are also finer than roots and can enter into pores of the soil that are inaccessible to roots. The fourth type of AMF hyphae grows from the roots and colonizes other host plant roots. The four types of hyphae are morphologically distinct.
1494:. A strong correlation has been found between GRSP and soil aggregate water stability in a wide variety of soils where organic material is the main binding agent, although the mechanism is not known. The protein glomalin has not yet been isolated and described, and the link between glomalin, GRSP, and arbuscular mycorrhizal fungi is not yet clear. 48: 493: 494: 1218:
lipids in storage structures like spores and vesicles. Because of this NLFA correlates quite well with the number of spores in a given volume of soil. The ratio of NLFA concentration to PLFA concentration (active mycelia) can then give the proportion of carbon allocated to storage structures (spores, measured as NLFA).
1112:
interactions in future climates. In recent meta-analyses, AM fungi were found to increase plant biomass under drought conditions and decrease plant biomass under simulated nitrogen deposition studies. Arbuscular mycorrhizal fungi themselves have been shown to increase their biomass in response to elevated atmospheric CO
496: 1447:
Since AM fungi are biotrophic, they are dependent on plants for the growth of their hyphal networks. Growing a cover crop extends the time for AM growth into the autumn, winter, and spring. Promotion of hyphal growth creates a more extensive hyphal network. The mycorrhizal colonization increase found
1306:
and health. Soils' quality parameters were significantly improved long-term when a mixture of indigenous arbuscular mycorrhizal fungi species was introduced compared to noninoculated soil and soil inoculated with a single exotic species of AM fungi. The benefits were increased plant growth, increased
1250:
O, and then analyzes the 'labeled' markers using species specific DNA or RNA markers. The analysis of labeled DNA is performed by separating unlabeled and labeled DNA on a cesium chloride gradient formed in an ultra centrifuge. Because all microbial organisms are capable of importing water into their
1213:
Specific organismal chemical signatures can be used to detect biomass of more cryptic organisms, such as AM fungi or soil bacteria. Lipids, more specifically phospholipids and neutral lipids, contain fatty acids connected to a glycerol backbone. The fatty acid composition of organisms varies, and the
1035:
All symbionts within a plant host interact, often in unpredictable ways. A 2010 meta-analysis indicated that plants colonized by both AM fungi and vertically transmitted endophytes often are larger than plants independently colonized by these symbionts. However, this relationship is context-dependent
1026:
The mycorrhizal status of invasive plant species often varies between regions. For example, in the United Kingdom and central Europe recently invasive plants are more frequently obligately mycorrhizal than expected, while invasive plants in California were found to be less frequently mycorrhizal than
556:
were grown in host plant exudates. Hyphae of fungi grown in the exudates from roots starved of phosphorus grew more and produced tertiary branches compared to those grown in exudates from plants given adequate phosphorus. When the growth-promoting root exudates were added in low concentration, the AM
541:
The branching of AM fungal hyphae grown in phosphorus media of 1 mM is significantly reduced, but the length of the germ tube and total hyphal growth were not affected. A concentration of 10 mM phosphorus inhibited both hyphal growth and branching. This phosphorus concentration occurs in natural soil
1221:
Problems with lipid fatty acid analyses include the incomplete specificity of fatty acids to AM fungi, the species- or genera-specific variation in fatty acid composition can complicate analysis in systems with multiple AM fungal species (e.g. field soil), the high background levels of certain fatty
1217:
Neutral lipid fatty acid analysis of AM fungi is typically looked upon as a method to indicate energy storage, but most importantly, the ratio of NLFA (16:1ω5) to PLFA (16:1ω5) can potentially be used to indicate nutritional status of AM fungi in soils. Energy is mainly stored in AM fungi as neutral
1198:
analysis is currently being used in AM fungal research to simultaneously measure the expression of many genes from target species or experimental samples. The most common tool or method is to use functional gene array (FGA) technology, a specialized microarray that contains probes for genes that are
1102:
The influence of AM fungi on plant root and shoot growth may also have indirect effect on the rhizosphere bacteria. AMF contributes a substantial amount of carbon to the rhizosphere through the growth and degeneration of the hyphal network. There is also evidence to suggest that AM fungi may play an
738:
The main benefit of mycorrhizas to plants has been attributed to increased uptake of nutrients, especially phosphorus. This may be due to increased surface area in contact with soil, increased movement of nutrients into mycorrhizae, a modified root environment, and increased storage. Mycorrhizas can
669:
There are two other types of hyphae that originate from the colonized host plant root. Once colonization has occurred, short-lived runner hyphae grow from the plant root into the soil. These are the hyphae that take up phosphorus and micronutrients, which are conferred to the plant. AM fungal hyphae
1404:
1995, McGonigle & Miller 1999). The disruption of the hyphal network decreases the absorptive abilities of the mycorrhizae because the surface area spanned by the hyphae is greatly reduced. This, in turn, lowers the phosphorus input to the plants that are connected to the hyphal network (Figure
1311:
content, and soil aggregation, attributed to higher legume nodulation in the presence of AM fungi, better water infiltration, and soil aeration due to soil aggregation. Native strains of AM fungi enhance the extraction of heavy metal(s) from the polluted soils and make the soil healthy and suitable
1182:
or quantitative PCR (qPCR), is becoming a well-established method to quickly amplify and simultaneously quantify targeted AM fungal DNA from biological samples (plant roots or soils). Fairly recent developments in qPCR markers allow researchers to explore the relative abundance of AM fungal species
1098:
The extent of arbuscular mycorrhizal colonization and species affects the bacterial population in the rhizosphere. Bacterial species differ in their abilities to compete for carbon compound root exudates. A change in the amount or composition of root exudates and fungal exudates due to the existing
993:
The specificity, host range, and degree of colonization of mycorrhizal fungi are difficult to analyze in the field due to the complexity of interactions between the fungi within a root and within the system. There is no clear evidence to suggest that arbuscular mycorrhizal fungi exhibit specificity
377:
The ancient plants did not have true roots. Strullu-Derrien and Strullu proposed the term 'Paramycorrhizae' for the mycorrhizae that infected the rhizome or shoot or thalli, and 'Eumycorrhizae' that infects true roots. These structures were reported in both sporophytes and gametophytes of the early
1295:-threatened areas is often followed by degradation of physical and biological soil properties, soil structure, nutrient availability, and organic matter. When restoring disturbed land, it is essential to replace not only the above ground vegetation but also biological and physical soil properties. 1001:
In pathogenic relations, the host plant benefits from mutations that prevent colonization, whereas, in a mutualistic symbiotic relationship, the plant benefits from mutation that allow for colonization by AMF. However, plant species differ in the extent and dependence on colonization by certain AM
578:
Molecular techniques have been used to understand the signaling pathways between arbuscular mycorrhizae and plant roots. In 2003 it was shown how the AM undergoes physiological changes in the presence of exudates from potential host plant roots, to colonize it. Host plant root exudates trigger and
1267:
Little has been done with this method in arbuscular mycorrhizal experiments, but if proven to work in a controlled experiment, and with further refinement of DNA/RNA fungal community analyses techniques, this may be a viable option to very specifically determine the actively growing portion of AM
1009:
The ability of the same AM fungi to colonize many species of plants has ecological implications. Plants of different species can be linked underground to a common mycelial network. One plant may provide the photosynthate carbon for the establishment of the mycelial network that another plant of a
984:
is influenced by dispersal limitation, environmental factors such as climate, soil series and soil pH, soil nutrients and plant community. While evidence from 2000 suggests that AM fungi are not specialists on their host species, studies as of 2002 have indicated that at least some fungi taxa are
583:
consumption rate, increased by 30% 3 hours after exposure to root exudates, indicating that host plant root exudates stimulate AMF spore mitochondrial activity. It may be part of a fungal regulatory mechanism that conserves spore energy for efficient growth and the hyphal branching upon receiving
574:
were separated from the roots of a host plant, nonhost plants, and dead host plant by a membrane permeable only to hyphae. In the treatment with the host plant, the fungi crossed the membrane and always emerged within 800 μm of the root, but not in the treatments with nonhost plants and dead
182:
from the soil. It is believed that the development of the arbuscular mycorrhizal symbiosis played a crucial role in the initial colonisation of land by plants and in the evolution of the vascular plants. It has been said that it is quicker to list the plants that do not form endomycorrhizae than
1452:
1998). The extraradical mycelia are able to survive the winter, providing rapid spring colonization and early season symbiosis (McGonigle and Miller 1999). This early symbiosis allows plants to tap into the well-established hyphal network and be supplied with adequate phosphorus nutrition during
1013:
Since Glomeromycota fungi live inside plant roots, they can be influenced substantially by their plant host and in return affect plant communities as well. Plants can allocate up to 30% of their photosynthate carbon to AM fungi and in return AM fungi can acquire up to 80% of plant phosphorus and
3221:
Cope, Kevin R.; Bascaules, Adeline; Irving, Thomas B.; Venkateshwaran, Muthusubramanian; Maeda, Junko; Garcia, Kevin; Rush, Tomás A.; Ma, Cathleen; Labbé, Jessy; Jawdy, Sara; Steigerwald, Edward; Setzke, Jonathan; Fung, Emmeline; Schnell, Kimberly G.; Wang, Yunqian; Schleif, Nathaniel; Bücking,
1140:
In the past ten years there have been spectacular advances in molecular genetic technologies and tools. These advances allow microbial and mycorrhizal ecologists to ask new and exciting questions about the ecological and evolutionary roles of arbuscular mycorrhizal (AM) fungi as individuals, in
272:
and molecular evidence indicate that AM is an ancient symbiosis that originated at least 460 million years ago. AM symbiosis is ubiquitous among land plants, which suggests that mycorrhizas were present in the early ancestors of extant land plants. This positive association with plants may have
1082:
Mycorrhizae diversity has been shown to increase plant species diversity as the potential number of associations increases. Dominant arbuscular mycorrhizal fungi can prevent the invasion of non-mycorrhizal plants on land where they have established symbiosis and promote their mycorrhizal host.
246:
network of arbuscular mycorrhizal fungi (AMF) extends beyond the depletion zone (grey), accessing a greater area of soil for phosphate uptake. A mycorrhizal-phosphate depletion zone will also eventually form around AM hyphae (purple). Other nutrients that have enhanced assimilation in AM-roots
1276:
sRNAs have been reported to take crucial role in the crosstalk between host and symbiont. sRNAs processing mechanism is thus, important for understanding AM symbiosis. It seems that AM fungi have their unique features to have bacterial type core enzyme as well as the large number of Argonaute
1263:
O, or heavy water method will target all organisms that are actively growing, and induce little influence on growth itself. This would be especially true with most greenhouse experiments with arbuscular mycorrhizas because plants must be watered anyway, and water does not directly select for
1111:
Global climate change is affecting AM fungal communities and interactions between AM fungi and their plant hosts. While it is generally accepted that interactions between organisms will affect their response to global climate change, we still lack the ability to predict the outcome of these
398:, the most basal group, and phylogeny of the three genes proved to agree with then current land plant phylogenies. This implies that mycorrhizal genes must have been present in the common ancestor of land plants, and that they must have been vertically inherited since plants colonized land. 1486:
There is other circumstantial evidence to show that glomalin is of AM fungal origin. When AM fungi are eliminated from soil through incubation of soil without host plants, the concentration of GRSP declines. A similar decline in GRSP has also been observed in incubated soils from forested,
1186:
qPCR markers for arbuscular mycorrhizal fungi will consist of AM specific primers and fluorescently labeled hydrolysis probes. These AM specific primers (discussed above) can be chosen by the researcher and this decision is typically guided by the question at hand, resources available, and
723:, occurs in the extraradical mycelium. Approximately 25% of the carbon translocated from the plant to the fungi is stored in the extraradical hyphae. Up to 20% of the host plant's carbon may be transferred to the AM fungi. This represents the host plant's considerable carbon investment in 1144:
All the recent advances in molecular genetics clearly permit the analysis of microbial communities at much finer and functional scales and potentially with more confidence than previous methods. The classical AM fungal identification method of spore extraction from soil and further spore
369:
There is some fossil evidence that suggests that the parasitic fungi did not kill the host cells immediately upon invasion, although a response to the invasion was observed in the host cells. This response may have evolved into the chemical signaling processes required for symbiosis.
3169:
Maillet, Fabienne; Poinsot, Véréna; André, Olivier; Puech-Pagès, Virginie; Haouy, Alexandra; Gueunier, Monique; Cromer, Laurence; Giraudet, Delphine; Formey, Damien; Niebel, Andreas; Martinez, Eduardo Andres; Driguez, Hugues; Bécard, Guillaume; Dénarié, Jean (January 2011). "Fungal
1022:
During invasions of plant species, the AM fungal community and biomass can be drastically altered. In the majority of cases AM fungal biomass and diversity decrease with invasions. However, some mycotrophic plant species may actually increase AM fungal diversity during invasion.
604:
had been removed to eliminate signaling between the fungi and the plant host. However, the hyphae did not further penetrate the cells and grow in toward the root cortex, which indicates that signaling between symbionts is required for further growth once appressoria are formed.
1593:
Spatafora, Joseph W.; Chang, Ying; Benny, Gerald L.; Lazarus, Katy; Smith, Matthew E.; Berbee, Mary L.; Bonito, Gregory; Corradi, Nicolas; Grigoriev, Igor; Gryganskyi, Andrii; James, Timothy Y.; O'Donnell, Kerry; Roberson, Robert W.; Taylor, Thomas N.; Uehling, Jessie (2016).
1171:) gene, and the large subunit (LSU) rRNA gene are currently the most common DNA markers used. The SSU region has been used most frequently in ecological studies, while the ITS and LSU regions have been predominantly used in taxonomic constructions of the phylum Glomeromycota. 1377:
Proper management of AMF in the agroecosystems can improve the quality of the soil and the productivity of the land. Agricultural practices such as reduced tillage, low phosphorus fertilizer usage, and perennialized cropping systems promote functional mycorrhizal symbiosis.
506:
live spore. Nuclei were visualized as large green spots with SytoGreen fluorescent dye, while mitochondria were stained with MitoTracker and are shown as small red spots. The movie was acquired at 1 frame every 5 min for a total of 90 min and displayed at a rate of 5
6265:
George E., K. Haussler, S.K. Kothari, X.L. Li and H. Marshner,1992 Contribution of Mycorrhizal Hyphae to Nutrient and Water Uptake of Plants. In Mycorrhizas in Ecosystems, ed., D.J. Read, D.H. Lewis, A.H. Fitter, I.J. Alexander. United Kingdom: C.A.B. International,
975:
and temperate grasslands where they have many potential host plants and can take advantage of their ability to colonize a broad host range. There is a lower incidence of mycorrhizal colonization in very arid or nutrient-rich soils. Mycorrhizas have been observed in
1408:
In reduced-tillage system, heavy phosphorus fertilizer input may not be required as compared to heavy-tillage systems. This is due to the increase in mycorrhizal network, which allows mycorrhizae to provide the plant with sufficient phosphorus (Miller
2229:
Lee, Soon-Jae; Kong, Mengxuan; Harrison, Paul; Hijri, Mohamed (2018), "Conserved Proteins of the RNA Interference System in the Arbuscular Mycorrhizal Fungus Rhizoglomus irregulare Provide New Insight into the Evolutionary History of Glomeromycota",
1006:, while others may be obligate mycotrophs. Recently, mycorrhizal status has been linked to plant distributions, with obligate mycorrhizal plants occupying warmer, drier habitats while facultative mycorrhizal plants occupy larger ranges of habitats. 734:
supplied to the fungi is decreased. Species of AMF differ in their abilities to supply the plant with phosphorus. In some cases, arbuscular mycorrhizae are poor symbionts, providing little phosphorus while taking relatively high amounts of carbon.
4466:
Liu, QH; Parsons AJ; Xue H; Fraser K; Ryan GD; Newman JA; Rasmussen S (2011). "Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content".
1158:
Genetic analyses of AM fungi from soil and root samples range in their applicability to answer ecological or phylogenetic questions. DNA analyses utilize various nuclear markers to describe AM fungi and represent different regions of the nuclear
560:
This chemotaxic fungal response to the host plants exudates is thought to increase the efficacy of host root colonization in low-phosphorus soils. It is an adaptation for fungi to efficiently explore the soil in search of a suitable plant host.
842:
2003). The factor was first identified by Fabienne Maillet and coworkers in a groundbreaking work published in Nature, where they have extracted three hundred litre mycorrhized carrot roots and exudates from 40 million germinating spores of
1533: 1938: 1078:
Arbuscular mycorrhizal symbiosis affects the community and diversity of other organisms in the soil. This can be directly seen by the release of exudates, or indirectly by a change in the plant species and plant exudates type and amount.
1424:
As the soil's phosphorus levels available to the plants increases, the amount of phosphorus also increases in the plant's tissues, and carbon drain on the plant by the AM fungi symbiosis become non-beneficial to the plant (Grant 2005).
557:
fungi produced scattered long branches. As the concentration of exudates was increased, the fungi produced more tightly clustered branches. At the highest-concentration arbuscules, the AMF structures of phosphorus exchange were formed.
373:
In both cases, the symbiotic plant-fungi interaction is thought to have evolved from a relationship in which the fungi was taking nutrients from the plant into a symbiotic relationship where the plant and fungi exchange nutrients.
980:; however, waterlogged soils have been shown to decrease colonization in some species. Arbuscular mycorrhizal fungi are found in 80% of plant species and have been surveyed on all continents except Antarctica. The biogeography of 431:
Surprisingly, despite their long evolution as an underground partner of plant roots, whose environment is far from light or temperature fluctuation, AMF still have a conserved circadian clock whose fungal circadian oscillator
511:
Spores of the AM fungi are thick-walled multi-nucleate resting structures. The germination of the spore does not depend on the plant, as spores have been germinated under experimental conditions in the absence of plants both
410:
from a cyanobacterial ancestor, and possibly related to symbiosis,. This finding of a genetic fossil inside AM fungi raises the possibility of an intimate relationship between AM fungi and cyanobacterial ancestors. A similar
5600:
He, Zhili; Joy D. VAN NOSTRAND; Ye DENG; Jizhong ZHOU (2011). "Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities".
1167:) found in all eukaryotic organisms. The DNA analysis of AM fungi using these markers began in the early 1990s and are continuing to be developed today. The small subunit (SSU) rRNA gene, the internal transcribed spacer ( 5548:
Redecker, Dirk; Arthur Schüßler; Herbert Stockinger; Sidney L. Stürmer; Joseph B. Morton; Christopher Walker (2013). "An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota)".
2137:
Wang, B.; Yeun, L.H.; Xue, Y.; Liu, Y.; Ane, J.M.; Qiu, Y.L. (2010). "Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants".
495: 1090:
2003). Molecules similar to Nod factors were isolated from AM fungi and were shown to induce MtEnod11, lateral root formation and enhance mycorrhization. Effective mycorrhizal colonization can also increase the
1428:
A decrease in mycorrhizal colonization due to high soil-phosphorus levels can lead to plant deficiencies in other micronutrients that have mycorrhizal-mediated uptake such as copper (Timmer & Leyden 1980).
538:, and the soil phosphorus concentration. Low-phosphorus concentrations in the soil increase hyphal growth and branching as well as induce plant exudation of compounds that control hyphal branching intensity. 1320: 2045:
Krings, Michael; Harper, Carla J; Taylor, Edith L. (2018), "Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov",
1351:
Most agricultural crops can perform better and are more productive when well-colonized by AM fungi. AM symbiosis increases the phosphorus and micronutrient uptake and growth of their plant host (George
719:
biosynthesis also occurs in the intraradical mycelium. Lipids are then stored or exported to extraradical hyphae where they may be stored or metabolized. The breakdown of lipids into hexoses, known as
2557:"Root Factors Induce Mitochondrial-Related Gene Expression and Fungal Respiration during the Developmental Switch from Asymbiosis to Presymbiosis in the Arbuscular Mycorrhizal Fungus Gigaspora rosea" 1086:
When rhizobium bacteria are present in the soil, mycorrhizal colonization is increased due to an increase in the concentration of chemical signals involved in the establishment of symbiosis (Xie
705:. Trehalose and glycogen are carbon storage forms that can be rapidly synthesized and degraded and may buffer the intracellular sugar concentrations. The intraradical hexose enters the oxidative 5131:
Stukenbrock, Eva; Rosendahl, Soren (2005). "Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi ( Glomus spp.) studied by multilocus genotyping of single spores".
3701:
Hempel, Stefan; Gotzenberger L; Kuhn I; Michalski SG; Rillig M; Zobel M; Moora M (2013). "Mycorrhizas in the Central European flora – relationships with plant life history traits and ecology".
1255:
O stable isotope probing is a very exciting new method that can shed light on questions microbial ecologists and biologists have struggled with answering for years, in particular, what are the
5709:
Montoliu-Nerin, Merce; Sánchez-García, Marisol; Bergin, Claudia; Grabherr, Manfred; Ellis, Barbara; Kutschera, Verena Esther; Kierczak, Marcin; Johannesson, Hanna; Rosling, Anna (2020-01-28).
194:
Previously this type of mycorrhizal associations were called 'Vesicular arbuscular mycorrhiza (VAM)', but since some members of these fungi do not produce any vesicles, such as the members of
1337:
Many modern agronomic practices are disruptive to mycorrhizal symbiosis. There is great potential for low-input agriculture to manage the system in a way that promotes mycorrhizal symbiosis.
2090:
Strullu-Derrien, Christine; Selosse, Marc-André; Kenrik, Paul; Martin, Francis M. (24 March 2018), "The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics",
1036:
as AM fungi can interact synergistically with fungal endophytes inhabiting the leaves of their host plant, or antagonistically. Similar ranges of interactions can occur between AM fungi and
6398:
Miller, M.H.; McGonigle T.P.; Addy, H.D. (1995). "Functional ecology if vesicular arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem".
5936:
Akhtar, Ovaid; Mishra, Rani; Kehri, Harbans Kaur (2019-03-01). "Arbuscular Mycorrhizal Association Contributes to Cr Accumulation and Tolerance in Plants Growing on Cr Contaminated Soils".
3637:. Halifax, Canada: Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology. pp. 845–851. 5893:
Jeffries, P.; Gianinazzi, S.; Perotto, S.; Turnau, K.; Barea, J. (2003). "The Contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility".
743:
and its impact on the symbiosis and community. While significant advances have been made in elucidating the mechanisms of this complex interaction, much investigation remains to be done.
617:. These are the distinguishing structures of arbuscular mycorrhizal fungus. Arbuscules are the sites of exchange for phosphorus, carbon, water, and other nutrients. There are two forms: 6016:"Arbuscular mycorrhiza and Aspergillus terreus inoculation along with compost amendment enhance the phytoremediation of Cr-rich technosol by Solanum lycopersicum under field conditions" 2748:
Matekwor, Ahulu E; Nakata, M; Nonaka, M (Mar 2005). "Arum- and Paris-type arbuscular mycorrhizas in a mixed pine forest on sand dune soil in Niigata Prefecture, central Honshu, Japan".
1238:
analysis of functional microbes. Application of sequencing of single nucleus from spores of AM fungi has also been developed recently and also circumvents the need of culture methods.
291:
saw the development of terrestrial flora. Plants of the Rhynie chert from the Lower Devonian (400 m.yrs ago) were found to contain structures resembling vesicles and spores of present
2385:
Douds, D.D. and Nagahashi, G. 2000. Signalling and Recognition Events Prior to Colonisation of Roots by Arbuscular Mycorrhizal Fungi. In Current Advances in Mycorrhizae Research. Ed.
740: 730:
Increasing the plant's carbon supply to the AM fungi increases uptake and transfer of phosphorus from fungi to plant. Likewise, phosphorus uptake and transfer is lowered when the
917:
pathways, but may have some common receptors involved in both pathogen recognition as well as CSSP. A recent work by Kevin Cope and colleagues shown that possibly other type of
963:
Arbuscular mycorrhizal fungi are most frequent in plants growing on mineral soils, and are of extreme importance for plants growing in nutrient-deficient substrates such as in
329:. The fossil arbuscules appear very similar to those of existing AMF. The cells containing arbuscules have thickened walls, which are also observed in extant colonized cells. 144:). They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered. 6419:
Mozafar, A.; Anken, T.; Ruh, R.; Frossard, E. (2000). "Tillage intensity, Mycorrhizal and non mycorrhizal fungi and nutrient concentrations in maize, wheat and canola".
3807:
van der Heijden, MG; Boller AT; Wiemken A; Sanders IR (1998). "Different arbuscular mycorrhizal fungi species are potential determinants of plant community structure".
1010:
different species can utilize for mineral uptake. This implies that arbuscular mycorrhizae are able to balance below-ground intra–and interspecific plant interactions.
3364: 5979:
Fillion, M.; Brisson, J.; Guidi W.; Labrecque, M. (2011). "Increasing phosphorus removal in willow and poplar vegetation filters using arbuscular mycorrhizal fungi".
2285:
Lee, SJ., Kong, M., Morse, D. et al. Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare. Mycorrhiza (2018)
4641:
Johnson, NC; Rowland DL; Corkidi L; Egerton-Warburton LM; Allen EB (2003). "Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands".
4051:
Hawkes, CV; Belnap J; D'Antonio C; Firestone M (2006). "Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses".
209:
since the 1970s have led to a greater understanding of the multiple roles of AMF in the ecosystem. An example is the important contribution of the glue-like protein
479:
The development of the AM fungi prior to root colonization, known as presymbiosis, consists of three stages: spore germination, hyphal growth, host recognition and
693:
Carbon transfer from plant to fungi may occur through the arbuscules or intraradical hyphae. Secondary synthesis from the hexoses by AM occurs in the intraradical
284:
has yielded fossils of the earliest land plants in which AM fungi have been observed. The fossilized plants containing mycorrhizal fungi were preserved in silica.
4351:
Larimer, AL; Bever JD; Clay K (2012). "Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass".
386:
Increased interest in mycorrhizal symbiosis and the development of sophisticated molecular techniques has led to the rapid development of genetic evidence. Wang
1348:, poor crop rotations, and selection for plants that survive these conditions, hinder the ability of plants to form symbiosis with arbuscular mycorrhizal fungi. 4809:
Marschner, P.; Timonen, S. (2004). "Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere".
1277:
proteins in their sRNA processing system (or RNAi system). sRNA and sRNA processing mechanism research is also exciting topic to understand AM fungi symbiosis.
5876:
Formey D, et al. 2016. Regulation of small RNAs and corresponding targets in Nod factor-induced Phaseolus vulgaris root hair cells. Int J Mol Sci . 176:887.
4571:
Klironomos, JN; Hart MM; Gurney JE; Moutoglis P (2001). "Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying".
1370:, which has poor chemotaxic ability, is highly dependent on AM-mediated phosphorus uptake at low and intermediate soil phosphorus concentrations (Thingstrup 600:
cortex. AM need no chemical signals from the plant to form the appressoria. AM fungi could form appressoria on the cell walls of "ghost" cells in which the
4386:
Omacini, M; Eggers T; Bonkowski M; Gange AC; Jones TH (2006). "Leaf endophytes affect mycorrhizal status and growth of co-infected and neighboring plants".
1728:
Simon, L.; Bousquet, J.; Levesque, C.; Lalonde, M. (1993). "Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants".
4421:
Mack, KML; Rudgers JA (2008). "Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes".
2187:"Genetic and cytogenetic mapping of DMI1, DMI2, and DMI3 genes of Medicago truncatula involved in Nod factor transduction, nodulation, and mycorrhization" 1437:
Cover crops are grown in the fall, winter, and spring, covering the soil during periods when it would commonly be left without a cover of growing plants.
2668:"The Interface between the Arbuscular Mycorrhizal Fungus Glomus intraradices and Root Cells of Panax quinquefolius: A Paris-Type Mycorrhizal Association" 1448:
in cover crops systems may be largely attributed to an increase in the extraradical hyphal network that can colonize the roots of the new crop (Boswell
1421:
The benefits of AMF are greatest in systems where inputs are low. Heavy usage of phosphorus fertilizer can inhibit mycorrhizal colonization and growth.
522:. AM fungal spores germinate given suitable conditions of the soil matrix, temperature, carbon dioxide concentration, pH, and phosphorus concentration. 5400:"Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations" 2992:
Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability
1523: 6079:"Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula" 1359:
Management of AM fungi is especially important for organic and low-input agriculture systems where soil phosphorus is, in general, low, although all
2713:
Yamato, Masahide (2005). "Morphological types of arbuscular mycorrhizas in pioneer woody plants growing in an oil palm farm in Sumatra, Indonesia".
3744:
Drigo, B; Pijl, AS; Duyts, H; Kielak, AM; Gamper, HA; Houtekamer, MJ; Boschker, HTS; Bodelier, PLE; Whiteley, AS; Veen, JAV; Kowalchuk, GA (2010).
1809: 794:
of several AMF species, suggesting that these supposedly ancient asexual fungi may be capable of undergoing conventional meiosis. Furthermore, in
406:
It was revealed that AM fungi have the bacterial type core enzyme (ribonuclease III) of the sRNA processing mechanism, probably by the process of
187:
is a highly evolved mutualistic relationship found between fungi and plants, the most prevalent plant symbiosis known, and AMF is found in 80% of
5674:
J., Schnürer; Clarholm, M.; Rosswall, T (1985). "Microbial biomass and activity in an agricultural soil with different organic matter contents".
4727:
Gai, JP; Tian H; Yang FY; Christie P; Li XL; Klironomos JN (2012). "Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient".
3224:"The Ectomycorrhizal Fungus Laccaria bicolor Produces Lipochitooligosaccharides and Uses the Common Symbiosis Pathway to Colonize Populus Roots" 6340:
Kabir, Z.; R.T. Koide (2000). "The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize".
4008:
Batten, KM; Skow KM; Davies KF; Harrison SP (2006). "Two invasive plants alter soil microbial community composition in serpentine grasslands".
2459:"Phosphorus amendment inhibits hyphal branching of VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation" 5233:
Opik, Maarja; et al. (2013). "Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi".
646:
The host plant exerts a control over the intercellular hyphal proliferation and arbuscule formation. There is a decondensation of the plant's
6122:
Rillig, M.; Ramsey, P.; Morris, S.; Paul, E. (2003). "Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change".
1709: 1577: 3222:
Heike; Strauss, Steven H.; Maillet, Fabienne; Jargeat, Patricia; Bécard, Guillaume; Puech-Pagès, Virginie; Ané, Jean-Michel (October 2019).
550:
Root exudates from AMF host plants grown in a liquid medium with and without phosphorus have been shown to affect hyphal growth. Spores of
233: 6077:
Giovannini, Luca; Palla, Michela; Agnolucci, Monica; Avio, Luciano; Sbrana, Cristiana; Turrini, Alessandra; Giovannetti, Manuela (2020).
5284:
Johnson, Nancy; Zak, D.R.; Tilman, D.; Pfleger, F.L. (1991). "Dynamics of vesicular arbuscular mycorrhizae during old field succession".
4306:
Novas, MV; Iannone LJ; Godeas AM; Cabral D (2009). "Positive association between mycorrhiza and foliar endophytes in a Poa bonariensis".
3590:
Allen, EB; Allen MF; Helm DJ; Trappe JM; Molina R; Rincon E (1995). "Patterns and regulation of mycorrhizal plant and fungal diversity".
1179: 6369:
McGonigle, T.P.; M.H. Miller (1999). "Winter survival of extraradical hyphae and spores of arbuscular mycorrhizal fungi in the field".
4096:"Differentiating between effects of invasion and diversity: impacts of aboveground plant communities on belowground fungal communities" 6299:"A Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots of Medicago truncatula" 1539: 853: 817: 4891:"Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes" 1389:
reduces the inoculation potential of the soil and the efficacy of mycorrhizaes by disrupting the extraradical hyphal network (Miller
985:
host specialists. The ecology of Mucoromycotinian fungi, which form "fine root endophyte" arbuscular mycorrhizas is largely unknown.
1863: 1827: 1440:
Mycorrhizal cover crops can be used to improve the mycorrhizal inoculum potential and hyphal network (Kabir and Koide 2000, Boswell
347:
The nature of the relationship between plants and the ancestors of arbuscular mycorrhizal fungi is contentious. Two hypotheses are:
3385:"The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota)" 1483:(Mab32B11) raised against crushed AMF spores. It is defined by its extraction conditions and reaction with the antibody Mab32B11. 3965:
Hausmann, N; Hawkes CV (2010). "Order of plant host establishment alters the composition of arbuscular mycorrhizal communities".
1518: 1366:
Some crops that are poor at seeking out nutrients in the soil are very dependent on AM fungi for phosphorus uptake. For example,
1203: 394:
fungal partners (DMI1, DMI3, IPD3). These three genes could be sequenced from all major clades of modern land plants, including
686:
ability and depend on the plant for their carbon nutrition. AM fungi take up the products of the plant host's photosynthesis as
5500:"Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland" 4236:
Pringle, A; Bever, JD; Gardes, M; Parrent, JL; Rillig, MC; Klironomos, JN (2009). "Mycorrhizal symbioses and plant invasions".
1993:
Kar, R.K.; Mandaokar, B.D.; Kar, R. (2005). "Mycorrhizal fossil fungi from the Miocene sediments of Mirozam, Northeast India".
450:
opens the door to the study of circadian clocks in the fungal partner of AM symbiosis. The same research characterized the AMF
6493:
L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field".
6626: 3650:"Molecular diversity of arbuscular mycorrhizal fungi and patterns of associations over time and space in a tropical forest" 3120:
Halary, Sébastien; Malik, Shehre-Banoo; Lildhar, Levannia; Slamovits, Claudio H.; Hijri, Mohamed; Corradi, Nicolas (2011).
4263:
Larimer, AL; Bever JD; Clay K (2010). "The interactive effects of plant microbial symbionts: a review and meta-analysis".
2399:
Akiyama K; Matsuzaki K; Hayashi H (2005). "Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi".
654:
in arbuscule-containing cells. Major modifications are required in the plant host cell to accommodate the arbuscules. The
366:
Both saprotrophs and biotrophs were found in the Rhynie Chert, but there is little evidence to support either hypothesis.
5635:"Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil" 4871: 1880:"Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding" 325:
was observed in root intracellular spaces, and arbuscules were observed in the layer thin wall cells similar to palisade
5182:
Baoming, Ji; et al. (2013). "Patterns of diversity and adaptation in Glomeromycota from three prairie grasslands".
1331:
On the left: a visual representation of the AMF life cycle and factors affecting the different AMF developmental stages.
256: 5441:"Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots" 1168: 6557:
Xie, Z.; Staehelin, C.; Vierheilig, H.; Weimken, A.; Jabbouri, S.; Broughton W.; Vogeli-Lange, R.; Thomas B. (1995).
6233:"Phosphate uptake, transport and transfer by arbuscular mycorrhizal fungus is increased by carbohydrate availability" 4836:
Eriksson, A. (2001). "Arbuscular mycorrhizae in relation to management history, soil nutrients and plant diversity".
1774: 1333:
On the right: mycorrhizal helper (MH) and plant growth promoting (PGP) bacteria synergistically interacting with AMF.
762:-ions) and by releasing H ions. Decreased soil pH increases the solubility of phosphorus precipitates. The hyphal NH 643:
type is primarily determined by the host plant family, although some families or species are capable of either type.
1268:
fungal species across growing seasons, with different plant hosts or treatments, and in the face of climate change.
613:
Once inside the parenchyma, the fungus forms highly branched structures for nutrient exchange with the plant called
3063:"Reciprocal recombination genomic signatures in the symbiotic arbuscular mycorrhizal fungi Rhizophagus irregularis" 849:
and purified the active fraction. They demonstrated this active principle is lipo-chito-oligosaccharide in nature.
78: 66: 4985:
Worchel, Elise; Giauque, Hannah E.; Kivlin, Stephanie N. (2013). "Fungal symbionts alter plant drought response".
1099:
AM mycorrhizal colonization determines the diversity and abundance of the bacterial community in the rhizosphere.
856:(CSSP) that eventually leads to plant's accommodation programme to provide hostage to the arbuscular mycorrhizae. 706: 4654: 3820: 2845:
Bolan, N.S. (1991). "A critical review of the role of mycorrhizal fungi in the uptake of phosphorus by plants".
1298:
A relatively new approach to restoring land is to inoculate soil with AM fungi when reintroducing vegetation in
1103:
important role on mediating the plant species' specific effect on the bacterial composition of the rhizosphere.
3525:"Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe" 1466: 924:
The AMF colonization requires the following chain of events that can be roughly divided into following steps -
914: 596:
or 'infection structure' forms on the root epidermis. From this structure hyphae can penetrate into the host's
407: 5774:
Dumont, Marc G.; Murrell, Colin J. (2005). "Stable isotope probing – linking microbial identity to function".
4962: 4940:
Van der Putten, WH (2012). "Climate change, Aboveground-belowground interactions and species' range shifts".
3836:"The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems" 3746:"Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO 1843: 1302:
projects (phytoremediation). It has enabled host plants to establish themselves on degraded soil and improve
6524:"The relationship of mycorrhizal infection to phosphorus-induced copper deficiency in sour orange seedlings" 2273:
Alexopolous C, Mims C, Blackwell M. 2004. Introductory mycology, 4th ed . Hoboken (NJ): John Wiley and Sons.
1041: 845: 796: 6621: 6559:"Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans" 6448:
Sorensen, J.N.; J Larsen; I. Jakobsen (2005). "Mycorrhizae formation and nutrient concentration in leeks (
4438: 3480:"Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities" 2555:
Tamasloukht, M.; Sejalon-Delmas, N.; Kluever, A.; Jauneau, A.; Roux., C.; Becard, G.; Franken, P. (2003).
1462: 1299: 1230:
One prospect for future analysis of AM fungi is the use of stable isotope probes. Stable isotope probing (
1053: 1037: 359: 52: 6651: 2504:
Sbrana, C.; Giovannetti, M. (2005). "Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae".
1183:
within roots in greenhouse experiments as well as in the field to identify local AM fungal communities.
876: 801: 459: 218: 83: 71: 913:
perception that are released from Arbuscular mycorrhizal fungi. The pathway is distinguished from the
5711:"Building de novo reference genome assemblies of complex eukaryotic microorganisms from single nuclei" 4763: 3885:"Arbuscular mycorrhizal fungi mediate below-ground plant–herbivore interactions: a phylogenetic study" 2013: 6611: 6461: 6428: 6378: 6349: 6211: 6027: 6015: 5988: 5902: 5833: 5722: 5683: 5646: 5558: 5514: 5452: 5352: 5293: 5242: 5191: 5140: 4994: 4736: 4681: 4607: 4525: 4476: 4430: 4395: 4360: 4272: 4208: 4148: 4060: 4017: 3974: 3896: 3847: 3761: 3710: 3599: 3536: 3491: 3444: 3179: 3074: 2854: 2757: 2513: 2470: 2408: 2364:
Wright S.F. (2005). "Management of Arbuscular Mycorrhizal Fungi". In R.W. Zobel; S.F. Wright (eds.).
2311: 1947: 1739: 779: 214: 4443: 30: 5036:
Kivlin, SN; Emery SM; Rudgers JA (2013). "Fungal symbionts alter plant response to global change".
1308: 1246:
SIP, more explicitly DNA/RNA-based SIP, uses stable-isotope enriched substrates, such as C, N, or H
972: 894: 783: 724: 6641: 6545: 6510: 6477: 6139: 6059: 5961: 5918: 5799: 5582: 5530: 5317: 5266: 5215: 5164: 5018: 4967: 4853: 4786: 4623: 4333: 4288: 4076: 4033: 3680: 3615: 3460: 3358: 3203: 2870: 2789: 2730: 2687: 2630: 2537: 2486: 2432: 1755: 1508: 1400:
By breaking apart the soil macro structure, the hyphal network is rendered non-infective (Miller
133: 3523:; Firn, Jennifer L.; Harpole, W. Stanley; Hobbie, Sarah E.; Hofmockel, Kirsten S. (2015-09-01). 1701: 910: 2014:"Mycorrhization of fossil and living plantsLa mycorrhization des plantes fossiles et actuelles" 770:
flow to the plant as the soil's inner surfaces absorb ammonium and distribute it by diffusion.
6646: 6588: 6328: 6254: 6051: 6043: 5953: 5859: 5791: 5756: 5738: 5574: 5480: 5421: 5380: 5309: 5258: 5207: 5156: 5098: 5053: 5010: 4922: 4709: 4553: 4174: 4117: 3990: 3947: 3865: 3789: 3726: 3672: 3572: 3554: 3428: 3406: 3306: 3255: 3195: 3151: 3102: 3040: 2935: 2781: 2773: 2695: 2648: 2586: 2529: 2424: 2339: 2257: 2208: 2167: 2117: 2109: 2073: 1975: 1859: 1823: 1705: 1674: 1633: 1615: 1573: 1164: 968: 830:'s inducible gene MtEnod11. This is the same gene involved in establishing symbiosis with the 679: 635:
is characterized by the growth of hyphae in the space between plant cells. The choice between
442: 297: 137: 6297:
Kosuta, S.; Chabaud, M.; Lougnon, G.; Gough, C.; Denarie, J.; Barker, D.; Bacard, G. (2003).
4249: 2611:"Plant Cell Responses to Arbuscular Mycorrhizal Fungi: Getting to the Roots of the Symbiosis" 1059:
AM fungi have been shown to improve plant tolerance to abiotic environmental factors such as
6578: 6570: 6535: 6502: 6469: 6436: 6407: 6386: 6357: 6318: 6310: 6283: 6244: 6219: 6175: 6131: 6090: 6035: 5996: 5945: 5910: 5849: 5841: 5783: 5746: 5730: 5691: 5654: 5610: 5566: 5522: 5470: 5460: 5411: 5370: 5360: 5336: 5301: 5250: 5199: 5148: 5088: 5045: 5002: 4957: 4949: 4912: 4902: 4845: 4818: 4778: 4744: 4699: 4689: 4650: 4615: 4598:
Auge, RM (2001). "Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis".
4580: 4543: 4533: 4492: 4484: 4448: 4403: 4368: 4323: 4315: 4280: 4245: 4216: 4164: 4156: 4107: 4068: 4025: 3982: 3937: 3904: 3855: 3816: 3779: 3769: 3718: 3664: 3607: 3562: 3544: 3499: 3452: 3396: 3296: 3286: 3245: 3235: 3187: 3141: 3133: 3092: 3082: 3030: 3022: 3011:"Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses" 2971: 2925: 2917: 2862: 2820: 2765: 2722: 2679: 2638: 2622: 2576: 2568: 2521: 2478: 2416: 2329: 2319: 2247: 2239: 2198: 2157: 2149: 2099: 2063: 2055: 2025: 1965: 1955: 1891: 1851: 1815: 1790: 1747: 1730: 1664: 1623: 1607: 1565: 1286: 252: 247:
include nitrogen (ammonium) and zinc. Benefits from colonization include tolerances to many
17: 4514:"Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers" 2020:, La paléobotanique et l'évolution du monde végétal : Quelques problèmes d'actualité, 1596:"A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data" 971:. The populations of AM fungi is greatest in plant communities with high diversity such as 151:. This subphylum, along with the Mortierellomycotina, and Mucoromycotina, form the phylum 6108: 6103: 4953: 3520: 2140: 1909: 1904: 1292: 977: 720: 570: 395: 269: 117: 39: 5822:"Characterization of growing microorganisms in soil by stable isotope probing with H218O" 3122:"Conserved Meiotic Machinery in Glomus SPP., a Putatively Ancient Asexual Fungal Lineage" 6465: 6432: 6382: 6353: 6215: 6107: This article incorporates text from this source, which is available under the 6031: 5992: 5906: 5837: 5726: 5687: 5650: 5562: 5518: 5456: 5356: 5297: 5246: 5195: 5144: 4998: 4740: 4685: 4611: 4529: 4480: 4434: 4399: 4364: 4276: 4212: 4152: 4064: 4021: 3978: 3900: 3851: 3765: 3714: 3603: 3540: 3495: 3448: 3383:
Opik, M; Vanatoa A; Vanatoa E; Moora M; Davidson J; Kalwij JM; Reier U; Zobel M (2010).
3183: 3078: 2858: 2761: 2517: 2474: 2412: 2315: 2048:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
1951: 1908: This article incorporates text from this source, which is available under the 1743: 6540: 6523: 5854: 5821: 5751: 5710: 5659: 5634: 5375: 5340: 4917: 4890: 4704: 4669: 4548: 4513: 4169: 4136: 3784: 3745: 3567: 3524: 3301: 3274: 3250: 3223: 3146: 3097: 3062: 3035: 3010: 2334: 2299: 2252: 2068: 1694: 1628: 1595: 1569: 1503: 1231: 1195: 731: 437: 288: 188: 141: 125: 6583: 6558: 6390: 6361: 6323: 6298: 6223: 5499: 5475: 5440: 4193: 3649: 2906:"Carbon Uptake and the Metabolism and Transport of Lipids in an Arbuscular Mycorrhiza" 2825: 2808: 2643: 2610: 2581: 2556: 6635: 6272:"Soil and fertilizer phosphorus: effects on plant supply and mycorrhizal development" 6249: 6232: 6063: 5938:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences
5695: 5526: 5416: 5399: 5152: 5093: 5073:"A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO 4488: 4452: 4407: 4372: 4221: 4112: 4095: 3942: 3925: 3909: 3884: 3860: 3835: 3668: 3504: 3479: 3401: 3384: 2930: 2905: 2809:"Cost efficiency of nutrient acquisition of mycorrhizal symbiosis for the host plant" 2667: 2153: 1970: 1933: 1855: 1669: 1652: 1559: 1360: 1160: 981: 964: 822:
Recent research has shown that AM fungi release an diffusional factor, known as the
552: 535: 502: 195: 179: 148: 6549: 6514: 6481: 6143: 5965: 5922: 5803: 5586: 5534: 5321: 5270: 5168: 4971: 4875: 4857: 4627: 4292: 4080: 4037: 3684: 3619: 3464: 3061:
Mateus, I. D.; Auxier, B.; Ndiaye MMS; Cruz, J.; Lee, S. J.; Sanders, I. R. (2022).
2874: 2793: 2734: 2541: 2490: 998:
for their host plants. This may be due to the opposite selective pressure involved.
27:
Symbiotic penetrative association between a fungus and the roots of a vascular plant
6612:
INVAM: International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi
5219: 4790: 4337: 3207: 2436: 2386: 1759: 1528: 1491: 1303: 1125: 663: 593: 480: 277: 152: 6000: 5465: 5022: 3456: 3275:"Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis" 859: 568:, that enable hyphal growth toward the roots of a potential host plant: Spores of 213:
to soil structure (see below). This knowledge is applicable to human endeavors of
6039: 4822: 4748: 4538: 3087: 2203: 2186: 592:
When arbuscular mycorrhizal fungal hyphae encounter the root of a host plant, an
6440: 4137:"Severe plant invasions can increase mycorrhizal fungal abundance and diversity" 1534:
The International Collection of (Vesicular) Arbuscular Mycorrhizal Fungi (INVAM)
1490:
Glomalin is hypothesized to improve soil aggregate water stability and decrease
1092: 1072: 902: 747: 222: 60: 5734: 4674:
Proceedings of the National Academy of Sciences of the United States of America
3754:
Proceedings of the National Academy of Sciences of the United States of America
2887:
Harley, J.L., Smith, S.E., 1983. Mycorrhizal Symbiosis. Academic Press: London.
2029: 1939:
Proceedings of the National Academy of Sciences of the United States of America
1264:
organisms with specific metabolic pathways, as would happen when using C andN.
6607:
Mycorrhizal Associations: The Web Resource. Section 4: Arbuscular Mycorrhizas.
6506: 6473: 6411: 6200:"Winter Wheat cover cropping, VA mycorrhizal fungi and maize growth and yield" 6135: 5949: 5914: 5614: 5570: 5254: 5006: 4849: 4782: 4670:"Resource limitation is a driver of local adaptation in mycorrhizal symbioses" 4319: 4284: 4072: 4029: 2769: 2726: 2525: 1794: 1513: 1477: 918: 898: 831: 827: 618: 601: 597: 565: 337: 326: 312: 202: 167: 102: 6095: 6078: 6047: 5957: 5742: 5398:
Ehinger, Martine O.; Daniel Croll; Alexander M. Koch; Ian R. Sanders (2012).
4907: 3558: 2777: 2666:
Lara Armstrong; R. Larry Peterson; Lara Armstrong; R. Larry Peterson (2002).
2113: 1960: 1619: 877:"Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza." 746:
Mycorrhizal activity increases the phosphorus concentration available in the
307:, which are ancient plants possessing characteristics of vascular plants and 5365: 5072: 4694: 3926:"Plant neighborhood control of arbuscular mycorrhizal community composition" 3774: 3635:
Host-specificity and functional diversity among arbuscular mycorrhizal fungi
3549: 3432: 2324: 2286: 1896: 1879: 1345: 1003: 698: 659: 647: 629: 518:
and in soil. However, the rate of germination can be increased by host root
466:
gene evolution in the fungal kingdom is much older than previously thought.
413: 308: 184: 106: 56: 6592: 6452:) in relation to previous crop and cover crop management on high P soils". 6332: 6258: 6055: 5863: 5795: 5760: 5578: 5425: 5384: 5341:"Spore development and nuclear inheritance in arbuscular mycorrhizal fungi" 5313: 5262: 5211: 5160: 5102: 5057: 5014: 4926: 4713: 4584: 4557: 4178: 4121: 3994: 3951: 3869: 3793: 3730: 3676: 3576: 3519:
Leff, Jonathan W.; Jones, Stuart E.; Prober, Suzanne M.; Barberán, Albert;
3410: 3336:
Smith, S.E., Read D.J. Mycorrhizal Symbiosis. 2002. Academic Press: London.
3310: 3259: 3199: 3155: 3106: 3044: 2960:"Impact of arbuscular mycorrhiza fungi on N and P cycling in the root zone" 2939: 2785: 2699: 2652: 2590: 2533: 2428: 2343: 2300:"Spore development and nuclear inheritance in arbuscular mycorrhizal fungi" 2261: 2212: 2171: 2121: 2077: 2059: 1979: 1678: 1637: 790:, including seven meiosis-specific genes were found to be conserved in the 6574: 5484: 4619: 4160: 3026: 2626: 2482: 1819: 564:
Further evidence that arbuscular mycorrhizal fungi exhibit host-specific
542:
conditions and could thus contribute to reduced mycorrhizal colonization.
5845: 3291: 3240: 3137: 2921: 2243: 2162: 1487:
afforested, and agricultural land and grasslands treated with fungicide.
1480: 1470: 1060: 995: 906: 835: 805: 767: 759: 702: 694: 683: 514: 391: 352: 341: 322: 281: 210: 198:; the term has been changed to 'Arbuscular Mycorrhizae' to include them. 175: 163: 5787: 5116:
Glomalin. "Hiding Place for a Third of the World's Stored Soil Carbon".
5049: 4872:"Lipochitooligosaccharides Stimulating Arbuscular Mycorrhizal Symbiosis" 3273:
MacLean, Allyson M.; Bravo, Armando; Harrison, Maria J. (October 2017).
3191: 2420: 1063:. They alleviate salt stress and benefit plant growth and productivity. 344:
while increasing the fitness of both the fungi and the plant symbionts.
6270:
Grant, C.; Bitman, S.; Montreal, M.; Plenchette, C.; Morel, C. (2005).
5305: 4328: 3611: 2866: 2691: 2634: 1386: 1341: 787: 710: 655: 519: 333: 315: 248: 206: 156: 82:
Bilayered glomoid spore of arbuscular mycorrhizal fungi in the root of
6314: 5203: 4497: 3986: 3722: 3170:
lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza".
2572: 2104: 1700:. Frontiers in Physics. Benjamin/Cummings Publishing Company. p.  47: 3121: 2012:
Strullu-Derrien, Christine; Strullu, Désiré-Georges (November 2007),
1751: 1469:
by the production of extraradical hyphae and a soil protein known as
1129: 791: 687: 625: 419: 390:(2010) investigated plant genes involved in communication with order 303: 243: 171: 109: 6489:
Thingstrup, I.; G. Rubaek; E. Sibbensen; I. Jakobsen (1999). "Flax (
6288: 6271: 6180: 6163: 2976: 2959: 2683: 2458: 6606: 6199: 3433:"Global diversity and distribution of arbuscular mycorrhizal fungi" 1611: 1476:
Glomalin-related soil proteins (GRSP) have been identified using a
446:. The proven conservation of a circadian clock and output genes in 355:
interaction that developed into a mutually beneficial relationship.
3478:
Lekberg, Y; Koide RT; Rohr JR; Aldirch-Wolfe L; Morton JB (2007).
2366:
Roots and Soil Management: Interactions between roots and the soil
1319: 858: 716: 531: 336:
exhibit a vesicular morphology closely resembling that of present
232: 77: 65: 46: 29: 4764:"stress alleviation using arbuscular mycorrhizal fungi. A review" 4668:
Johnson, NC; Wilson GWT; Bowker MA; Wilson JA; Miller RM (2010).
1844:"2 - Colonization of roots and anatomy of arbuscular mycorrhizas" 1808:
Moore, David; Robson, Geoffrey D.; Trinci, Anthony P. J. (2020),
994:
for colonization of potential AM host plant species as do fungal
1934:"Four hundred-million-year-old vesicular arbuscular mycorrhizae" 1367: 1132:, do not establish arbuscular mycorrhizal fungi on their roots. 921:
may involve the CSSP components such as Myc-factor recognition.
121: 35: 6616: 1878:
Jacott, Catherine; Murray, Jeremy; Ridout, Christopher (2017).
1363:
can benefit by promoting arbuscular mycorrhizae establishment.
132:. Arbuscular mycorrhiza is a type of endomycorrhiza along with 6014:
Akhtar, Ovaid; Kehri, Harbans Kaur; Zoomi, Ifra (2020-09-15).
3648:
Husband, R; Herre EA; Turner SL; Gallery R; Young JPW (2002).
863:
The chemical structure of MycRi-IV (C16:0,S), a Myc factor of
651: 534:
through the soil is controlled by host root exudates known as
6198:
Boswell, E. P.; R.T. Koide; D.L. Shumway; H.D. Addy. (1998).
1465:
projects and the rapidity of soil recovery. AM fungi enhance
1272:
sRNA and sRNA processing mechanism to understand AM symbiosis
1075:
is the soil zone in the immediate vicinity of a root system.
2904:
Pfeffer, P.; Douds D.; Becard, G.; Shachar-Hill, Y. (1999).
786:
structures. However, homologs of 51 genes that function in
239:
Positive effects of arbuscular mycorrhizal (AM) colonization
147:
Arbuscular mycorrhizae are formed by fungi in the subphylum
4655:
10.1890/0012-9658(2003)084[1895:neamaa]2.0.co;2
3834:
van der Heijden, MGA; Bardgett RD; Van Straalen NM (2008).
3821:
10.1890/0012-9658(1998)079[2082:damfsa]2.0.co;2
751: 1136:
Molecular genetic analyses of arbuscular mycorrhizal fungi
727:
and contribution to the below-ground organic carbon pool.
70:
Vesicular arbuscular mycorrhizae in the terminal roots of
650:, which indicates increased transcription of the plant's 1461:
Restoration of native AM fungi increases the success of
1095:
and symbiotic nitrogen fixation in mycorrhizal legumes.
6164:"Arbuscular mycorrhizae, glomalin and soil aggregation" 4135:
Lekberg, Y; Gibbons SM; Rosendahl S; Ramsey PW (2013).
1031:
Interactions between AM fungi and other plant symbionts
741:
nitrogen nutrition in the arbuscular mycorrhizal system
5498:
Helgason, Thorunn; Fitter, A.H.; Young, J.P.W (1999).
4194:"Darkness visible: reflections on underground ecology" 295:
species. Colonized fossil roots have been observed in
2368:. US: American Society of Agronomy. pp. 183–197. 1653:"Coevolution of roots and mycorrhizas of land plants" 1453:
early growth, which greatly improves the crop yield.
4942:
Annual Review of Ecology, Evolution, and Systematics
4238:
Annual Review of Ecology, Evolution, and Systematics
3378: 3376: 3374: 1307:
phosphorus uptake and soil nitrogen content, higher
155:, a sister clade of the more well-known and diverse 3344: 3342: 1693: 5815: 5813: 4963:20.500.11755/0f7d61b9-e435-4da3-b3d6-3ca115bdbdb5 2298:Marleau J; Dalpé Y; St-Arnaud M; Hijri M (2011). 1932:Remy, W.; Taylor, T.; Hass, H.; Kerp, H. (1994). 1207: 436:) is activated by the blue light, similar to the 5888: 5886: 5884: 5882: 2457:Nagahashi, G; Douds, D. D.; Abney, G.D. (1996). 2281: 2279: 4094:Kivlin, Stephanie; Christine V. Hawkes (2011). 3529:Proceedings of the National Academy of Sciences 2807:Tuomi, J.; Kytoviita, M.; Hardling, R. (2001). 1692:Barbour, M.G.; Burk, J.H.; Pitts, W.D. (1980). 6157: 6155: 6153: 5628: 5626: 5624: 3696: 3694: 3332: 3330: 3328: 3326: 3324: 3322: 3320: 1052:Arbuscular mycorrhizal fungi vary across many 697:. Inside the mycelium, hexose is converted to 4762:Porcel, R; Aroca, R; Ruiz-Lozano, JM (2012). 3422: 3420: 3056: 3054: 2389:, Douds, D.D. Minnesota: APS Press. Pp 11–18. 1128:), such as cabbage, cauliflower, canola, and 897:in plants that seen to be activated in both 8: 4804: 4802: 4800: 3363:: CS1 maint: multiple names: authors list ( 3004: 3002: 3000: 1340:Conventional agriculture practices, such as 273:facilitated the development of land plants. 3009:Smith, S.; Smith, A.; Jakobsen, I. (2003). 1393:1995, McGonigle & Miller 1999, Mozafar 1291:Disturbance of native plant communities in 5439:Simon, L; Lalonde, M.; Bruns, T.D (1992). 2899: 2897: 2895: 2893: 2452: 2450: 2448: 2446: 2224: 2222: 1002:fungi, and some plants may be facultative 6582: 6539: 6322: 6287: 6248: 6179: 6094: 5853: 5750: 5658: 5474: 5464: 5415: 5374: 5364: 5092: 4961: 4916: 4906: 4703: 4693: 4547: 4537: 4496: 4442: 4327: 4220: 4168: 4111: 3941: 3908: 3859: 3783: 3773: 3566: 3548: 3503: 3400: 3300: 3290: 3249: 3239: 3145: 3096: 3086: 3034: 2975: 2929: 2824: 2642: 2580: 2359: 2357: 2355: 2353: 2333: 2323: 2287:https://doi.org/10.1007/s00572-018-0843-y 2251: 2202: 2161: 2103: 2067: 1969: 1959: 1895: 1668: 1627: 1524:Mycorrhizal fungi and soil carbon storage 4250:10.1146/annurev.ecolsys.39.110707.173454 3427:Kivlin, Stephanie; Christine V. Hawkes; 2953: 2951: 2949: 2840: 2838: 2836: 2381: 2379: 2377: 2375: 1226:Future research directions with AM fungi 1187:willingness to troubleshoot in the lab. 852:Recognition of Myc factors triggers the 490: 6627:Janusz Blaszkowski – Information on AMF 6617:Phylogeny and taxonomy of Glomeromycota 6342:Agriculture, Ecosystems and Environment 6204:Agriculture, Ecosystems and Environment 4889:Schrey, Silvia D.; et al. (2012). 2132: 2130: 1927: 1925: 1923: 1921: 1919: 1723: 1721: 1551: 1328:on plant performance and soil fertility 1259:microbial organisms in my system? The H 1107:Glomeromycota and global climate change 6020:Ecotoxicology and Environmental Safety 5826:Applied and Environmental Microbiology 3356: 2990:H. Bücking and Y.Shachar-Hill (2005). 2185:Ané, JM; et al. (November 2002). 1326:Impacts of AMF and beneficial bacteria 800:genetic exchange involving reciprocal 666:is reorganized around the arbuscules. 4954:10.1146/annurev-ecolsys-110411-160423 2604: 2602: 2600: 2040: 2038: 1120:Plants lacking arbuscular mycorrhizae 584:signals from a potential host plant. 427:Circadian clock evolution in AM fungi 351:Mycorrhizal symbiosis evolved from a 7: 6231:Bücking H.; Shachar-Hill Y. (2005). 4771:Agronomy for Sustainable Development 2191:Molecular Plant-Microbe Interactions 1842:Smith, Sally A; Read, David (2008), 402:AM fungi and cyanobacteria symbiosis 201:Advances in research on mycorrhizal 5339:; St-Arnaud, M.; Hijri, M. (2011). 1048:Response to environmental gradients 423:symbiosis was previously reported. 6541:10.1111/j.1469-8137.1980.tb04443.x 5660:10.1111/j.1574-6941.1999.tb00621.x 1773:Schüßler, A.; et al. (2001). 1570:10.1016/b978-0-12-370526-6.x5001-6 1540:Glomus iranicum var. tenuihypharum 891:Common Symbiotic Signaling Pathway 854:common symbiotic signaling pathway 818:Common Symbiotic Signaling Pathway 750:. Mycorrhizae lower the root zone 624:is characterized by the growth of 229:Evolution of mycorrhizal symbiosis 25: 6400:Critical Reviews in Biotechnology 6276:Canadian Journal of Plant Science 2826:10.1034/j.1600-0706.2001.920108.x 1405:3, McGonigle & Miller 1999). 358:Mycorrhizal fungi developed from 6250:10.1111/j.1469-8137.2004.01274.x 6168:Canadian Journal of Soil Science 6102: 5527:10.1046/j.1365-294x.1999.00604.x 5417:10.1111/j.1469-8137.2012.04278.x 5153:10.1111/j.1365-294x.2005.02453.x 5094:10.1111/j.1469-8137.2004.01159.x 4512:Reininger, V; Sieber TN (2012). 4489:10.1111/j.1365-2435.2011.01853.x 4453:10.1111/j.2007.0030-1299.15973.x 4408:10.1111/j.1365-2435.2006.01099.x 4373:10.1111/j.1600-0706.2012.20153.x 4222:10.1111/j.0022-0477.2005.00990.x 4113:10.1111/j.1469-8137.2010.03494.x 3943:10.1111/j.1469-8137.2009.02882.x 3910:10.1111/j.1365-2435.2012.02046.x 3883:Vannette, RL; Rasmann S (2012). 3861:10.1111/j.1461-0248.2007.01139.x 3669:10.1046/j.1365-294x.2002.01647.x 3505:10.1111/j.1365-2745.2006.01193.x 3402:10.1111/j.1469-8137.2010.03334.x 2964:Canadian Journal of Soil Science 2154:10.1111/j.1469-8137.2009.03137.x 1903: 1856:10.1016/B978-012370526-6.50004-0 1670:10.1046/j.1469-8137.2002.00397.x 1519:Mycorrhizae and changing climate 362:fungi that became endosymbiotic. 162:AM fungi help plants to capture 6622:Mycorrhizal Literature Exchange 6522:Timmer, L.; Leyden, R. (1980). 5603:Front. Environ. Sci. Eng. China 3349:Smith, Read, Sally, DJ (2008). 2609:Gianinazzi-Pearson, V. (1996). 1811:21st Century Guidebook to Fungi 1124:Members of the mustard family ( 778:AM fungi have been regarded as 628:from one cell to the next; and 5895:Biology and Fertility of Soils 3924:Haumann, N; Hawkes CV (2009). 1433:Perennialized cropping systems 255:stresses through induction of 1: 6391:10.1016/S0929-1393(98)00165-6 6362:10.1016/S0167-8809(99)00121-8 6224:10.1016/S0167-8809(97)00094-7 6001:10.1016/j.ecoleng.2010.09.002 5676:Soil Biology and Biochemistry 5466:10.1128/AEM.58.1.291-295.1992 5118:Agricultural Research Journal 3457:10.1016/j.soilbio.2011.07.012 3437:Soil Biology and Biochemistry 1444:1998, Sorensen et al. 2005). 989:Response to plant communities 782:because they lack observable 462:of Dikarya, and suggests the 191:families in existence today. 6040:10.1016/j.ecoenv.2020.110869 5696:10.1016/0038-0717(85)90036-7 4823:10.1016/j.apsoil.2004.06.007 4749:10.1016/j.pedobi.2011.12.004 4539:10.1371/journal.pone.0042865 3126:Genome Biology and Evolution 3088:10.1371/journal.pone.0270481 2232:Genome Biology and Evolution 2204:10.1094/MPMI.2002.15.11.1108 1242:Stable Isotope Probing (SIP) 949:3. The Accommodation program 928:1.The Pre-Contact Signaling, 674:Nutrient uptake and exchange 662:proliferate. The plant cell 257:systemic acquired resistance 42:containing paired arbuscules 18:Arbuscular mycorrhizal fungi 6441:10.2134/agronj2000.9261117x 5776:Nature Reviews Microbiology 3353:. New York: Academic Press. 2994:New Phytologist 165:899–912 1018:AM fungi and plant invasion 6668: 5735:10.1038/s41598-020-58025-3 5038:American Journal of Botany 4573:Canadian Journal of Botany 2030:10.1016/j.crpv.2007.09.006 1779:: phylogeny and evolution" 1775:"A new fungal phylum, the 1284: 815: 766:uptake also increases the 658:shrink and other cellular 6474:10.1007/s11104-004-6960-8 6412:10.3109/07388559509147411 5950:10.1007/s40011-017-0914-4 5915:10.1007/s00374-002-0546-5 5820:Schwartz, Egbert (2007). 5639:FEMS Microbiology Ecology 5633:Olsson, Pal Axel (1999). 5615:10.1007/s11783-011-0301-y 5571:10.1007/s00572-013-0486-y 5255:10.1007/s00572-013-0482-2 5007:10.1007/s00248-012-0151-6 4783:10.1007/s13593-011-0029-x 4320:10.1007/s11557-008-0579-8 4285:10.1007/s13199-010-0083-1 4073:10.1007/s11104-005-4826-3 4030:10.1007/s10530-004-3856-8 3633:Klironomos, John (2000). 2770:10.1007/s00572-004-0310-9 2727:10.1007/s10267-004-0212-x 2526:10.1007/s00572-005-0362-5 1850:(Third ed.): 42–90, 1795:10.1017/S0953756201005196 1696:Terrestrial plant ecology 812:Mechanism of colonization 808:between haploid genomes. 774:Meiosis and recombination 754:by selective uptake of NH 707:pentose phosphate pathway 454:gene, which is the first 140:(not to be confused with 116:, or AMF) penetrates the 6096:10.3390/agronomy10010106 5445:Appl. Environ. Microbiol 5345:BMC Evolutionary Biology 4908:10.1186/1471-2180-12-164 2304:BMC Evolutionary Biology 1961:10.1073/pnas.91.25.11841 1651:Brundrett, M.C. (2002). 1467:soil aggregate stability 1344:, heavy fertilizers and 408:horizontal gene transfer 6507:10.1023/A:1004362310788 6136:10.1023/A:1024807820579 5366:10.1186/1471-2148-11-51 4850:10.1023/A:1013204803560 4695:10.1073/pnas.0906710107 3775:10.1073/pnas.0912421107 3550:10.1073/pnas.1508382112 2325:10.1186/1471-2148-11-51 1897:10.3390/agronomy7040075 1054:environmental gradients 1042:dark septate endophytes 909:), as well as found in 865:Rhizophagus irregularis 846:Rhizophagus irregularis 797:Rhizophagus irregularis 5981:Ecological Engineering 4585:10.1139/cjb-79-10-1161 2060:10.1098/rstb.2016.0500 2018:Comptes Rendus Palevol 1463:ecological restoration 1334: 1300:ecological restoration 969:sand dune environments 886: 826:, which activates the 804:was found to occur in 508: 260: 86: 75: 63: 53:fluorescent microscopy 44: 6575:10.1104/pp.108.4.1519 5071:Treseder, KK (2004). 4620:10.1007/s005720100097 4161:10.1038/ismej.2013.41 3351:Mycorrhizal symbiosis 3027:10.1104/pp.103.024380 2627:10.1105/tpc.8.10.1871 2483:10.1007/s005720050139 1848:Mycorrhizal Symbiosis 1820:10.1017/9781108776387 1561:Mycorrhizal Symbiosis 1417:Phosphorus fertilizer 1323: 1312:for crop production. 1038:ectomycorrhizal fungi 862: 500:Time-lapse series on 499: 332:Mycorrhizas from the 236: 219:ecosystem restoration 91:arbuscular mycorrhiza 81: 69: 59:stained with WGA and 50: 33: 6371:Applied Soil Ecology 5846:10.1128/AEM.02021-06 4811:Applied Soil Ecology 4308:Mycological Progress 4010:Biological Invasions 3429:Kathleen K. Treseder 3292:10.1105/tpc.17.00555 3241:10.1105/tpc.18.00676 2922:10.1104/pp.120.2.587 973:tropical rainforests 915:pathogen recognition 682:. They have limited 215:ecosystem management 183:those that do. This 6491:Linum usitatissimum 6466:2005PlSoi.273..101S 6433:2000AgrJ...92.1117M 6383:1999AppSE..12...41M 6354:2000AgEE...78..167K 6216:1998AgEE...67...55B 6162:Rillig, M. (2004). 6032:2020EcoES.20110869A 5993:2011EcEng..37..199F 5907:2003BioFS..37....1J 5838:2007ApEnM..73.2541S 5788:10.1038/nrmicro1162 5727:2020NatSR..10.1303M 5688:1985SBiBi..17..611S 5651:1999FEMME..29..303O 5563:2013Mycor..23..515R 5519:1999MolEc...8..659H 5457:1992ApEnM..58..291S 5357:2011BMCEE..11...51M 5298:1991Oecol..86..349J 5247:2013Mycor..23..411O 5196:2013MolEc..22.2573J 5145:2005MolEc..14..743S 5050:10.3732/ajb.1200558 4999:2013MicEc..65..671W 4741:2012Pedob..55..145G 4686:2010PNAS..107.2093J 4612:2001Mycor..11....3A 4530:2012PLoSO...742865R 4481:2011FuEco..25..910L 4435:2008Oikos.117..310M 4400:2006FuEco..20..226O 4365:2012Oikos.121.2090L 4277:2010Symbi..51..139L 4213:2005JEcol..93..231F 4192:Fitter, AH (2005). 4153:2013ISMEJ...7.1424L 4065:2006PlSoi.281..369H 4022:2006BiInv...8..217B 3979:2010Ecol...91.2333H 3901:2012FuEco..26.1033V 3852:2008EcolL..11..296V 3766:2010PNAS..10710938D 3760:(24): 10938–10942. 3715:2013Ecol...94.1389H 3604:1995PlSoi.170...47A 3541:2015PNAS..11210967L 3535:(35): 10967–10972. 3521:Borer, Elizabeth T. 3496:2007JEcol..95...95L 3449:2011SBiBi..43.2294K 3192:10.1038/nature09622 3184:2011Natur.469...58M 3079:2022PLoSO..1770481M 2859:1991PlSoi.134..189B 2762:2005Mycor..15..129M 2518:2005Mycor..15..539S 2475:1996Mycor...6..403N 2421:10.1038/nature03608 2413:2005Natur.435..824A 2316:2011BMCEE..11...51M 1952:1994PNAS...9111841R 1946:(25): 11841–11843. 1744:1993Natur.363...67S 1309:soil organic matter 1251:cells, the use of H 1149:Overview of methods 1067:Rhizosphere ecology 725:mycorrhizal network 713:for nucleic acids. 553:Gigaspora margarita 503:Gigaspora margarita 5715:Scientific Reports 5306:10.1007/bf00317600 4469:Functional Ecology 4388:Functional Ecology 4201:Journal of Ecology 3889:Functional Ecology 3612:10.1007/bf02183054 3484:Journal of Ecology 3138:10.1093/gbe/evr089 2958:Hamel, C. (2004). 2867:10.1007/BF00012037 2244:10.1093/gbe/evy002 1509:Ericoid mycorrhiza 1335: 942:2.C. Transcription 887: 836:rhizobial bacteria 680:obligate symbionts 509: 382:Molecular evidence 261: 134:ericoid mycorrhiza 87: 76: 64: 55:image of a fungal 45: 6315:10.1104/pp.011882 5507:Molecular Ecology 5204:10.1111/mec.12268 5184:Molecular Ecology 5133:Molecular Ecology 5077:in field studies" 4987:Microbial Ecology 4579:(10): 1161–1166. 4359:(12): 2090–2096. 3987:10.1890/09-0924.1 3973:(8): 2333–23343. 3723:10.1890/12-1700.1 3663:(12): 2669–2678. 3657:Molecular Ecology 3443:(11): 2294–2303. 3285:(10): 2319–2335. 3234:(10): 2386–2410. 2621:(10): 1871–1883. 2573:10.1104/pp.012898 2407:(7043): 824–827. 2105:10.1111/nph.15076 1789:(12): 1413–1421. 1711:978-0-8053-0540-1 1579:978-0-12-370526-6 939:2.B. Transmission 895:Signaling cascade 828:nodulation factor 709:, which produces 530:The growth of AM 497: 487:Spore germination 443:Neurospora crassa 440:circadian fungus 298:Aglaophyton major 138:orchid mycorrhiza 16:(Redirected from 6659: 6596: 6586: 6569:(4): 1519–1525. 6563:Plant Physiology 6553: 6543: 6518: 6485: 6460:(1–2): 101–114. 6444: 6427:(6): 1117–1124. 6421:Agronomy Journal 6415: 6406:(3–4): 241–255. 6394: 6365: 6336: 6326: 6303:Plant Physiology 6293: 6291: 6262: 6252: 6227: 6186: 6185: 6183: 6159: 6148: 6147: 6119: 6113: 6106: 6100: 6098: 6074: 6068: 6067: 6011: 6005: 6004: 5976: 5970: 5969: 5933: 5927: 5926: 5890: 5877: 5874: 5868: 5867: 5857: 5832:(8): 2541–2546. 5817: 5808: 5807: 5771: 5765: 5764: 5754: 5706: 5700: 5699: 5671: 5665: 5664: 5662: 5630: 5619: 5618: 5597: 5591: 5590: 5545: 5539: 5538: 5504: 5495: 5489: 5488: 5478: 5468: 5436: 5430: 5429: 5419: 5395: 5389: 5388: 5378: 5368: 5335:Marleau, Julie; 5332: 5326: 5325: 5281: 5275: 5274: 5230: 5224: 5223: 5190:(9): 2573–2587. 5179: 5173: 5172: 5128: 5122: 5121: 5113: 5107: 5106: 5096: 5068: 5062: 5061: 5044:(7): 1445–1457. 5033: 5027: 5026: 4982: 4976: 4975: 4965: 4937: 4931: 4930: 4920: 4910: 4895:BMC Microbiology 4886: 4880: 4879: 4874:. Archived from 4868: 4862: 4861: 4833: 4827: 4826: 4806: 4795: 4794: 4768: 4759: 4753: 4752: 4724: 4718: 4717: 4707: 4697: 4680:(5): 2093–2098. 4665: 4659: 4658: 4649:(7): 1895–1908. 4638: 4632: 4631: 4595: 4589: 4588: 4568: 4562: 4561: 4551: 4541: 4509: 4503: 4502: 4500: 4463: 4457: 4456: 4446: 4418: 4412: 4411: 4383: 4377: 4376: 4348: 4342: 4341: 4331: 4303: 4297: 4296: 4260: 4254: 4253: 4233: 4227: 4226: 4224: 4198: 4189: 4183: 4182: 4172: 4147:(7): 1424–1433. 4132: 4126: 4125: 4115: 4091: 4085: 4084: 4059:(1–2): 369–380. 4048: 4042: 4041: 4005: 3999: 3998: 3962: 3956: 3955: 3945: 3936:(4): 1188–1200. 3921: 3915: 3914: 3912: 3895:(5): 1033–1042. 3880: 3874: 3873: 3863: 3831: 3825: 3824: 3815:(6): 2082–2091. 3804: 3798: 3797: 3787: 3777: 3741: 3735: 3734: 3709:(6): 1389–1399. 3698: 3689: 3688: 3654: 3645: 3639: 3638: 3630: 3624: 3623: 3587: 3581: 3580: 3570: 3552: 3516: 3510: 3509: 3507: 3475: 3469: 3468: 3424: 3415: 3414: 3404: 3380: 3369: 3368: 3362: 3354: 3346: 3337: 3334: 3315: 3314: 3304: 3294: 3270: 3264: 3263: 3253: 3243: 3218: 3212: 3211: 3166: 3160: 3159: 3149: 3117: 3111: 3110: 3100: 3090: 3058: 3049: 3048: 3038: 3015:Plant Physiology 3006: 2995: 2988: 2982: 2981: 2979: 2955: 2944: 2943: 2933: 2910:Plant Physiology 2901: 2888: 2885: 2879: 2878: 2842: 2831: 2830: 2828: 2804: 2798: 2797: 2745: 2739: 2738: 2710: 2704: 2703: 2663: 2657: 2656: 2646: 2606: 2595: 2594: 2584: 2567:(3): 1468–1478. 2561:Plant Physiology 2552: 2546: 2545: 2501: 2495: 2494: 2454: 2441: 2440: 2396: 2390: 2383: 2370: 2369: 2361: 2348: 2347: 2337: 2327: 2295: 2289: 2283: 2274: 2271: 2265: 2264: 2255: 2226: 2217: 2216: 2206: 2182: 2176: 2175: 2165: 2134: 2125: 2124: 2107: 2098:(4): 1012–1030, 2087: 2081: 2080: 2071: 2042: 2033: 2032: 2024:(6–7): 483–494, 2009: 2003: 2002: 1990: 1984: 1983: 1973: 1963: 1929: 1914: 1907: 1901: 1899: 1875: 1869: 1868: 1839: 1833: 1832: 1805: 1799: 1798: 1770: 1764: 1763: 1752:10.1038/363067a0 1725: 1716: 1715: 1699: 1689: 1683: 1682: 1672: 1648: 1642: 1641: 1631: 1606:(5): 1028–1046. 1590: 1584: 1583: 1556: 1287:Phytoremediation 1281:Phytoremediation 1209: 1175:qPCR and qRT-PCR 978:aquatic habitats 901:perception (for 867:as indicated in 546:Host recognition 498: 458:gene identified 21: 6667: 6666: 6662: 6661: 6660: 6658: 6657: 6656: 6632: 6631: 6603: 6556: 6528:New Phytologist 6521: 6488: 6447: 6418: 6397: 6368: 6339: 6296: 6289:10.4141/P03-182 6269: 6266:pp. 42–47. 6237:New Phytologist 6230: 6197: 6194: 6189: 6181:10.4141/S04-003 6161: 6160: 6151: 6121: 6120: 6116: 6076: 6075: 6071: 6013: 6012: 6008: 5978: 5977: 5973: 5935: 5934: 5930: 5892: 5891: 5880: 5875: 5871: 5819: 5818: 5811: 5773: 5772: 5768: 5708: 5707: 5703: 5673: 5672: 5668: 5632: 5631: 5622: 5599: 5598: 5594: 5547: 5546: 5542: 5502: 5497: 5496: 5492: 5438: 5437: 5433: 5404:New Phytologist 5397: 5396: 5392: 5334: 5333: 5329: 5283: 5282: 5278: 5232: 5231: 5227: 5181: 5180: 5176: 5130: 5129: 5125: 5115: 5114: 5110: 5081:New Phytologist 5076: 5070: 5069: 5065: 5035: 5034: 5030: 4984: 4983: 4979: 4939: 4938: 4934: 4888: 4887: 4883: 4870: 4869: 4865: 4835: 4834: 4830: 4808: 4807: 4798: 4766: 4761: 4760: 4756: 4726: 4725: 4721: 4667: 4666: 4662: 4640: 4639: 4635: 4597: 4596: 4592: 4570: 4569: 4565: 4511: 4510: 4506: 4465: 4464: 4460: 4444:10.1.1.722.4169 4420: 4419: 4415: 4385: 4384: 4380: 4350: 4349: 4345: 4305: 4304: 4300: 4262: 4261: 4257: 4235: 4234: 4230: 4196: 4191: 4190: 4186: 4134: 4133: 4129: 4100:New Phytologist 4093: 4092: 4088: 4050: 4049: 4045: 4007: 4006: 4002: 3964: 3963: 3959: 3930:New Phytologist 3923: 3922: 3918: 3882: 3881: 3877: 3840:Ecology Letters 3833: 3832: 3828: 3806: 3805: 3801: 3749: 3743: 3742: 3738: 3700: 3699: 3692: 3652: 3647: 3646: 3642: 3632: 3631: 3627: 3589: 3588: 3584: 3518: 3517: 3513: 3477: 3476: 3472: 3426: 3425: 3418: 3389:New Phytologist 3382: 3381: 3372: 3355: 3348: 3347: 3340: 3335: 3318: 3272: 3271: 3267: 3220: 3219: 3215: 3178:(7328): 58–63. 3168: 3167: 3163: 3119: 3118: 3114: 3073:(7): e0270481. 3060: 3059: 3052: 3008: 3007: 2998: 2989: 2985: 2977:10.4141/S04-004 2957: 2956: 2947: 2903: 2902: 2891: 2886: 2882: 2844: 2843: 2834: 2806: 2805: 2801: 2747: 2746: 2742: 2712: 2711: 2707: 2684:10.2307/3761710 2665: 2664: 2660: 2608: 2607: 2598: 2554: 2553: 2549: 2503: 2502: 2498: 2456: 2455: 2444: 2398: 2397: 2393: 2384: 2373: 2363: 2362: 2351: 2297: 2296: 2292: 2284: 2277: 2272: 2268: 2228: 2227: 2220: 2197:(11): 1108–18. 2184: 2183: 2179: 2141:New Phytologist 2136: 2135: 2128: 2092:New Phytologist 2089: 2088: 2084: 2044: 2043: 2036: 2011: 2010: 2006: 1995:Current Science 1992: 1991: 1987: 1931: 1930: 1917: 1877: 1876: 1872: 1866: 1841: 1840: 1836: 1830: 1807: 1806: 1802: 1772: 1771: 1767: 1738:(6424): 67–69. 1727: 1726: 1719: 1712: 1691: 1690: 1686: 1657:New Phytologist 1650: 1649: 1645: 1592: 1591: 1587: 1580: 1558: 1557: 1553: 1549: 1500: 1459: 1435: 1419: 1384: 1332: 1330: 1327: 1318: 1293:desertification 1289: 1283: 1274: 1262: 1254: 1249: 1244: 1228: 1211: 1193: 1177: 1156: 1151: 1138: 1122: 1115: 1109: 1069: 1050: 1033: 1020: 991: 961: 956: 936:2.A. Perception 832:nitrogen fixing 820: 814: 776: 765: 757: 721:gluconeogenesis 676: 611: 590: 582: 548: 528: 491: 489: 477: 472: 429: 404: 384: 311:with primitive 270:paleobiological 266: 241: 231: 149:Glomeromycotina 101:) is a type of 43: 28: 23: 22: 15: 12: 11: 5: 6665: 6663: 6655: 6654: 6649: 6644: 6634: 6633: 6630: 6629: 6624: 6619: 6614: 6609: 6602: 6601:External links 6599: 6598: 6597: 6554: 6519: 6495:Plant and Soil 6486: 6454:Plant and Soil 6445: 6416: 6395: 6366: 6348:(2): 167–174. 6337: 6309:(3): 952–962. 6294: 6267: 6263: 6243:(3): 889–912. 6228: 6193: 6190: 6188: 6187: 6174:(4): 355–363. 6149: 6130:(2): 293–299. 6124:Plant and Soil 6114: 6069: 6006: 5987:(2): 199–205. 5971: 5928: 5878: 5869: 5809: 5782:(6): 499–504. 5766: 5701: 5682:(5): 611–618. 5666: 5645:(4): 303–310. 5620: 5592: 5557:(7): 515–531. 5540: 5513:(4): 659–666. 5490: 5451:(1): 291–295. 5431: 5410:(3): 853–861. 5390: 5327: 5292:(3): 349–358. 5276: 5241:(5): 411–430. 5225: 5174: 5139:(3): 743–752. 5123: 5108: 5087:(2): 347–355. 5074: 5063: 5028: 4993:(3): 671–678. 4977: 4932: 4881: 4878:on 2012-08-05. 4863: 4844:(2): 129–137. 4828: 4796: 4754: 4735:(3): 145–151. 4719: 4660: 4633: 4590: 4563: 4504: 4475:(4): 910–920. 4458: 4429:(2): 310–320. 4413: 4394:(2): 226–232. 4378: 4343: 4298: 4271:(2): 139–148. 4255: 4228: 4207:(2): 231–243. 4184: 4127: 4106:(2): 526–535. 4086: 4053:Plant and Soil 4043: 4016:(2): 217–230. 4000: 3957: 3916: 3875: 3846:(3): 296–310. 3826: 3799: 3747: 3736: 3690: 3640: 3625: 3592:Plant and Soil 3582: 3511: 3470: 3416: 3395:(1): 233–241. 3370: 3338: 3316: 3279:The Plant Cell 3265: 3228:The Plant Cell 3213: 3161: 3112: 3050: 2996: 2983: 2970:(4): 383–395. 2945: 2916:(2): 587–598. 2889: 2880: 2853:(2): 189–207. 2847:Plant and Soil 2832: 2799: 2740: 2705: 2678:(4): 587–595. 2658: 2615:The Plant Cell 2596: 2547: 2512:(7): 539–545. 2496: 2469:(5): 403–408. 2442: 2391: 2371: 2349: 2290: 2275: 2266: 2238:(1): 328–343, 2218: 2177: 2148:(2): 514–525. 2126: 2082: 2034: 2004: 1985: 1915: 1870: 1864: 1834: 1828: 1800: 1765: 1717: 1710: 1684: 1663:(2): 275–304. 1643: 1612:10.3852/16-042 1585: 1578: 1550: 1548: 1545: 1544: 1543: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1504:Ectomycorrhiza 1499: 1496: 1458: 1455: 1434: 1431: 1418: 1415: 1383: 1380: 1361:agroecosystems 1324: 1317: 1314: 1285:Main article: 1282: 1279: 1273: 1270: 1260: 1252: 1247: 1243: 1240: 1227: 1224: 1210: 1201: 1196:DNA microarray 1192: 1189: 1176: 1173: 1155: 1152: 1150: 1147: 1137: 1134: 1121: 1118: 1113: 1108: 1105: 1068: 1065: 1049: 1046: 1032: 1029: 1019: 1016: 990: 987: 960: 957: 955: 952: 951: 950: 947: 946: 945: 944: 943: 940: 937: 929: 816:Main article: 813: 810: 775: 772: 763: 755: 675: 672: 610: 607: 589: 586: 580: 571:Glomus mosseae 547: 544: 536:strigolactones 527: 524: 488: 485: 476: 473: 471: 468: 428: 425: 403: 400: 383: 380: 364: 363: 356: 289:Early Devonian 265: 262: 237: 230: 227: 189:vascular plant 180:micronutrients 142:ectomycorrhiza 126:vascular plant 118:cortical cells 40:cortical cells 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6664: 6653: 6650: 6648: 6645: 6643: 6640: 6639: 6637: 6628: 6625: 6623: 6620: 6618: 6615: 6613: 6610: 6608: 6605: 6604: 6600: 6594: 6590: 6585: 6580: 6576: 6572: 6568: 6564: 6560: 6555: 6551: 6547: 6542: 6537: 6533: 6529: 6525: 6520: 6516: 6512: 6508: 6504: 6500: 6496: 6492: 6487: 6483: 6479: 6475: 6471: 6467: 6463: 6459: 6455: 6451: 6450:Allium porrum 6446: 6442: 6438: 6434: 6430: 6426: 6422: 6417: 6413: 6409: 6405: 6401: 6396: 6392: 6388: 6384: 6380: 6376: 6372: 6367: 6363: 6359: 6355: 6351: 6347: 6343: 6338: 6334: 6330: 6325: 6320: 6316: 6312: 6308: 6304: 6300: 6295: 6290: 6285: 6281: 6277: 6273: 6268: 6264: 6260: 6256: 6251: 6246: 6242: 6238: 6234: 6229: 6225: 6221: 6217: 6213: 6209: 6205: 6201: 6196: 6195: 6191: 6182: 6177: 6173: 6169: 6165: 6158: 6156: 6154: 6150: 6145: 6141: 6137: 6133: 6129: 6125: 6118: 6115: 6112: 6110: 6105: 6097: 6092: 6088: 6084: 6080: 6073: 6070: 6065: 6061: 6057: 6053: 6049: 6045: 6041: 6037: 6033: 6029: 6025: 6021: 6017: 6010: 6007: 6002: 5998: 5994: 5990: 5986: 5982: 5975: 5972: 5967: 5963: 5959: 5955: 5951: 5947: 5943: 5939: 5932: 5929: 5924: 5920: 5916: 5912: 5908: 5904: 5900: 5896: 5889: 5887: 5885: 5883: 5879: 5873: 5870: 5865: 5861: 5856: 5851: 5847: 5843: 5839: 5835: 5831: 5827: 5823: 5816: 5814: 5810: 5805: 5801: 5797: 5793: 5789: 5785: 5781: 5777: 5770: 5767: 5762: 5758: 5753: 5748: 5744: 5740: 5736: 5732: 5728: 5724: 5720: 5716: 5712: 5705: 5702: 5697: 5693: 5689: 5685: 5681: 5677: 5670: 5667: 5661: 5656: 5652: 5648: 5644: 5640: 5636: 5629: 5627: 5625: 5621: 5616: 5612: 5608: 5604: 5596: 5593: 5588: 5584: 5580: 5576: 5572: 5568: 5564: 5560: 5556: 5552: 5544: 5541: 5536: 5532: 5528: 5524: 5520: 5516: 5512: 5508: 5501: 5494: 5491: 5486: 5482: 5477: 5472: 5467: 5462: 5458: 5454: 5450: 5446: 5442: 5435: 5432: 5427: 5423: 5418: 5413: 5409: 5405: 5401: 5394: 5391: 5386: 5382: 5377: 5372: 5367: 5362: 5358: 5354: 5350: 5346: 5342: 5338: 5331: 5328: 5323: 5319: 5315: 5311: 5307: 5303: 5299: 5295: 5291: 5287: 5280: 5277: 5272: 5268: 5264: 5260: 5256: 5252: 5248: 5244: 5240: 5236: 5229: 5226: 5221: 5217: 5213: 5209: 5205: 5201: 5197: 5193: 5189: 5185: 5178: 5175: 5170: 5166: 5162: 5158: 5154: 5150: 5146: 5142: 5138: 5134: 5127: 5124: 5119: 5112: 5109: 5104: 5100: 5095: 5090: 5086: 5082: 5078: 5067: 5064: 5059: 5055: 5051: 5047: 5043: 5039: 5032: 5029: 5024: 5020: 5016: 5012: 5008: 5004: 5000: 4996: 4992: 4988: 4981: 4978: 4973: 4969: 4964: 4959: 4955: 4951: 4947: 4943: 4936: 4933: 4928: 4924: 4919: 4914: 4909: 4904: 4900: 4896: 4892: 4885: 4882: 4877: 4873: 4867: 4864: 4859: 4855: 4851: 4847: 4843: 4839: 4838:Plant Ecology 4832: 4829: 4824: 4820: 4816: 4812: 4805: 4803: 4801: 4797: 4792: 4788: 4784: 4780: 4776: 4772: 4765: 4758: 4755: 4750: 4746: 4742: 4738: 4734: 4730: 4723: 4720: 4715: 4711: 4706: 4701: 4696: 4691: 4687: 4683: 4679: 4675: 4671: 4664: 4661: 4656: 4652: 4648: 4644: 4637: 4634: 4629: 4625: 4621: 4617: 4613: 4609: 4605: 4601: 4594: 4591: 4586: 4582: 4578: 4574: 4567: 4564: 4559: 4555: 4550: 4545: 4540: 4535: 4531: 4527: 4523: 4519: 4515: 4508: 4505: 4499: 4494: 4490: 4486: 4482: 4478: 4474: 4470: 4462: 4459: 4454: 4450: 4445: 4440: 4436: 4432: 4428: 4424: 4417: 4414: 4409: 4405: 4401: 4397: 4393: 4389: 4382: 4379: 4374: 4370: 4366: 4362: 4358: 4354: 4347: 4344: 4339: 4335: 4330: 4325: 4321: 4317: 4313: 4309: 4302: 4299: 4294: 4290: 4286: 4282: 4278: 4274: 4270: 4266: 4259: 4256: 4251: 4247: 4243: 4239: 4232: 4229: 4223: 4218: 4214: 4210: 4206: 4202: 4195: 4188: 4185: 4180: 4176: 4171: 4166: 4162: 4158: 4154: 4150: 4146: 4142: 4138: 4131: 4128: 4123: 4119: 4114: 4109: 4105: 4101: 4097: 4090: 4087: 4082: 4078: 4074: 4070: 4066: 4062: 4058: 4054: 4047: 4044: 4039: 4035: 4031: 4027: 4023: 4019: 4015: 4011: 4004: 4001: 3996: 3992: 3988: 3984: 3980: 3976: 3972: 3968: 3961: 3958: 3953: 3949: 3944: 3939: 3935: 3931: 3927: 3920: 3917: 3911: 3906: 3902: 3898: 3894: 3890: 3886: 3879: 3876: 3871: 3867: 3862: 3857: 3853: 3849: 3845: 3841: 3837: 3830: 3827: 3822: 3818: 3814: 3810: 3803: 3800: 3795: 3791: 3786: 3781: 3776: 3771: 3767: 3763: 3759: 3755: 3751: 3740: 3737: 3732: 3728: 3724: 3720: 3716: 3712: 3708: 3704: 3697: 3695: 3691: 3686: 3682: 3678: 3674: 3670: 3666: 3662: 3658: 3651: 3644: 3641: 3636: 3629: 3626: 3621: 3617: 3613: 3609: 3605: 3601: 3597: 3593: 3586: 3583: 3578: 3574: 3569: 3564: 3560: 3556: 3551: 3546: 3542: 3538: 3534: 3530: 3526: 3522: 3515: 3512: 3506: 3501: 3497: 3493: 3490:(1): 95–100. 3489: 3485: 3481: 3474: 3471: 3466: 3462: 3458: 3454: 3450: 3446: 3442: 3438: 3434: 3430: 3423: 3421: 3417: 3412: 3408: 3403: 3398: 3394: 3390: 3386: 3379: 3377: 3375: 3371: 3366: 3360: 3352: 3345: 3343: 3339: 3333: 3331: 3329: 3327: 3325: 3323: 3321: 3317: 3312: 3308: 3303: 3298: 3293: 3288: 3284: 3280: 3276: 3269: 3266: 3261: 3257: 3252: 3247: 3242: 3237: 3233: 3229: 3225: 3217: 3214: 3209: 3205: 3201: 3197: 3193: 3189: 3185: 3181: 3177: 3173: 3165: 3162: 3157: 3153: 3148: 3143: 3139: 3135: 3131: 3127: 3123: 3116: 3113: 3108: 3104: 3099: 3094: 3089: 3084: 3080: 3076: 3072: 3068: 3064: 3057: 3055: 3051: 3046: 3042: 3037: 3032: 3028: 3024: 3020: 3016: 3012: 3005: 3003: 3001: 2997: 2993: 2987: 2984: 2978: 2973: 2969: 2965: 2961: 2954: 2952: 2950: 2946: 2941: 2937: 2932: 2927: 2923: 2919: 2915: 2911: 2907: 2900: 2898: 2896: 2894: 2890: 2884: 2881: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2841: 2839: 2837: 2833: 2827: 2822: 2818: 2814: 2810: 2803: 2800: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2756:(2): 129–36. 2755: 2751: 2744: 2741: 2736: 2732: 2728: 2724: 2720: 2716: 2709: 2706: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2669: 2662: 2659: 2654: 2650: 2645: 2640: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2605: 2603: 2601: 2597: 2592: 2588: 2583: 2578: 2574: 2570: 2566: 2562: 2558: 2551: 2548: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2515: 2511: 2507: 2500: 2497: 2492: 2488: 2484: 2480: 2476: 2472: 2468: 2464: 2460: 2453: 2451: 2449: 2447: 2443: 2438: 2434: 2430: 2426: 2422: 2418: 2414: 2410: 2406: 2402: 2395: 2392: 2388: 2382: 2380: 2378: 2376: 2372: 2367: 2360: 2358: 2356: 2354: 2350: 2345: 2341: 2336: 2331: 2326: 2321: 2317: 2313: 2309: 2305: 2301: 2294: 2291: 2288: 2282: 2280: 2276: 2270: 2267: 2263: 2259: 2254: 2249: 2245: 2241: 2237: 2233: 2225: 2223: 2219: 2214: 2210: 2205: 2200: 2196: 2192: 2188: 2181: 2178: 2173: 2169: 2164: 2163:2027.42/78704 2159: 2155: 2151: 2147: 2143: 2142: 2133: 2131: 2127: 2123: 2119: 2115: 2111: 2106: 2101: 2097: 2093: 2086: 2083: 2079: 2075: 2070: 2065: 2061: 2057: 2053: 2049: 2041: 2039: 2035: 2031: 2027: 2023: 2019: 2015: 2008: 2005: 2000: 1996: 1989: 1986: 1981: 1977: 1972: 1967: 1962: 1957: 1953: 1949: 1945: 1941: 1940: 1935: 1928: 1926: 1924: 1922: 1920: 1916: 1913: 1911: 1906: 1898: 1893: 1889: 1885: 1881: 1874: 1871: 1867: 1865:9780123705266 1861: 1857: 1853: 1849: 1845: 1838: 1835: 1831: 1829:9781108776387 1825: 1821: 1817: 1813: 1812: 1804: 1801: 1796: 1792: 1788: 1784: 1780: 1778: 1777:Glomeromycota 1769: 1766: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1732: 1724: 1722: 1718: 1713: 1707: 1703: 1698: 1697: 1688: 1685: 1680: 1676: 1671: 1666: 1662: 1658: 1654: 1647: 1644: 1639: 1635: 1630: 1625: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1589: 1586: 1581: 1575: 1571: 1567: 1563: 1562: 1555: 1552: 1546: 1542: 1541: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1501: 1497: 1495: 1493: 1488: 1484: 1482: 1479: 1474: 1472: 1468: 1464: 1456: 1454: 1451: 1445: 1443: 1438: 1432: 1430: 1426: 1422: 1416: 1414: 1412: 1406: 1403: 1398: 1396: 1392: 1388: 1381: 1379: 1375: 1373: 1369: 1364: 1362: 1357: 1355: 1349: 1347: 1343: 1338: 1329: 1322: 1315: 1313: 1310: 1305: 1301: 1296: 1294: 1288: 1280: 1278: 1271: 1269: 1265: 1258: 1241: 1239: 1237: 1233: 1225: 1223: 1219: 1215: 1205: 1202: 1200: 1197: 1190: 1188: 1184: 1181: 1180:Real-time PCR 1174: 1172: 1170: 1166: 1162: 1153: 1148: 1146: 1142: 1135: 1133: 1131: 1127: 1119: 1117: 1106: 1104: 1100: 1096: 1094: 1089: 1084: 1080: 1076: 1074: 1066: 1064: 1062: 1057: 1055: 1047: 1045: 1043: 1039: 1030: 1028: 1024: 1017: 1015: 1011: 1007: 1005: 999: 997: 988: 986: 983: 982:glomeromycota 979: 974: 970: 966: 965:volcanic soil 958: 953: 948: 941: 938: 935: 934: 933: 932: 930: 927: 926: 925: 922: 920: 916: 912: 908: 904: 900: 896: 892: 884: 881: 878: 874: 872: 866: 861: 857: 855: 850: 848: 847: 841: 837: 833: 829: 825: 819: 811: 809: 807: 803: 802:recombination 799: 798: 793: 789: 785: 781: 773: 771: 769: 761: 753: 749: 744: 742: 736: 733: 732:photosynthate 728: 726: 722: 718: 714: 712: 708: 704: 700: 696: 691: 689: 685: 681: 678:AM fungi are 673: 671: 667: 665: 661: 657: 653: 649: 644: 642: 638: 634: 632: 627: 623: 621: 616: 608: 606: 603: 599: 595: 587: 585: 576: 573: 572: 567: 562: 558: 555: 554: 545: 543: 539: 537: 533: 526:Hyphal growth 525: 523: 521: 517: 516: 505: 504: 486: 484: 482: 474: 469: 467: 465: 461: 457: 453: 449: 448:R. irregulare 445: 444: 439: 435: 426: 424: 422: 421: 416: 415: 409: 401: 399: 397: 393: 389: 381: 379: 378:land plants. 375: 371: 367: 361: 357: 354: 350: 349: 348: 345: 343: 339: 335: 330: 328: 324: 321:Intraradical 319: 317: 314: 310: 306: 305: 300: 299: 294: 290: 285: 283: 280:of the lower 279: 274: 271: 263: 258: 254: 250: 245: 240: 235: 228: 226: 224: 220: 216: 212: 208: 204: 199: 197: 196:Gigasporaceae 192: 190: 186: 181: 177: 173: 169: 165: 160: 158: 154: 150: 145: 143: 139: 135: 131: 127: 123: 119: 115: 111: 108: 105:in which the 104: 100: 96: 92: 85: 80: 73: 68: 62: 58: 54: 49: 41: 37: 32: 19: 6652:Soil biology 6566: 6562: 6531: 6527: 6498: 6494: 6490: 6457: 6453: 6449: 6424: 6420: 6403: 6399: 6377:(1): 41–50. 6374: 6370: 6345: 6341: 6306: 6302: 6279: 6275: 6240: 6236: 6210:(1): 55–65. 6207: 6203: 6171: 6167: 6127: 6123: 6117: 6101: 6086: 6082: 6072: 6023: 6019: 6009: 5984: 5980: 5974: 5944:(1): 63–70. 5941: 5937: 5931: 5898: 5894: 5872: 5829: 5825: 5779: 5775: 5769: 5718: 5714: 5704: 5679: 5675: 5669: 5642: 5638: 5606: 5602: 5595: 5554: 5550: 5543: 5510: 5506: 5493: 5448: 5444: 5434: 5407: 5403: 5393: 5348: 5344: 5330: 5289: 5285: 5279: 5238: 5234: 5228: 5187: 5183: 5177: 5136: 5132: 5126: 5117: 5111: 5084: 5080: 5066: 5041: 5037: 5031: 4990: 4986: 4980: 4945: 4941: 4935: 4898: 4894: 4884: 4876:the original 4866: 4841: 4837: 4831: 4814: 4810: 4774: 4770: 4757: 4732: 4729:Pedobiologia 4728: 4722: 4677: 4673: 4663: 4646: 4642: 4636: 4603: 4599: 4593: 4576: 4572: 4566: 4521: 4517: 4507: 4472: 4468: 4461: 4426: 4422: 4416: 4391: 4387: 4381: 4356: 4352: 4346: 4311: 4307: 4301: 4268: 4264: 4258: 4241: 4237: 4231: 4204: 4200: 4187: 4144: 4141:ISME Journal 4140: 4130: 4103: 4099: 4089: 4056: 4052: 4046: 4013: 4009: 4003: 3970: 3966: 3960: 3933: 3929: 3919: 3892: 3888: 3878: 3843: 3839: 3829: 3812: 3808: 3802: 3757: 3753: 3739: 3706: 3702: 3660: 3656: 3643: 3634: 3628: 3598:(1): 47–62. 3595: 3591: 3585: 3532: 3528: 3514: 3487: 3483: 3473: 3440: 3436: 3392: 3388: 3350: 3282: 3278: 3268: 3231: 3227: 3216: 3175: 3171: 3164: 3129: 3125: 3115: 3070: 3066: 3021:(1): 16–20. 3018: 3014: 2991: 2986: 2967: 2963: 2913: 2909: 2883: 2850: 2846: 2816: 2812: 2802: 2753: 2749: 2743: 2718: 2714: 2708: 2675: 2671: 2661: 2618: 2614: 2564: 2560: 2550: 2509: 2505: 2499: 2466: 2462: 2404: 2400: 2394: 2387:Podila, G.K. 2365: 2307: 2303: 2293: 2269: 2235: 2231: 2194: 2190: 2180: 2145: 2139: 2095: 2091: 2085: 2051: 2047: 2021: 2017: 2007: 1998: 1994: 1988: 1943: 1937: 1902: 1887: 1883: 1873: 1847: 1837: 1810: 1803: 1786: 1782: 1776: 1768: 1735: 1729: 1695: 1687: 1660: 1656: 1646: 1603: 1599: 1588: 1560: 1554: 1538: 1529:Prototaxites 1492:soil erosion 1489: 1485: 1475: 1460: 1457:Soil quality 1449: 1446: 1441: 1439: 1436: 1427: 1423: 1420: 1410: 1407: 1401: 1399: 1394: 1390: 1385: 1376: 1371: 1365: 1358: 1353: 1350: 1339: 1336: 1325: 1304:soil quality 1297: 1290: 1275: 1266: 1256: 1245: 1235: 1229: 1220: 1216: 1212: 1194: 1185: 1178: 1157: 1143: 1139: 1126:Brassicaceae 1123: 1110: 1101: 1097: 1087: 1085: 1081: 1077: 1070: 1058: 1051: 1034: 1025: 1021: 1012: 1008: 1000: 992: 962: 959:Biogeography 931:2. The CSSP 923: 893:(CSSP) is a 890: 888: 882: 879: 870: 868: 864: 851: 844: 839: 823: 821: 795: 777: 745: 737: 729: 715: 692: 677: 668: 664:cytoskeleton 645: 640: 636: 630: 619: 614: 612: 594:appressorium 591: 588:Appressorium 577: 569: 563: 559: 551: 549: 540: 529: 513: 510: 501: 481:appressorium 478: 475:Presymbiosis 463: 455: 451: 447: 441: 433: 430: 418: 412: 405: 387: 385: 376: 372: 368: 365: 346: 331: 320: 302: 296: 292: 286: 278:Rhynie chert 275: 267: 264:Paleobiology 238: 200: 193: 161: 153:Mucoromycota 146: 129: 113: 98: 94: 90: 88: 5901:(1): 1–16. 5721:(1): 1303. 5609:(1): 1–20. 4948:: 365–383. 4777:: 181–200. 4606:(1): 3–42. 4524:(8): 1–10. 4329:11336/27622 4244:: 699–715. 3132:: 950–958. 2715:Mycoscience 1316:Agriculture 1093:nodulations 1073:rhizosphere 919:mycorrhizae 869:Maillet, F 748:rhizosphere 507:frames/sec. 483:formation. 313:protostelic 223:agriculture 99:mycorrhizae 61:Alexa Fluor 6636:Categories 6026:: 110869. 5551:Mycorrhiza 5235:Mycorrhiza 4901:(1): 164. 4600:Mycorrhiza 4498:10214/3316 2750:Mycorrhiza 2506:Mycorrhiza 2463:Mycorrhiza 2001:: 257–259. 1783:Mycol. Res 1547:References 1514:Mycorrhiza 1478:monoclonal 1346:fungicides 1191:Microarray 1027:expected. 1004:mycotrophs 911:MYC-factor 899:NOD-factor 824:myc factor 660:organelles 615:arbuscules 602:protoplast 598:parenchyma 566:chemotaxis 470:Physiology 396:liverworts 338:Glomerales 327:parenchyma 309:bryophytes 203:physiology 168:phosphorus 130:arbuscules 103:mycorrhiza 97:) (plural 84:Horse Gram 72:Horse Gram 6642:Symbiosis 6534:: 15–23. 6501:: 37–46. 6109:CC BY 4.0 6064:220073862 6048:0147-6513 5958:2250-1746 5743:2045-2322 5351:(1): 51. 5337:Dalpé, Y. 5286:Oecologia 4817:: 23–36. 4439:CiteSeerX 4314:: 75–81. 4265:Symbiosis 3559:0027-8424 3359:cite book 2819:: 62–70. 2778:0940-6360 2721:: 66–68. 2672:Mycologia 2310:(1): 51. 2114:1469-8137 1910:CC BY 4.0 1890:(4): 75. 1620:0027-5514 1600:Mycologia 1161:ribosomal 996:pathogens 806:dikaryons 699:trehalose 648:chromatin 639:type and 609:Symbiosis 414:Geosiphon 353:parasitic 342:symbionts 185:symbiosis 164:nutrients 57:arbuscule 6647:Mycology 6593:12228558 6550:85946706 6515:27345855 6482:30777851 6333:12644648 6282:: 3–14. 6259:15720701 6144:11007821 6111:license. 6083:Agronomy 6056:32585490 5966:46007322 5923:20792333 5864:17322324 5804:24051877 5796:15886694 5761:31992756 5587:16495856 5579:23558516 5535:85991904 5426:22931497 5385:21349193 5322:31539360 5314:28312920 5271:17162006 5263:23422950 5212:23458035 5169:30799196 5161:15723666 5103:33873547 5058:23757444 5015:23250115 4972:85941864 4927:22852578 4858:42097761 4714:20133855 4628:29379395 4558:22900058 4518:PLOS ONE 4293:11569239 4179:23486251 4122:20958304 4081:16801874 4038:24969103 3995:20836455 3952:19496954 3870:18047587 3794:20534474 3731:23923502 3685:10279037 3677:12453249 3620:25097125 3577:26283343 3465:85135958 3431:(2011). 3411:20561207 3311:28855333 3260:31416823 3200:21209659 3156:21876220 3107:35776745 3067:PLOS ONE 3045:12970469 2940:10364411 2875:44215263 2794:25476630 2786:15290409 2735:83767351 2700:21156532 2653:12239368 2591:12644696 2542:23648484 2534:16133246 2491:36014515 2429:15944706 2344:21349193 2262:29329439 2213:12423016 2172:20059702 2122:29573278 2078:29254965 2054:(1739), 1980:11607500 1912:license. 1884:Agronomy 1679:33873429 1638:27738200 1564:. 2008. 1498:See also 1481:antibody 1471:glomalin 1165:18S rRNA 1163:operon ( 1061:salinity 907:Rhizobia 905:forming 838:(Kosuta 768:nitrogen 760:ammonium 703:glycogen 695:mycelium 684:saprobic 656:vacuoles 575:plants. 520:exudates 515:in vitro 460:outgroup 392:Glomales 360:saprobic 323:mycelium 316:rhizomes 282:Devonian 211:glomalin 176:nitrogen 166:such as 157:dikaryan 128:forming 114:AM fungi 107:symbiont 6462:Bibcode 6429:Bibcode 6379:Bibcode 6350:Bibcode 6212:Bibcode 6089:: 106. 6028:Bibcode 5989:Bibcode 5903:Bibcode 5855:1855593 5834:Bibcode 5752:6987183 5723:Bibcode 5684:Bibcode 5647:Bibcode 5559:Bibcode 5515:Bibcode 5485:1339260 5453:Bibcode 5376:3060866 5353:Bibcode 5294:Bibcode 5243:Bibcode 5220:6769986 5192:Bibcode 5141:Bibcode 4995:Bibcode 4918:3487804 4791:8572482 4737:Bibcode 4705:2836645 4682:Bibcode 4643:Ecology 4608:Bibcode 4549:3416760 4526:Bibcode 4477:Bibcode 4431:Bibcode 4396:Bibcode 4361:Bibcode 4338:2206235 4273:Bibcode 4209:Bibcode 4170:3695300 4149:Bibcode 4061:Bibcode 4018:Bibcode 3975:Bibcode 3967:Ecology 3897:Bibcode 3848:Bibcode 3809:Ecology 3785:2890735 3762:Bibcode 3711:Bibcode 3703:Ecology 3600:Bibcode 3568:4568213 3537:Bibcode 3492:Bibcode 3445:Bibcode 3302:5940448 3251:6790088 3208:4373531 3180:Bibcode 3147:3184777 3098:9249182 3075:Bibcode 3036:1540331 2855:Bibcode 2758:Bibcode 2692:3761710 2635:3870236 2514:Bibcode 2471:Bibcode 2437:4343708 2409:Bibcode 2335:3060866 2312:Bibcode 2253:5786227 2069:5745336 1948:Bibcode 1760:4319766 1740:Bibcode 1629:6078412 1413:1995). 1397:2000). 1387:Tillage 1382:Tillage 1374:1998). 1356:1992). 1342:tillage 1236:in situ 1154:DNA/RNA 954:Ecology 875:(2011) 792:genomes 788:meiosis 780:asexual 711:pentose 688:hexoses 417:– 334:Miocene 249:abiotic 207:ecology 159:fungi. 120:of the 6591:  6584:157531 6581:  6548:  6513:  6480:  6331:  6324:166861 6321:  6257:  6142:  6062:  6054:  6046:  5964:  5956:  5921:  5862:  5852:  5802:  5794:  5759:  5749:  5741:  5585:  5577:  5533:  5483:  5476:195206 5473:  5424:  5383:  5373:  5320:  5312:  5269:  5261:  5218:  5210:  5167:  5159:  5101:  5056:  5023:122731 5021:  5013:  4970:  4925:  4915:  4856:  4789:  4712:  4702:  4626:  4556:  4546:  4441:  4336:  4291:  4177:  4167:  4120:  4079:  4036:  3993:  3950:  3868:  3792:  3782:  3729:  3683:  3675:  3618:  3575:  3565:  3557:  3463:  3409:  3309:  3299:  3258:  3248:  3206:  3198:  3172:Nature 3154:  3144:  3105:  3095:  3043:  3033:  2938:  2928:  2873:  2792:  2784:  2776:  2733:  2698:  2690:  2651:  2644:161321 2641:  2633:  2589:  2582:166906 2579:  2540:  2532:  2489:  2435:  2427:  2401:Nature 2342:  2332:  2260:  2250:  2211:  2170:  2120:  2112:  2076:  2066:  1978:  1968:  1862:  1826:  1758:  1731:Nature 1708:  1677:  1636:  1626:  1618:  1576:  1450:et al. 1442:et al. 1411:et al. 1402:et al. 1395:et al. 1391:et al. 1372:et al. 1354:et al. 1257:active 1130:crambe 1088:et al. 903:nodule 885:58–63. 880:Nature 840:et al. 784:sexual 626:hyphae 532:hyphae 420:Nostoc 388:et al. 304:Rhynia 293:Glomus 253:biotic 244:hyphal 221:, and 172:sulfur 110:fungus 6546:S2CID 6511:S2CID 6478:S2CID 6192:Notes 6140:S2CID 6060:S2CID 5962:S2CID 5919:S2CID 5800:S2CID 5583:S2CID 5531:S2CID 5503:(PDF) 5318:S2CID 5267:S2CID 5216:S2CID 5165:S2CID 5019:S2CID 4968:S2CID 4854:S2CID 4787:S2CID 4767:(PDF) 4624:S2CID 4423:Oikos 4353:Oikos 4334:S2CID 4289:S2CID 4197:(PDF) 4077:S2CID 4034:S2CID 3681:S2CID 3653:(PDF) 3616:S2CID 3461:S2CID 3204:S2CID 2931:59298 2871:S2CID 2813:Oikos 2790:S2CID 2731:S2CID 2688:JSTOR 2631:JSTOR 2538:S2CID 2487:S2CID 2433:S2CID 1971:45331 1756:S2CID 871:et al 717:Lipid 637:Paris 620:Paris 438:model 268:Both 124:of a 122:roots 74:plant 38:root 6589:PMID 6329:PMID 6255:PMID 6052:PMID 6044:ISSN 5954:ISSN 5860:PMID 5792:PMID 5757:PMID 5739:ISSN 5575:PMID 5481:PMID 5422:PMID 5381:PMID 5310:PMID 5259:PMID 5208:PMID 5157:PMID 5099:PMID 5054:PMID 5011:PMID 4923:PMID 4710:PMID 4554:PMID 4175:PMID 4118:PMID 3991:PMID 3948:PMID 3866:PMID 3790:PMID 3727:PMID 3673:PMID 3573:PMID 3555:ISSN 3407:PMID 3365:link 3307:PMID 3256:PMID 3196:PMID 3152:PMID 3103:PMID 3041:PMID 2936:PMID 2782:PMID 2774:ISSN 2696:PMID 2649:PMID 2587:PMID 2530:PMID 2425:PMID 2340:PMID 2258:PMID 2209:PMID 2168:PMID 2118:PMID 2110:ISSN 2074:PMID 1976:PMID 1860:ISBN 1824:ISBN 1706:ISBN 1675:PMID 1634:PMID 1616:ISSN 1574:ISBN 1368:flax 1208:NLFA 1204:PLFA 1071:The 1040:and 967:and 889:The 883:469: 701:and 641:Arum 633:type 631:Arum 622:type 301:and 287:The 276:The 251:and 242:The 205:and 178:and 136:and 36:Flax 6579:PMC 6571:doi 6567:108 6536:doi 6503:doi 6499:203 6470:doi 6458:273 6437:doi 6408:doi 6387:doi 6358:doi 6319:PMC 6311:doi 6307:131 6284:doi 6245:doi 6241:165 6220:doi 6176:doi 6132:doi 6128:253 6091:doi 6036:doi 6024:201 5997:doi 5946:doi 5911:doi 5850:PMC 5842:doi 5784:doi 5747:PMC 5731:doi 5692:doi 5655:doi 5611:doi 5567:doi 5523:doi 5471:PMC 5461:doi 5412:doi 5408:196 5371:PMC 5361:doi 5302:doi 5251:doi 5200:doi 5149:doi 5089:doi 5085:164 5046:doi 5042:100 5003:doi 4958:hdl 4950:doi 4913:PMC 4903:doi 4846:doi 4842:155 4819:doi 4779:doi 4745:doi 4700:PMC 4690:doi 4678:107 4651:doi 4616:doi 4581:doi 4544:PMC 4534:doi 4493:hdl 4485:doi 4449:doi 4427:117 4404:doi 4369:doi 4357:121 4324:hdl 4316:doi 4281:doi 4246:doi 4217:doi 4165:PMC 4157:doi 4108:doi 4104:189 4069:doi 4057:281 4026:doi 3983:doi 3938:doi 3934:183 3905:doi 3856:doi 3817:doi 3780:PMC 3770:doi 3758:107 3719:doi 3665:doi 3608:doi 3596:170 3563:PMC 3545:doi 3533:112 3500:doi 3453:doi 3397:doi 3393:188 3297:PMC 3287:doi 3246:PMC 3236:doi 3188:doi 3176:469 3142:PMC 3134:doi 3093:PMC 3083:doi 3031:PMC 3023:doi 3019:133 2972:doi 2926:PMC 2918:doi 2914:120 2863:doi 2851:134 2821:doi 2766:doi 2723:doi 2680:doi 2639:PMC 2623:doi 2577:PMC 2569:doi 2565:131 2522:doi 2479:doi 2417:doi 2405:435 2330:PMC 2320:doi 2248:PMC 2240:doi 2199:doi 2158:hdl 2150:doi 2146:186 2100:doi 2096:220 2064:PMC 2056:doi 2052:373 2026:doi 1966:PMC 1956:doi 1892:doi 1852:doi 1816:doi 1791:doi 1787:105 1748:doi 1736:363 1702:118 1665:doi 1661:154 1624:PMC 1608:doi 1604:108 1566:doi 1232:SIP 1169:ITS 652:DNA 464:frq 456:frq 452:frq 434:frq 89:An 6638:: 6587:. 6577:. 6565:. 6561:. 6544:. 6532:85 6530:. 6526:. 6509:. 6497:. 6476:. 6468:. 6456:. 6435:. 6425:92 6423:. 6404:15 6402:. 6385:. 6375:12 6373:. 6356:. 6346:78 6344:. 6327:. 6317:. 6305:. 6301:. 6280:85 6278:. 6274:. 6253:. 6239:. 6235:. 6218:. 6208:67 6206:. 6202:. 6172:84 6170:. 6166:. 6152:^ 6138:. 6126:. 6087:10 6085:. 6081:. 6058:. 6050:. 6042:. 6034:. 6022:. 6018:. 5995:. 5985:37 5983:. 5960:. 5952:. 5942:89 5940:. 5917:. 5909:. 5899:37 5897:. 5881:^ 5858:. 5848:. 5840:. 5830:73 5828:. 5824:. 5812:^ 5798:. 5790:. 5778:. 5755:. 5745:. 5737:. 5729:. 5719:10 5717:. 5713:. 5690:. 5680:17 5678:. 5653:. 5643:29 5641:. 5637:. 5623:^ 5605:. 5581:. 5573:. 5565:. 5555:23 5553:. 5529:. 5521:. 5509:. 5505:. 5479:. 5469:. 5459:. 5449:58 5447:. 5443:. 5420:. 5406:. 5402:. 5379:. 5369:. 5359:. 5349:11 5347:. 5343:. 5316:. 5308:. 5300:. 5290:86 5288:. 5265:. 5257:. 5249:. 5239:23 5237:. 5214:. 5206:. 5198:. 5188:22 5186:. 5163:. 5155:. 5147:. 5137:14 5135:. 5097:. 5083:. 5079:. 5052:. 5040:. 5017:. 5009:. 5001:. 4991:65 4989:. 4966:. 4956:. 4946:43 4944:. 4921:. 4911:. 4899:12 4897:. 4893:. 4852:. 4840:. 4815:28 4813:. 4799:^ 4785:. 4775:32 4773:. 4769:. 4743:. 4733:55 4731:. 4708:. 4698:. 4688:. 4676:. 4672:. 4647:84 4645:. 4622:. 4614:. 4604:11 4602:. 4577:79 4575:. 4552:. 4542:. 4532:. 4520:. 4516:. 4491:. 4483:. 4473:25 4471:. 4447:. 4437:. 4425:. 4402:. 4392:20 4390:. 4367:. 4355:. 4332:. 4322:. 4310:. 4287:. 4279:. 4269:51 4267:. 4242:40 4240:. 4215:. 4205:93 4203:. 4199:. 4173:. 4163:. 4155:. 4143:. 4139:. 4116:. 4102:. 4098:. 4075:. 4067:. 4055:. 4032:. 4024:. 4012:. 3989:. 3981:. 3971:91 3969:. 3946:. 3932:. 3928:. 3903:. 3893:26 3891:. 3887:. 3864:. 3854:. 3844:11 3842:. 3838:. 3813:79 3811:. 3788:. 3778:. 3768:. 3756:. 3752:. 3725:. 3717:. 3707:94 3705:. 3693:^ 3679:. 3671:. 3661:11 3659:. 3655:. 3614:. 3606:. 3594:. 3571:. 3561:. 3553:. 3543:. 3531:. 3527:. 3498:. 3488:95 3486:. 3482:. 3459:. 3451:. 3441:43 3439:. 3435:. 3419:^ 3405:. 3391:. 3387:. 3373:^ 3361:}} 3357:{{ 3341:^ 3319:^ 3305:. 3295:. 3283:29 3281:. 3277:. 3254:. 3244:. 3232:31 3230:. 3226:. 3202:. 3194:. 3186:. 3174:. 3150:. 3140:. 3128:. 3124:. 3101:. 3091:. 3081:. 3071:17 3069:. 3065:. 3053:^ 3039:. 3029:. 3017:. 3013:. 2999:^ 2968:84 2966:. 2962:. 2948:^ 2934:. 2924:. 2912:. 2908:. 2892:^ 2869:. 2861:. 2849:. 2835:^ 2817:92 2815:. 2811:. 2788:. 2780:. 2772:. 2764:. 2754:15 2752:. 2729:. 2719:46 2717:. 2694:. 2686:. 2676:94 2674:. 2670:. 2647:. 2637:. 2629:. 2617:. 2613:. 2599:^ 2585:. 2575:. 2563:. 2559:. 2536:. 2528:. 2520:. 2510:15 2508:. 2485:. 2477:. 2465:. 2461:. 2445:^ 2431:. 2423:. 2415:. 2403:. 2374:^ 2352:^ 2338:. 2328:. 2318:. 2308:11 2306:. 2302:. 2278:^ 2256:, 2246:, 2236:10 2234:, 2221:^ 2207:. 2195:15 2193:. 2189:. 2166:. 2156:. 2144:. 2129:^ 2116:, 2108:, 2094:, 2072:, 2062:, 2050:, 2037:^ 2016:, 1999:89 1997:. 1974:. 1964:. 1954:. 1944:91 1942:. 1936:. 1918:^ 1886:. 1882:. 1858:, 1846:, 1822:, 1814:, 1785:. 1781:. 1754:. 1746:. 1734:. 1720:^ 1704:. 1673:. 1659:. 1655:. 1632:. 1622:. 1614:. 1602:. 1598:. 1572:. 1473:. 1116:. 1044:. 834:, 752:pH 690:. 318:. 225:. 217:, 174:, 170:, 95:AM 51:A 6595:. 6573:: 6552:. 6538:: 6517:. 6505:: 6484:. 6472:: 6464:: 6443:. 6439:: 6431:: 6414:. 6410:: 6393:. 6389:: 6381:: 6364:. 6360:: 6352:: 6335:. 6313:: 6292:. 6286:: 6261:. 6247:: 6226:. 6222:: 6214:: 6184:. 6178:: 6146:. 6134:: 6099:. 6093:: 6066:. 6038:: 6030:: 6003:. 5999:: 5991:: 5968:. 5948:: 5925:. 5913:: 5905:: 5866:. 5844:: 5836:: 5806:. 5786:: 5780:3 5763:. 5733:: 5725:: 5698:. 5694:: 5686:: 5663:. 5657:: 5649:: 5617:. 5613:: 5607:5 5589:. 5569:: 5561:: 5537:. 5525:: 5517:: 5511:8 5487:. 5463:: 5455:: 5428:. 5414:: 5387:. 5363:: 5355:: 5324:. 5304:: 5296:: 5273:. 5253:: 5245:: 5222:. 5202:: 5194:: 5171:. 5151:: 5143:: 5120:. 5105:. 5091:: 5075:2 5060:. 5048:: 5025:. 5005:: 4997:: 4974:. 4960:: 4952:: 4929:. 4905:: 4860:. 4848:: 4825:. 4821:: 4793:. 4781:: 4751:. 4747:: 4739:: 4716:. 4692:: 4684:: 4657:. 4653:: 4630:. 4618:: 4610:: 4587:. 4583:: 4560:. 4536:: 4528:: 4522:7 4501:. 4495:: 4487:: 4479:: 4455:. 4451:: 4433:: 4410:. 4406:: 4398:: 4375:. 4371:: 4363:: 4340:. 4326:: 4318:: 4312:8 4295:. 4283:: 4275:: 4252:. 4248:: 4225:. 4219:: 4211:: 4181:. 4159:: 4151:: 4145:7 4124:. 4110:: 4083:. 4071:: 4063:: 4040:. 4028:: 4020:: 4014:8 3997:. 3985:: 3977:: 3954:. 3940:: 3913:. 3907:: 3899:: 3872:. 3858:: 3850:: 3823:. 3819:: 3796:. 3772:: 3764:: 3750:" 3748:2 3733:. 3721:: 3713:: 3687:. 3667:: 3622:. 3610:: 3602:: 3579:. 3547:: 3539:: 3508:. 3502:: 3494:: 3467:. 3455:: 3447:: 3413:. 3399:: 3367:) 3313:. 3289:: 3262:. 3238:: 3210:. 3190:: 3182:: 3158:. 3136:: 3130:3 3109:. 3085:: 3077:: 3047:. 3025:: 2980:. 2974:: 2942:. 2920:: 2877:. 2865:: 2857:: 2829:. 2823:: 2796:. 2768:: 2760:: 2737:. 2725:: 2702:. 2682:: 2655:. 2625:: 2619:8 2593:. 2571:: 2544:. 2524:: 2516:: 2493:. 2481:: 2473:: 2467:6 2439:. 2419:: 2411:: 2346:. 2322:: 2314:: 2242:: 2215:. 2201:: 2174:. 2160:: 2152:: 2102:: 2058:: 2028:: 2022:6 1982:. 1958:: 1950:: 1900:. 1894:: 1888:7 1854:: 1818:: 1797:. 1793:: 1762:. 1750:: 1742:: 1714:. 1681:. 1667:: 1640:. 1610:: 1582:. 1568:: 1261:2 1253:2 1248:2 1206:/ 1114:2 873:. 764:4 758:( 756:4 581:2 432:( 259:. 112:( 93:( 20:)

Index

Arbuscular mycorrhizal fungi

Flax
cortical cells

fluorescent microscopy
arbuscule
Alexa Fluor

Horse Gram
Bilayered glomoid spore of arbuscular mycorrhizal fungi in the root of Horse Gram
Horse Gram
mycorrhiza
symbiont
fungus
cortical cells
roots
vascular plant
ericoid mycorrhiza
orchid mycorrhiza
ectomycorrhiza
Glomeromycotina
Mucoromycota
dikaryan
nutrients
phosphorus
sulfur
nitrogen
micronutrients
symbiosis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.