Knowledge

Arditi–Ginzburg equations

Source 📝

286:
added value of the ratio-dependent predation models is unclear and concludes that "As empirical evidence is often lacking on both functional responses and the importance of functional responses for population dynamics, there is no need to strongly favor one limit model over the others." A recent ecology undergraduate textbook devotes about equal space to Lotka-Volterra and Arditi-Ginzburg equations. Neither prey-dependent nor ratio-dependent models can claim universal accuracy but the issue is to identify which is least wrong.
213: 285:
and Peter A. Abrams. Ginzburg purports that ratio-dependent models more accurately depict predator-prey interactions while Abrams maintains that these models make unwarranted complicating assumptions. A later review critically examines the claims made about ratio-dependent predation to find that the
39: 280:
in large-scale natural systems in which predator efficiency decreases when prey is scarce. The merit of ratio-dependent versus prey-dependent models of predation has been the subject of much controversy, especially between the biologists
44: 208:{\displaystyle {\begin{aligned}{\frac {dN}{dt}}&=f(N)\,N-g{\left(\!{\tfrac {N}{P}}\!\right)}P\\{\frac {dP}{dt}}&=e\,g{\left(\!{\tfrac {N}{P}}\!\right)}P-uP\end{aligned}}} 531: 461: 471: 359: 260:, where the per capita effect of predators on the prey population is simply a function of the magnitude of the prey population 541: 277: 257: 295: 546: 536: 378:
Abrams, Peter A.; Ginzburg, Lev R. (2000). "The nature of predation: prey-dependent, ratio-dependent or neither?".
273: 256:. Making predation pressure a function of the ratio of prey to predators contrasts with the prey-dependent 413:
Barraquand, F. (2014). "Functional responses and predator–prey models: a critique of ratio dependence".
233:. The per capita effect of predators on the prey population (the harvest rate) is modeled by a function 422: 300: 526: 438: 269: 323:
Arditi, Roger; Ginzburg, Lev R. (1989). "Coupling in predator-prey dynamics: ratio-dependence".
467: 395: 355: 489:"The issue isn't which model of consumer interference is right, but which one is least wrong" 225:) captures any change in the prey population not due to predator activity including inherent 500: 430: 387: 332: 268:). Because the number of prey harvested by each predator decreases as predators become more 282: 36:
that of a predator, the population dynamics are described by the following two equations:
426: 230: 391: 336: 520: 442: 434: 226: 505: 488: 457: 25: 399: 352:
How Species Interact: Altering the Standard View on Trophic Ecology
238: 21: 272:, ratio-dependent predation is a way of incorporating predator 248:
of prey to predators. Predators receive a reproductive payoff,
171: 104: 42: 276:
for food. Ratio-dependent predation may account for
207: 182: 169: 115: 102: 8: 504: 170: 163: 159: 129: 103: 96: 86: 47: 43: 41: 350:Arditi, Roger; Ginzburg, Lev R. (2012). 32:is the population of a prey species and 487:Ginzburg, Lev R.; Damuth, John (2022). 312: 7: 373: 371: 318: 316: 252:for consuming prey, and die at rate 493:Frontiers in Ecology and Evolution 463:Ecology: Concepts and Applications 14: 532:Ordinary differential equations 380:Trends in Ecology and Evolution 325:Journal of Theoretical Biology 83: 77: 1: 392:10.1016/S0169-5347(00)01908-X 337:10.1016/S0022-5193(89)80211-5 354:. Oxford University Press. 237:which is a function of the 563: 466:. McGraw-Hill Education. 435:10.1007/s12080-013-0201-9 274:intraspecific competition 18:Arditi–Ginzburg equations 506:10.3389/fevo.2022.860542 258:Lotka–Volterra equations 296:Lotka–Volterra equation 209: 542:Mathematical modeling 210: 40: 427:2014ThEco...7....3B 415:Theoretical Ecology 301:Population dynamics 205: 203: 180: 113: 547:Community ecology 537:Population models 179: 147: 112: 65: 554: 511: 510: 508: 484: 478: 477: 456:Molles, Manuel; 453: 447: 446: 410: 404: 403: 375: 366: 365: 347: 341: 340: 320: 214: 212: 211: 206: 204: 188: 187: 183: 181: 172: 148: 146: 138: 130: 121: 120: 116: 114: 105: 66: 64: 56: 48: 28:dynamics. Where 562: 561: 557: 556: 555: 553: 552: 551: 517: 516: 515: 514: 486: 485: 481: 474: 455: 454: 450: 412: 411: 407: 377: 376: 369: 362: 349: 348: 344: 322: 321: 314: 309: 292: 283:Lev R. Ginzburg 202: 201: 168: 164: 149: 139: 131: 126: 125: 101: 97: 67: 57: 49: 38: 37: 12: 11: 5: 560: 558: 550: 549: 544: 539: 534: 529: 519: 518: 513: 512: 479: 472: 448: 405: 386:(8): 337–341. 367: 360: 342: 331:(3): 311–326. 311: 310: 308: 305: 304: 303: 298: 291: 288: 200: 197: 194: 191: 186: 178: 175: 167: 162: 158: 155: 152: 150: 145: 142: 137: 134: 128: 127: 124: 119: 111: 108: 100: 95: 92: 89: 85: 82: 79: 76: 73: 70: 68: 63: 60: 55: 52: 46: 45: 13: 10: 9: 6: 4: 3: 2: 559: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 524: 522: 507: 502: 498: 494: 490: 483: 480: 475: 473:9781259880056 469: 465: 464: 459: 452: 449: 444: 440: 436: 432: 428: 424: 420: 416: 409: 406: 401: 397: 393: 389: 385: 381: 374: 372: 368: 363: 361:9780199913831 357: 353: 346: 343: 338: 334: 330: 326: 319: 317: 313: 306: 302: 299: 297: 294: 293: 289: 287: 284: 279: 278:heterogeneity 275: 271: 267: 263: 259: 255: 251: 247: 243: 240: 236: 232: 228: 224: 220: 215: 198: 195: 192: 189: 184: 176: 173: 165: 160: 156: 153: 151: 143: 140: 135: 132: 122: 117: 109: 106: 98: 93: 90: 87: 80: 74: 71: 69: 61: 58: 53: 50: 35: 31: 27: 26:predator–prey 23: 19: 496: 492: 482: 462: 451: 418: 414: 408: 383: 379: 351: 345: 328: 324: 265: 261: 253: 249: 245: 241: 234: 222: 218: 216: 33: 29: 17: 15: 421:(1): 3–20. 231:death rates 24:-dependent 521:Categories 499:: 860542. 458:Sher, Anna 307:References 527:Predation 443:255518461 193:− 91:− 20:describe 460:(2018). 400:10884706 290:See also 423:Bibcode 470:  441:  398:  358:  439:S2CID 270:dense 239:ratio 227:birth 217:Here 22:ratio 468:ISBN 396:PMID 356:ISBN 229:and 16:The 501:doi 431:doi 388:doi 333:doi 329:139 523:: 497:10 495:. 491:. 437:. 429:. 417:. 394:. 384:15 382:. 370:^ 327:. 315:^ 250:e, 509:. 503:: 476:. 445:. 433:: 425:: 419:7 402:. 390:: 364:. 339:. 335:: 266:N 264:( 262:g 254:u 246:P 244:/ 242:N 235:g 223:N 221:( 219:f 199:P 196:u 190:P 185:) 177:P 174:N 166:( 161:g 157:e 154:= 144:t 141:d 136:P 133:d 123:P 118:) 110:P 107:N 99:( 94:g 88:N 84:) 81:N 78:( 75:f 72:= 62:t 59:d 54:N 51:d 34:P 30:N

Index

ratio
predator–prey
birth
death rates
ratio
Lotka–Volterra equations
dense
intraspecific competition
heterogeneity
Lev R. Ginzburg
Lotka–Volterra equation
Population dynamics


doi
10.1016/S0022-5193(89)80211-5
ISBN
9780199913831


doi
10.1016/S0169-5347(00)01908-X
PMID
10884706
Bibcode
2014ThEco...7....3B
doi
10.1007/s12080-013-0201-9
S2CID
255518461

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.