Knowledge (XXG)

Arf invariant of a knot

Source 📝

1844: 1856: 513: 355: 729: 280: 956: 586:
Now we can define the Arf invariant of a knot to be 0 if it is pass-equivalent to the unknot, or 1 if it is pass-equivalent to the trefoil. This definition is equivalent to the one above.
810: 347: 888: 1069: 1027: 508:{\displaystyle \operatorname {Arf} (K)=\sum \limits _{i=1}^{g}\operatorname {lk} \left(a_{i},a_{i}^{+}\right)\operatorname {lk} \left(b_{i},b_{i}^{+}\right){\pmod {2}}.} 115: 547: 985: 1105: 66:
has a quadratic form whose value is the number of full twists mod 2 in a neighborhood of an embedded circle representing an element of the homology group. The
1071:
is an odd integer, it has to be congruent to 1 modulo 8. Combined with Murasugi's result, this shows that the Arf invariant of a slice knot vanishes.
615: 1117:
Murasugi, Kunio, The Arf Invariant for Knot Types, Proceedings of the American Mathematical Society, Vol. 21, No. 1. (Apr., 1969), pp. 69–72
172: 1221: 1789: 1708: 1190: 1164: 1142: 1255: 1698: 1703: 1574: 893: 1275: 597:
showed that the Arf invariant can be obtained by taking the partition function of a signed planar graph associated to a
1337: 583:; these two knots are not pass-equivalent and additionally, the right- and left-handed trefoils are pass-equivalent. 744: 1343: 1407: 1402: 1214: 288: 1882: 858: 1032: 990: 1860: 1749: 1718: 130: 1579: 1848: 1619: 1207: 735: 1656: 1639: 1677: 1624: 1238: 1234: 81: 1774: 1723: 1673: 1629: 1589: 1584: 1502: 1186: 1160: 1138: 159: 1809: 1634: 1530: 1265: 525: 1769: 1733: 1668: 1614: 1569: 1562: 1452: 1364: 1247: 1182: 961: 122: 36: 1829: 1728: 1690: 1609: 1522: 1397: 1389: 1349: 1152: 1130: 562: 118: 44: 32: 1876: 1764: 1552: 1545: 1540: 594: 67: 1779: 1759: 1663: 1646: 1442: 1379: 1174: 598: 580: 1462: 1301: 1293: 1285: 852:
From the Fox-Milnor criterion, which tells us that the Alexander polynomial of a
1794: 1557: 1331: 1311: 1230: 1199: 519: 349:, is a symplectic basis for the intersection form on the Seifert surface, then 20: 1814: 1799: 1754: 1651: 1604: 1599: 1594: 1424: 1321: 853: 724:{\displaystyle \Delta (t)=c_{0}+c_{1}t+\cdots +c_{n}t^{n}+\cdots +c_{0}t^{2n}} 1819: 1487: 1159:. Annals of Mathematics Studies. Vol. 115. Princeton University Press. 28: 1804: 1414: 275:{\displaystyle \sum \limits _{i=1}^{g}v_{2i-1,2i-1}v_{2i,2i}{\pmod {2}}.} 1824: 1472: 1432: 576: 840:
Kunio Murasugi proved that the Arf invariant is zero if and only if
1713: 609:
This approach to the Arf invariant is by Raymond Robertello. Let
1784: 1137:. Mathematical notes. Vol. 30. Princeton University Press. 1203: 70:
of this quadratic form is the Arf invariant of the knot.
987:
with integer coefficients, we know that the determinant
572:
if they are related by a finite sequence of pass-moves.
738:
of the knot. Then the Arf invariant is the residue of
1104:
Robertello, Raymond, An Invariant of Knot Corbordism,
1035: 993: 964: 896: 861: 747: 618: 528: 358: 291: 175: 84: 1742: 1686: 1521: 1423: 1388: 1246: 951:{\displaystyle \Delta (t)=p(t)p\left(t^{-1}\right)} 121:of the knot, constructed from a set of curves on a 1063: 1021: 979: 950: 882: 804: 723: 541: 507: 341: 274: 109: 1181:. Lecture Notes in Mathematics. Vol. 1374. 35:obtained from a quadratic form associated to a 1106:Communications on Pure and Applied Mathematics 1215: 805:{\displaystyle c_{n-1}+c_{n-3}+\cdots +c_{r}} 561:This approach to the Arf invariant is due to 8: 575:Every knot is pass-equivalent to either the 318: 292: 342:{\displaystyle \{a_{i},b_{i}\},i=1\ldots g} 1222: 1208: 1200: 1034: 992: 963: 935: 895: 883:{\displaystyle K\subset \mathbb {S} ^{3}} 874: 870: 869: 860: 796: 771: 752: 746: 712: 702: 683: 673: 651: 638: 617: 533: 527: 486: 475: 470: 457: 431: 426: 413: 392: 381: 357: 312: 299: 290: 253: 235: 201: 191: 180: 174: 95: 83: 43:is a Seifert surface of a knot, then the 1064:{\displaystyle \left|\Delta (-1)\right|} 1029:of a slice knot is a square integer. As 1022:{\displaystyle \left|\Delta (-1)\right|} 1079: 129:which represent a basis for the first 7: 1855: 1108:, Volume 18, pp. 543–555, 1965 16:Knot invariant named after Cahit Arf 494: 378: 261: 177: 1041: 999: 897: 619: 605:Definition by Alexander polynomial 14: 848:Arf as knot concordance invariant 133:of the surface. This means that 1854: 1843: 1842: 590:Definition by partition function 549:denotes the positive pushoff of 487: 254: 166:of the knot is the residue of 1709:Dowker–Thistlethwaite notation 1053: 1044: 1011: 1002: 974: 968: 921: 915: 906: 900: 628: 622: 557:Definition by pass equivalence 498: 488: 371: 365: 265: 255: 148:matrix with the property that 19:In the mathematical field of 1: 74:Definition by Seifert matrix 1179:The topology of 4-manifolds 1899: 568:We define two knots to be 1838: 1699:Alexander–Briggs notation 110:{\displaystyle V=v_{i,j}} 1095:Kauffman (1987) pp.75–78 1790:List of knots and links 1338:Kinoshita–Terasaka knot 27:of a knot, named after 1065: 1023: 981: 952: 884: 806: 725: 543: 509: 397: 343: 276: 196: 111: 1580:Finite type invariant 1066: 1024: 982: 953: 885: 807: 726: 544: 542:{\displaystyle a^{+}} 510: 377: 344: 277: 176: 112: 1086:Kauffman (1987) p.74 1033: 991: 980:{\displaystyle p(t)} 962: 958:for some polynomial 894: 859: 745: 736:Alexander polynomial 616: 526: 356: 289: 173: 82: 1750:Alexander's theorem 842:Δ(−1) ≡ ±1 modulo 8 480: 436: 1153:Kauffman, Louis H. 1135:Formal knot theory 1131:Kauffman, Louis H. 1061: 1019: 977: 948: 880: 802: 721: 539: 505: 466: 422: 339: 272: 107: 1870: 1869: 1724:Reidemeister move 1590:Khovanov homology 1585:Hyperbolic volume 285:Specifically, if 160:symplectic matrix 1890: 1858: 1857: 1846: 1845: 1810:Tait conjectures 1513: 1512: 1498: 1497: 1483: 1482: 1375: 1374: 1360: 1359: 1344:(−2,3,7) pretzel 1224: 1217: 1210: 1201: 1196: 1170: 1148: 1118: 1115: 1109: 1102: 1096: 1093: 1087: 1084: 1070: 1068: 1067: 1062: 1060: 1056: 1028: 1026: 1025: 1020: 1018: 1014: 986: 984: 983: 978: 957: 955: 954: 949: 947: 943: 942: 889: 887: 886: 881: 879: 878: 873: 843: 832: 821: 815:modulo 2, where 811: 809: 808: 803: 801: 800: 782: 781: 763: 762: 730: 728: 727: 722: 720: 719: 707: 706: 688: 687: 678: 677: 656: 655: 643: 642: 548: 546: 545: 540: 538: 537: 518:where lk is the 514: 512: 511: 506: 501: 485: 481: 479: 474: 462: 461: 441: 437: 435: 430: 418: 417: 396: 391: 348: 346: 345: 340: 317: 316: 304: 303: 281: 279: 278: 273: 268: 252: 251: 230: 229: 195: 190: 157: 147: 116: 114: 113: 108: 106: 105: 65: 1898: 1897: 1893: 1892: 1891: 1889: 1888: 1887: 1883:Knot invariants 1873: 1872: 1871: 1866: 1834: 1738: 1704:Conway notation 1688: 1682: 1669:Tricolorability 1517: 1511: 1508: 1507: 1506: 1496: 1493: 1492: 1491: 1481: 1478: 1477: 1476: 1468: 1458: 1448: 1438: 1419: 1398:Composite knots 1384: 1373: 1370: 1369: 1368: 1365:Borromean rings 1358: 1355: 1354: 1353: 1327: 1317: 1307: 1297: 1289: 1281: 1271: 1261: 1242: 1228: 1193: 1183:Springer-Verlag 1173: 1167: 1151: 1145: 1129: 1126: 1121: 1116: 1112: 1103: 1099: 1094: 1090: 1085: 1081: 1077: 1040: 1036: 1031: 1030: 998: 994: 989: 988: 960: 959: 931: 927: 892: 891: 868: 857: 856: 850: 841: 827: 816: 792: 767: 748: 743: 742: 708: 698: 679: 669: 647: 634: 614: 613: 607: 592: 570:pass equivalent 559: 529: 524: 523: 453: 452: 448: 409: 408: 404: 354: 353: 308: 295: 287: 286: 231: 197: 171: 170: 149: 138: 123:Seifert surface 91: 80: 79: 76: 51: 47: 37:Seifert surface 17: 12: 11: 5: 1896: 1894: 1886: 1885: 1875: 1874: 1868: 1867: 1865: 1864: 1852: 1839: 1836: 1835: 1833: 1832: 1830:Surgery theory 1827: 1822: 1817: 1812: 1807: 1802: 1797: 1792: 1787: 1782: 1777: 1772: 1767: 1762: 1757: 1752: 1746: 1744: 1740: 1739: 1737: 1736: 1731: 1729:Skein relation 1726: 1721: 1716: 1711: 1706: 1701: 1695: 1693: 1684: 1683: 1681: 1680: 1674:Unknotting no. 1671: 1666: 1661: 1660: 1659: 1649: 1644: 1643: 1642: 1637: 1632: 1627: 1622: 1612: 1607: 1602: 1597: 1592: 1587: 1582: 1577: 1572: 1567: 1566: 1565: 1555: 1550: 1549: 1548: 1538: 1533: 1527: 1525: 1519: 1518: 1516: 1515: 1509: 1500: 1494: 1485: 1479: 1470: 1466: 1460: 1456: 1450: 1446: 1440: 1436: 1429: 1427: 1421: 1420: 1418: 1417: 1412: 1411: 1410: 1405: 1394: 1392: 1386: 1385: 1383: 1382: 1377: 1371: 1362: 1356: 1347: 1341: 1335: 1329: 1325: 1319: 1315: 1309: 1305: 1299: 1295: 1291: 1287: 1283: 1279: 1273: 1269: 1263: 1259: 1252: 1250: 1244: 1243: 1229: 1227: 1226: 1219: 1212: 1204: 1198: 1197: 1191: 1171: 1165: 1149: 1143: 1125: 1122: 1120: 1119: 1110: 1097: 1088: 1078: 1076: 1073: 1059: 1055: 1052: 1049: 1046: 1043: 1039: 1017: 1013: 1010: 1007: 1004: 1001: 997: 976: 973: 970: 967: 946: 941: 938: 934: 930: 926: 923: 920: 917: 914: 911: 908: 905: 902: 899: 877: 872: 867: 864: 849: 846: 813: 812: 799: 795: 791: 788: 785: 780: 777: 774: 770: 766: 761: 758: 755: 751: 732: 731: 718: 715: 711: 705: 701: 697: 694: 691: 686: 682: 676: 672: 668: 665: 662: 659: 654: 650: 646: 641: 637: 633: 630: 627: 624: 621: 606: 603: 591: 588: 563:Louis Kauffman 558: 555: 536: 532: 516: 515: 504: 500: 497: 493: 490: 484: 478: 473: 469: 465: 460: 456: 451: 447: 444: 440: 434: 429: 425: 421: 416: 412: 407: 403: 400: 395: 390: 387: 384: 380: 376: 373: 370: 367: 364: 361: 338: 335: 332: 329: 326: 323: 320: 315: 311: 307: 302: 298: 294: 283: 282: 271: 267: 264: 260: 257: 250: 247: 244: 241: 238: 234: 228: 225: 222: 219: 216: 213: 210: 207: 204: 200: 194: 189: 186: 183: 179: 119:Seifert matrix 104: 101: 98: 94: 90: 87: 75: 72: 49: 45:homology group 33:knot invariant 15: 13: 10: 9: 6: 4: 3: 2: 1895: 1884: 1881: 1880: 1878: 1863: 1862: 1853: 1851: 1850: 1841: 1840: 1837: 1831: 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1765:Conway sphere 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1747: 1745: 1741: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1696: 1694: 1692: 1685: 1679: 1675: 1672: 1670: 1667: 1665: 1662: 1658: 1655: 1654: 1653: 1650: 1648: 1645: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1617: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1564: 1561: 1560: 1559: 1556: 1554: 1551: 1547: 1544: 1543: 1542: 1539: 1537: 1536:Arf invariant 1534: 1532: 1529: 1528: 1526: 1524: 1520: 1504: 1501: 1489: 1486: 1474: 1471: 1464: 1461: 1454: 1451: 1444: 1441: 1434: 1431: 1430: 1428: 1426: 1422: 1416: 1413: 1409: 1406: 1404: 1401: 1400: 1399: 1396: 1395: 1393: 1391: 1387: 1381: 1378: 1366: 1363: 1351: 1348: 1345: 1342: 1339: 1336: 1333: 1330: 1323: 1320: 1313: 1310: 1303: 1300: 1298: 1292: 1290: 1284: 1277: 1274: 1267: 1264: 1257: 1254: 1253: 1251: 1249: 1245: 1240: 1236: 1232: 1225: 1220: 1218: 1213: 1211: 1206: 1205: 1202: 1194: 1192:0-387-51148-2 1188: 1184: 1180: 1176: 1175:Kirby, Robion 1172: 1168: 1166:0-691-08435-1 1162: 1158: 1154: 1150: 1146: 1144:0-691-08336-3 1140: 1136: 1132: 1128: 1127: 1123: 1114: 1111: 1107: 1101: 1098: 1092: 1089: 1083: 1080: 1074: 1072: 1057: 1050: 1047: 1037: 1015: 1008: 1005: 995: 971: 965: 944: 939: 936: 932: 928: 924: 918: 912: 909: 903: 875: 865: 862: 855: 847: 845: 838: 836: 830: 825: 819: 797: 793: 789: 786: 783: 778: 775: 772: 768: 764: 759: 756: 753: 749: 741: 740: 739: 737: 716: 713: 709: 703: 699: 695: 692: 689: 684: 680: 674: 670: 666: 663: 660: 657: 652: 648: 644: 639: 635: 631: 625: 612: 611: 610: 604: 602: 600: 596: 595:Vaughan Jones 589: 587: 584: 582: 578: 573: 571: 566: 564: 556: 554: 552: 534: 530: 521: 502: 495: 491: 482: 476: 471: 467: 463: 458: 454: 449: 445: 442: 438: 432: 427: 423: 419: 414: 410: 405: 401: 398: 393: 388: 385: 382: 374: 368: 362: 359: 352: 351: 350: 336: 333: 330: 327: 324: 321: 313: 309: 305: 300: 296: 269: 262: 258: 248: 245: 242: 239: 236: 232: 226: 223: 220: 217: 214: 211: 208: 205: 202: 198: 192: 187: 184: 181: 169: 168: 167: 165: 164:Arf invariant 161: 156: 152: 146: 142: 136: 132: 128: 124: 120: 102: 99: 96: 92: 88: 85: 73: 71: 69: 68:Arf invariant 63: 59: 55: 46: 42: 38: 34: 30: 26: 25:Arf invariant 22: 1859: 1847: 1775:Double torus 1760:Braid theory 1575:Crossing no. 1570:Crosscap no. 1535: 1256:Figure-eight 1178: 1156: 1134: 1113: 1100: 1091: 1082: 851: 839: 834: 828: 823: 817: 814: 733: 608: 599:knot diagram 593: 585: 574: 569: 567: 560: 550: 517: 284: 163: 154: 150: 144: 140: 134: 126: 77: 61: 57: 53: 40: 24: 18: 1610:Linking no. 1531:Alternating 1332:Conway knot 1312:Carrick mat 1266:Three-twist 1231:Knot theory 890:factors as 520:link number 21:knot theory 1770:Complement 1734:Tabulation 1691:operations 1615:Polynomial 1605:Link group 1600:Knot group 1563:Invertible 1541:Bridge no. 1523:Invariants 1453:Cinquefoil 1322:Perko pair 1248:Hyperbolic 1124:References 854:slice knot 1664:Stick no. 1620:Alexander 1558:Chirality 1503:Solomon's 1463:Septafoil 1390:Satellite 1350:Whitehead 1276:Stevedore 1048:− 1042:Δ 1006:− 1000:Δ 937:− 898:Δ 866:⊂ 826:odd, and 787:⋯ 776:− 757:− 693:⋯ 664:⋯ 620:Δ 446:⁡ 402:⁡ 379:∑ 363:⁡ 334:… 224:− 209:− 178:∑ 125:of genus 29:Cahit Arf 1877:Category 1849:Category 1719:Mutation 1687:Notation 1640:Kauffman 1553:Brunnian 1546:2-bridge 1415:Knot sum 1346:(12n242) 1177:(1989). 1157:On knots 1155:(1987). 1133:(1983). 131:homology 1861:Commons 1780:Fibered 1678:problem 1647:Pretzel 1625:Bracket 1443:Trefoil 1380:L10a140 1340:(11n42) 1334:(11n34) 1302:Endless 734:be the 581:trefoil 579:or the 31:, is a 1825:Writhe 1795:Ribbon 1630:HOMFLY 1473:Unlink 1433:Unknot 1408:Square 1403:Granny 1189:  1163:  1141:  837:even. 577:unknot 162:. The 39:. If 23:, the 1815:Twist 1800:Slice 1755:Berge 1743:Other 1714:Flype 1652:Prime 1635:Jones 1595:Genus 1425:Torus 1239:links 1235:knots 1075:Notes 158:is a 137:is a 117:be a 1820:Wild 1785:Knot 1689:and 1676:and 1657:list 1488:Hopf 1237:and 1187:ISBN 1161:ISBN 1139:ISBN 833:for 822:for 565:. 522:and 78:Let 1805:Sum 1326:161 1324:(10 831:= 1 820:= 0 492:mod 360:Arf 259:mod 143:× 2 1879:: 1505:(4 1490:(2 1475:(0 1465:(7 1455:(5 1445:(3 1435:(0 1367:(6 1352:(5 1316:18 1314:(8 1304:(7 1278:(6 1268:(5 1258:(4 1185:. 844:. 601:. 553:. 443:lk 399:lk 153:− 60:/2 56:, 1514:) 1510:1 1499:) 1495:1 1484:) 1480:1 1469:) 1467:1 1459:) 1457:1 1449:) 1447:1 1439:) 1437:1 1376:) 1372:2 1361:) 1357:1 1328:) 1318:) 1308:) 1306:4 1296:3 1294:6 1288:2 1286:6 1282:) 1280:1 1272:) 1270:2 1262:) 1260:1 1241:) 1233:( 1223:e 1216:t 1209:v 1195:. 1169:. 1147:. 1058:| 1054:) 1051:1 1045:( 1038:| 1016:| 1012:) 1009:1 1003:( 996:| 975:) 972:t 969:( 966:p 945:) 940:1 933:t 929:( 925:p 922:) 919:t 916:( 913:p 910:= 907:) 904:t 901:( 876:3 871:S 863:K 835:n 829:r 824:n 818:r 798:r 794:c 790:+ 784:+ 779:3 773:n 769:c 765:+ 760:1 754:n 750:c 717:n 714:2 710:t 704:0 700:c 696:+ 690:+ 685:n 681:t 675:n 671:c 667:+ 661:+ 658:t 653:1 649:c 645:+ 640:0 636:c 632:= 629:) 626:t 623:( 551:a 535:+ 531:a 503:. 499:) 496:2 489:( 483:) 477:+ 472:i 468:b 464:, 459:i 455:b 450:( 439:) 433:+ 428:i 424:a 420:, 415:i 411:a 406:( 394:g 389:1 386:= 383:i 375:= 372:) 369:K 366:( 337:g 331:1 328:= 325:i 322:, 319:} 314:i 310:b 306:, 301:i 297:a 293:{ 270:. 266:) 263:2 256:( 249:i 246:2 243:, 240:i 237:2 233:v 227:1 221:i 218:2 215:, 212:1 206:i 203:2 199:v 193:g 188:1 185:= 182:i 155:V 151:V 145:g 141:g 139:2 135:V 127:g 103:j 100:, 97:i 93:v 89:= 86:V 64:) 62:Z 58:Z 54:F 52:( 50:1 48:H 41:F

Index

knot theory
Cahit Arf
knot invariant
Seifert surface
homology group
Arf invariant
Seifert matrix
Seifert surface
homology
symplectic matrix
link number
Louis Kauffman
unknot
trefoil
Vaughan Jones
knot diagram
Alexander polynomial
slice knot
Communications on Pure and Applied Mathematics
Kauffman, Louis H.
ISBN
0-691-08336-3
Kauffman, Louis H.
ISBN
0-691-08435-1
Kirby, Robion
Springer-Verlag
ISBN
0-387-51148-2
v

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.