Knowledge

Arsenophonus nasoniae

Source 📝

1721: 576:, the symbiont will increase its fitness if it causes the infected wasp host to produce more, or higher quality daughters, compared to that of an uninfected host. The killing of males therefore provides an incremental gain in fitness of infected females, which is relative to females infected with non-male-killing bacteria. Adaptive advantages for female off-spring by killing male off-spring include reduced competition by siblings for resources, reduced 37: 437:
bacteria for normal physiological function. In other cases, infecting bacteria may confer insect resistance against natural enemies, thus helping insect survival rates. In contrast to the positive roles some symbiotic bacteria play with regards to insects, there are a variety of microbiological
568:
can be easily cultured outside of its host organism which is unusual for insect symbionts. The ability of the bacterium to live outside host cells may be an adaptive advantage for the exploitation of multiple different host organisms and species
871:
Trowbridge RE, Dittmar K, Whiting MF (January 2006). "Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea)".
715:
is for the reduction of population sizes in parasites which negatively impact potentially endangered or ecologically important species. For example, a study was carried out by which the parasitoid wasp
1347:
Huger AM, Skinner SW, Werren JH (November 1985). "Bacterial infections associated with the son-killer trait in the parasitoid wasp Nasonia (= Mormoniella) vitripennis (Hymenoptera: Pteromalidae)".
580:
and an increased consumption of local resources via consumption of dead male siblings. Aside from the son-killer trait, infection by the bacterium has not been found to measurably affect the host.
417:
and proline; therefore suggesting the bacterium is able to supplement its reduced bio-synthetic abilities by up-taking these amino acids from its environment. As for other biological pathways,
922:
Darby AC, Choi JH, Wilkes T, Hughes MA, Werren JH, Hurst GD, Colbourne JK (February 2010). "Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia".
600:
and other species can be explained by the bacterial transmission routes; by which the bacterium can be transmitted both vertically and through horizontal gene transfer among host species.
1868: 425:, by which genomic analysis revealed a bias towards the conservation of genes encoding enzymes and proteins involved in nucleotide, co-factor, vitamin and lipid metabolism. 1480:
Mouton, Laurence; Thierry, Magali; Henri, Hélène; Baudin, Rémy; Gnankine, Olivier; Reynaud, Bernard; Zchori-Fein, Einat; Becker, Nathalie; Fleury, Frédéric (2012-01-18).
1842: 1881: 1544:
Duron, Olivier; Wilkes, Timothy E.; Hurst, Gregory D. D. (September 2010). "Interspecific transmission of a male-killing bacterium on an ecological timescale".
1385:
Taylor GP, Coghlin PC, Floate KD, Perlman SJ (March 2011). "The host range of the male-killing symbiont Arsenophonus nasoniae in filth fly parasitioids".
1829: 1855: 369:
is only present in a fraction of wasp hosts therefore the bacterium is unlikely to significantly contribute to the nutrition of the host insect.
741:, therefore lowering the proportion of male wasp off-spring and negatively impacting mating success for female off-spring. Overall, action of 596:
represents one of the richest and most widespread clusters of symbiotic bacteria which infect insects. The diversity in the host range of
377:
but required additional nutritional supplementation. This finding suggested that the bacterium is likely to have retained a variety of key
1131:
Wernegreen, Jennifer J. (2017). "Ancient bacterial endosymbionts of insects: Genomes as sources of insight and springboards for inquiry".
780:"NOTES: Arsenophonus nasoniae gen. nov., sp. nov., the Causative Agent of the Son-Killer Trait in the Parasitic Wasp Nasonia vitripennis" 1927: 239:
gen. nov., sp. nov.' was therefore proposed for the discovered bacterium due to its characteristics and its microbial interaction with
439: 410: 405:. The loss of loss of the histidine pathway is typical of a variety of obligate parasitic bacteria. Genomic analysis showed that 1227:"Son-killer: a third extrachromosomal factor affecting the sex ratio in the parasitoid wasp, Nasonia (=Mormoniella) vitripennis" 572:
95% of the daughters of an infected female inherit the killer-son trait. Because male hosts act as an evolutionary dead-end for
381:
common to free-living bacteria; however the bacterium is also likely to have lost genes in pathways where the host environment (
1082:"Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements" 493:
exhibits the son-killer trait which causes lethality of approximately 80% of male embryos produced by infected female wasps.
1860: 521:
sexual identity of the host wasps' offspring. The overall effect on wasp offspring is the induced killing of male haploid
1179:
Balas MT, Lee MH, Werren JH (November 1996). "Distribution and fitness effects of the son-killer bacterium in Nasonia".
749:
population in the bees, with potential for application concerning the conservation of important or endangered species.
442:
from parent to offspring, but leads to a reduction in host fitness. This action occurs by the alteration of the hosts'
36: 1922: 1886: 549: 1589:"Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp Ixodiphagus hookeri" 561: 509:
which is specifically required for early male embryonic development. The action of the killer-son trait by
1745: 643: 637: 433:
Microorganisms often have influence on insect species, in which some insects require presence of resident
212: 1482:"Evidence of diversity and recombination in Arsenophonus symbionts of the Bemisia tabaci species complex" 1587:
Bohacsova, Monika; Mediannikov, Oleg; Kazimirova, Maria; Raoult, Didier; Sekeyova, Zuzana (2016-02-22).
336: 276: 121: 1803: 1715: 1600: 1188: 669: 443: 344: 272: 228: 732: 615: 473: 383: 333: 204: 192: 151: 68: 1285:
Ferree, Patrick M.; Avery, Amanda; Azpurua, Jorge; Wilkes, Timothy; Werren, John H. (2008-09-23).
1726: 1204: 1156: 947: 627: 303: 299: 31: 1847: 607:
has been detected in a variety of other wasp species, including two other members of the genus
1894: 1790: 1690: 1682: 1636: 1618: 1569: 1561: 1521: 1503: 1459: 1441: 1402: 1364: 1324: 1306: 1264: 1246: 1148: 1113: 1062: 1013: 995: 939: 889: 853: 835: 652:
to infect a variety of different host organisms and be passed on vertically and horizontally.
518: 514: 378: 284: 1899: 1674: 1626: 1608: 1553: 1511: 1493: 1449: 1433: 1394: 1356: 1314: 1298: 1254: 1238: 1196: 1140: 1103: 1093: 1052: 1044: 1003: 985: 931: 881: 843: 827: 791: 374: 78: 974:"Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution" 264: 162:. These wasps are generalists which afflict the larvae of parasitic carrion flies such as 1720: 1604: 1192: 1631: 1588: 1516: 1481: 1454: 1421: 1319: 1286: 1259: 1226: 1080:
Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, et al. (March 2004).
1008: 973: 848: 815: 548:
wasp feeding. This mode of transmission also results in the bacterial infection moving
438:
interactions which hinder the host. In this case, the infecting microbe is transmitted
291: 260: 182: 178: 88: 58: 1108: 1081: 1057: 1032: 1916: 1873: 1557: 1360: 1033:"Metabolic interdependence of obligate intracellular bacteria and their insect hosts" 935: 482: 340: 324:. Analysis of the extra-chromosomal genome showed that there was a group of putative 1208: 1160: 951: 1795: 1048: 778:
Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner DJ (1991).
664: 658: 329: 320: 208: 187: 98: 1657:
Goerzen, D.W.; Erlandson, M.A. (2018-05-01). "Infection of the chalcid parasitoid
816:"The Parasitoid Wasp Nasonia: An Emerging Model System With Haploid Male Genetics" 1768: 1613: 1242: 1098: 1498: 1144: 681: 200: 1287:"A bacterium targets maternally inherited centrosomes to kill males in Nasonia" 532:
Transmission of the bacterium occurs through intermediate infection of the fly
1678: 1398: 1302: 885: 796: 779: 718: 648:
Male-killing has been observed in all four species, reflecting the ability of
577: 498: 465: 461: 414: 362: 196: 156: 1686: 1622: 1565: 1507: 1445: 1310: 1250: 999: 839: 1816: 990: 673: 631: 526: 506: 451: 447: 434: 422: 398: 352: 268: 216: 171: 163: 1694: 1640: 1573: 1525: 1463: 1437: 1422:"Male-killing bacteria in insects: mechanisms, incidence, and implications" 1406: 1328: 1152: 1117: 1066: 1017: 943: 893: 857: 1368: 1268: 421:
shares similarities with genomes of the insect-infecting bacterial genus,
1762: 689: 402: 314: 220: 167: 48: 1834: 1777: 1200: 831: 727: 697: 621: 609: 537: 486: 478: 394: 325: 308: 232: 1782: 522: 1739: 1821: 1710: 1661:
Walker (Hymenoptera: Pteromalidae) with the male-killing symbiont
705: 693: 545: 355: 224: 784:
International Journal of Systematic and Evolutionary Microbiology
533: 468: 159: 1808: 1743: 701: 656:
has also been detected in a variety of fly species including
149:
is a species of bacterium which was previously isolated from
560:
is then maintained in host wasp populations due to on-going
737:
Infection was observed to induce the killer-son trait in
267:. The assembled draft genome was composed of 3, 567, 128 540:
by the wasp, resulting in subsequent acquisition of the
332:
genes; these of which showed high homology with that of
625:. Infection has also been detected in the wasp species 517:
and developmental arrest prior to the establishment of
592:
host species is particularly large and that the genus
972:
Nováková, Eva; Hypša, Václav; Moran, Nancy A (2009).
556:
populations following co-infection within host pupa.
536:
host. This is due to injection into the host during
1752: 814:Werren, John H.; Loehlin, David W. (October 2009). 497:causes inhibition of the formation of the maternal 588:Several studies have found that the diversity of 279:revealed that the closest sequenced relatives of 1031:Zientz E, Dandekar T, Gross R (December 2004). 1342: 1340: 1338: 231:rods. Cellular division is exhibited through 1665:(Gamma-Proteobacteria: Enterobacteriaceae)". 8: 1740: 1719: 1037:Microbiology and Molecular Biology Reviews 20: 1630: 1612: 1515: 1497: 1453: 1318: 1258: 1107: 1097: 1056: 1007: 989: 847: 795: 711:A potential benefit of host infection by 477:. Genetically, female wasp offspring are 1735:- the Bacterial Diversity Metadatabase 757: 726:. This wasp infects populations of the 505:embryos. The maternal centrosome is an 1652: 1650: 684:insects. Several members of the genus 680:from various tissues of blood-sucking 1539: 1537: 1535: 1475: 1473: 1420:Hurst, G. D.; Jiggins, F. M. (2000). 1380: 1378: 1280: 1278: 1220: 1218: 387:) provides the required metabolites. 295:. Analyses also revealed that 67% of 7: 1174: 1172: 1170: 967: 965: 963: 961: 917: 915: 913: 911: 909: 907: 905: 903: 809: 807: 773: 771: 769: 767: 765: 763: 761: 489:and develop from unfertilised eggs. 393:lacked genes for the metabolism of 668:Microscopic studies have revealed 485:eggs. Males on the other hand are 191:, has a close relationship to the 14: 1667:Journal of Invertebrate Pathology 1387:Journal of Invertebrate Pathology 1349:Journal of Invertebrate Pathology 874:Journal of Invertebrate Pathology 411:ATP-binding cassette transporters 1558:10.1111/j.1461-0248.2010.01502.x 936:10.1111/j.1365-2583.2009.00950.x 271:and contained a mixture of both 227:forming and form long to highly 35: 722:was infected horizontally with 688:have also been found to infect 251:Isolation and genomic profiling 1049:10.1128/MMBR.68.4.745-770.2004 1: 1225:Skinner, S. W. (April 1985). 446:, such as causing imbalanced 247:is Strain SKI4 (ATCC 49151). 1614:10.1371/journal.pone.0149950 1426:Emerging Infectious Diseases 1361:10.1016/0022-2011(85)90069-2 1099:10.1371/journal.pbio.0020069 820:Cold Spring Harbor Protocols 552:between individual wasps in 464:bacterium which infects the 1499:10.1186/1471-2180-12-S1-S10 1145:10.1016/j.yexcr.2017.04.028 665:Pachycrepoideus vindemmiae. 328:encoding several groups of 275:and bacterial chromosomes. 203:. The genus is composed of 1944: 1928:Bacteria described in 1991 1243:10.1093/genetics/109.4.745 1133:Experimental Cell Research 460:is a maternally inherited 1679:10.1016/j.jip.2018.03.013 1399:10.1016/j.jip.2010.12.004 1303:10.1016/j.cub.2008.07.093 886:10.1016/j.jip.2005.08.009 797:10.1099/00207713-41-4-563 745:could help to reduce the 529:toward female offspring. 429:Killer-son trait in wasps 127: 120: 32:Scientific classification 30: 23: 924:Insect Molecular Biology 525:; resulting in a skewed 409:had conserved genes for 347:revealed that the genus 339:transfer genes. Further 1711:"Arsenophonus nasoniae" 991:10.1186/1471-2180-9-143 708:and two plant species. 562:horizontal transmission 513:results in unorganized 259:was carried out by DNA 209:secondary-endosymbionts 195:rather than to that of 1438:10.3201/eid0604.000402 638:Muscidifurax uniraptor 361:In terms of bacterial 177:belongs to the phylum 1874:arsenophonus-nasoniae 1754:Arsenophonus nasoniae 1729:Arsenophonus nasoniae 1663:Arsenophonus nasoniae 277:Phylogenetic analyses 243:. The type strain of 237:Arsenophonus nasoniae 146:Arsenophonus nasoniae 131:Arsenophonus nasoniae 25:Arsenophonus nasoniae 1716:Encyclopedia of Life 1181:Evolutionary Ecology 444:reproductive biology 373:was able to grow on 306:genes in the genera 273:extrachromosomal DNA 205:gammaproteobacterial 16:Species of bacterium 1659:Pteromalus venustus 1605:2016PLoSO..1149950B 1193:1996EvEco..10..593B 733:Megachile rotundata 719:Pteromalus venustus 659:Muscidifurax raptor 635:and in the species 616:Nasonia longicornis 474:Nasonia vitripennis 384:Nasonia vitripennis 334:gammaproteobacteria 300:open reading frames 193:Proteus (bacterium) 152:Nasonia vitripennis 69:Gammaproteobacteria 1201:10.1007/bf01237709 930:(Suppl 1): 75–89. 832:10.1101/pdb.emo134 826:(10): pdb.emo134. 730:leaf-cutting bee, 628:Spalangia cameroni 379:metabolic pathways 137:Gherna et al. 1991 1910: 1909: 1895:Open Tree of Life 1746:Taxon identifiers 1297:(18): 1409–1414. 544:infection during 481:and develop from 343:analysis using a 142: 141: 1935: 1923:Enterobacterales 1903: 1902: 1890: 1889: 1877: 1876: 1864: 1863: 1851: 1850: 1838: 1837: 1825: 1824: 1812: 1811: 1799: 1798: 1786: 1785: 1773: 1772: 1771: 1741: 1723: 1699: 1698: 1654: 1645: 1644: 1634: 1616: 1584: 1578: 1577: 1552:(9): 1139–1148. 1541: 1530: 1529: 1519: 1501: 1492:(Suppl 1): S10. 1486:BMC Microbiology 1477: 1468: 1467: 1457: 1417: 1411: 1410: 1382: 1373: 1372: 1344: 1333: 1332: 1322: 1282: 1273: 1272: 1262: 1222: 1213: 1212: 1176: 1165: 1164: 1128: 1122: 1121: 1111: 1101: 1077: 1071: 1070: 1060: 1028: 1022: 1021: 1011: 993: 978:BMC Microbiology 969: 956: 955: 919: 898: 897: 868: 862: 861: 851: 811: 802: 801: 799: 775: 622:Nasonia giraulti 515:mitotic spindles 133: 113:A. nasoniae 79:Enterobacterales 40: 39: 21: 1943: 1942: 1938: 1937: 1936: 1934: 1933: 1932: 1913: 1912: 1911: 1906: 1898: 1893: 1885: 1880: 1872: 1867: 1859: 1854: 1846: 1841: 1833: 1828: 1820: 1815: 1807: 1802: 1794: 1789: 1781: 1776: 1767: 1766: 1761: 1748: 1727:Type strain of 1707: 1702: 1656: 1655: 1648: 1599:(2): e0149950. 1586: 1585: 1581: 1546:Ecology Letters 1543: 1542: 1533: 1479: 1478: 1471: 1419: 1418: 1414: 1384: 1383: 1376: 1346: 1345: 1336: 1291:Current Biology 1284: 1283: 1276: 1224: 1223: 1216: 1178: 1177: 1168: 1130: 1129: 1125: 1079: 1078: 1074: 1030: 1029: 1025: 971: 970: 959: 921: 920: 901: 870: 869: 865: 813: 812: 805: 777: 776: 759: 755: 670:morphologically 586: 431: 375:cell-free media 265:genome assembly 253: 217:non-flagellated 155:, a species of 138: 135: 129: 116: 34: 17: 12: 11: 5: 1941: 1939: 1931: 1930: 1925: 1915: 1914: 1908: 1907: 1905: 1904: 1891: 1878: 1865: 1852: 1839: 1826: 1813: 1800: 1787: 1774: 1758: 1756: 1750: 1749: 1744: 1738: 1737: 1724: 1706: 1705:External links 1703: 1701: 1700: 1646: 1579: 1531: 1469: 1432:(4): 329–336. 1412: 1374: 1334: 1274: 1237:(4): 745–759. 1214: 1187:(6): 593–607. 1166: 1139:(2): 427–432. 1123: 1072: 1023: 957: 899: 863: 803: 790:(4): 563–565. 756: 754: 751: 585: 584:Host diversity 582: 554:N. vitripennis 503:N. vitripennis 430: 427: 413:for arginine, 292:P. luminescens 261:pyrosequencing 255:The genome of 252: 249: 241:N. vitripennis 213:gram-negative. 183:Morganellaceae 179:Pseudomonadota 140: 139: 136: 125: 124: 118: 117: 110: 108: 104: 103: 96: 92: 91: 89:Morganellaceae 86: 82: 81: 76: 72: 71: 66: 62: 61: 59:Pseudomonadota 56: 52: 51: 46: 42: 41: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 1940: 1929: 1926: 1924: 1921: 1920: 1918: 1901: 1896: 1892: 1888: 1883: 1879: 1875: 1870: 1866: 1862: 1857: 1853: 1849: 1844: 1840: 1836: 1831: 1827: 1823: 1818: 1814: 1810: 1805: 1801: 1797: 1792: 1788: 1784: 1779: 1775: 1770: 1764: 1760: 1759: 1757: 1755: 1751: 1747: 1742: 1736: 1734: 1730: 1725: 1722: 1718: 1717: 1712: 1709: 1708: 1704: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1653: 1651: 1647: 1642: 1638: 1633: 1628: 1624: 1620: 1615: 1610: 1606: 1602: 1598: 1594: 1590: 1583: 1580: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1538: 1536: 1532: 1527: 1523: 1518: 1513: 1509: 1505: 1500: 1495: 1491: 1487: 1483: 1476: 1474: 1470: 1465: 1461: 1456: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1416: 1413: 1408: 1404: 1400: 1396: 1392: 1388: 1381: 1379: 1375: 1370: 1366: 1362: 1358: 1355:(3): 272–80. 1354: 1350: 1343: 1341: 1339: 1335: 1330: 1326: 1321: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1281: 1279: 1275: 1270: 1266: 1261: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1221: 1219: 1215: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1175: 1173: 1171: 1167: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1127: 1124: 1119: 1115: 1110: 1105: 1100: 1095: 1091: 1087: 1083: 1076: 1073: 1068: 1064: 1059: 1054: 1050: 1046: 1043:(4): 745–70. 1042: 1038: 1034: 1027: 1024: 1019: 1015: 1010: 1005: 1001: 997: 992: 987: 983: 979: 975: 968: 966: 964: 962: 958: 953: 949: 945: 941: 937: 933: 929: 925: 918: 916: 914: 912: 910: 908: 906: 904: 900: 895: 891: 887: 883: 879: 875: 867: 864: 859: 855: 850: 845: 841: 837: 833: 829: 825: 821: 817: 810: 808: 804: 798: 793: 789: 785: 781: 774: 772: 770: 768: 766: 764: 762: 758: 752: 750: 748: 744: 740: 736: 734: 729: 725: 721: 720: 714: 709: 707: 703: 699: 695: 691: 687: 683: 679: 675: 671: 667: 666: 661: 660: 655: 651: 647: 645: 641:of the genus 640: 639: 634: 633: 630:of the genus 629: 624: 623: 618: 617: 612: 611: 606: 603:Infection by 601: 599: 595: 591: 583: 581: 579: 575: 570: 567: 563: 559: 555: 551: 547: 543: 539: 535: 530: 528: 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 475: 470: 467: 463: 459: 455: 453: 449: 445: 441: 436: 428: 426: 424: 420: 416: 412: 408: 404: 400: 396: 392: 388: 386: 385: 380: 376: 372: 368: 364: 359: 357: 354: 350: 346: 342: 338: 335: 331: 327: 323: 322: 317: 316: 311: 310: 305: 301: 298: 294: 293: 288: 287: 282: 278: 274: 270: 266: 262: 258: 250: 248: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 198: 194: 190: 189: 184: 180: 176: 173: 169: 165: 161: 158: 154: 153: 148: 147: 134: 132: 126: 123: 122:Binomial name 119: 115: 114: 109: 106: 105: 102: 101: 97: 94: 93: 90: 87: 84: 83: 80: 77: 74: 73: 70: 67: 64: 63: 60: 57: 54: 53: 50: 47: 44: 43: 38: 33: 29: 26: 22: 19: 1753: 1732: 1728: 1714: 1670: 1666: 1662: 1658: 1596: 1592: 1582: 1549: 1545: 1489: 1485: 1429: 1425: 1415: 1393:(3): 371–9. 1390: 1386: 1352: 1348: 1294: 1290: 1234: 1230: 1184: 1180: 1136: 1132: 1126: 1089: 1086:PLOS Biology 1085: 1075: 1040: 1036: 1026: 981: 977: 927: 923: 877: 873: 866: 823: 819: 787: 783: 746: 742: 738: 731: 723: 717: 712: 710: 686:Arsenophonus 685: 677: 663: 657: 653: 649: 644:Muscidifurax 642: 636: 626: 620: 614: 608: 604: 602: 597: 594:Arsenophonus 593: 590:Arsenophonus 589: 587: 573: 571: 565: 557: 553: 550:horizontally 541: 531: 510: 502: 494: 490: 472: 457: 456: 432: 418: 406: 390: 389: 382: 370: 366: 360: 353:monophyletic 349:Arsenophonus 348: 345:basic matrix 341:phylogenetic 330:Type IV pili 321:Photorhabdus 319: 313: 307: 296: 290: 286:P. mirabilis 285: 283:are that of 280: 256: 254: 244: 240: 236: 188:Arsenophonus 186: 185:. The genus 174: 172:flesh flies. 150: 145: 144: 143: 130: 128: 112: 111: 100:Arsenophonus 99: 24: 18: 880:(1): 64–8. 747:P. venustus 743:A. nasoniae 739:P. venustus 724:A. nasoniae 713:A. nasoniae 678:A. nasoniae 654:A. nasoniae 650:A. nasoniae 605:A. nasoniae 598:A. nasoniae 574:A. nasoniae 566:A. nasoniae 558:A. nasoniae 542:A. nasoniae 511:A. nasoniae 495:A. nasoniae 491:A. nasoniae 458:A. nasoniae 419:A. nasoniae 407:A. nasoniae 391:A. nasoniae 371:A. nasoniae 367:A. nasoniae 337:conjugative 297:A. nasoniae 281:A. nasoniae 257:A. nasoniae 245:A. nasoniae 229:filamentous 201:Escherichia 181:and family 175:A. nasoniae 1917:Categories 1092:(3): E69. 984:(1): 143. 753:References 682:triatomine 578:inbreeding 499:centrosome 483:fertilised 466:parasitoid 448:sex-ratios 440:vertically 415:methionine 363:metabolism 304:homologous 269:base pairs 235:The name ' 233:septation. 215:Cells are 211:which are 197:Salmonella 168:houseflies 157:parasitoid 1769:Q16833957 1687:0022-2011 1673:: 24–28. 1623:1932-6203 1566:1461-0248 1508:1471-2180 1446:1080-6040 1311:0960-9822 1251:0016-6731 1000:1471-2180 840:1940-3402 692:species, 690:hard tick 674:symbionts 632:Spalangia 527:sex-ratio 507:organelle 462:parasitic 452:offspring 435:symbiotic 423:Wolbachia 399:histidine 164:blowflies 107:Species: 1848:10550299 1763:Wikidata 1695:29588209 1641:26901622 1593:PLOS ONE 1574:20545734 1526:22375811 1464:10905965 1407:21147118 1329:18804376 1231:Genetics 1209:12062874 1161:41172916 1153:28454877 1118:15024419 1067:15590782 1018:19619300 952:44987264 944:20167019 894:16289111 858:20147035 698:antlions 672:similar 610:Nasoniae 538:stinging 501:in male 471:species 403:arginine 351:forms a 326:plasmids 315:Yersinia 85:Family: 55:Phylum: 49:Bacteria 45:Domain: 1835:3221725 1778:BacDive 1713:at the 1632:4762546 1601:Bibcode 1517:3287507 1455:2640894 1369:4067323 1320:2577321 1269:3988039 1260:1202505 1189:Bibcode 1009:2724383 849:2916733 728:alfalfa 523:embryos 519:somatic 487:haploid 479:diploid 395:proline 309:Proteus 95:Genus: 75:Order: 65:Class: 1900:857269 1861:959501 1822:ARSENA 1809:972732 1731:at Bac 1693:  1685:  1639:  1629:  1621:  1572:  1564:  1524:  1514:  1506:  1462:  1452:  1444:  1405:  1367:  1327:  1317:  1309:  1267:  1257:  1249:  1207:  1159:  1151:  1116:  1109:368164 1106:  1065:  1058:539007 1055:  1016:  1006:  998:  950:  942:  892:  856:  846:  838:  694:aphids 546:larval 223:, non- 221:motile 219:, non- 1843:IRMNG 1796:5W4K4 1205:S2CID 1157:S2CID 948:S2CID 534:pupal 356:clade 225:spore 1882:NCBI 1869:LPSN 1856:ITIS 1830:GBIF 1817:EPPO 1783:4305 1733:Dive 1691:PMID 1683:ISSN 1637:PMID 1619:ISSN 1570:PMID 1562:ISSN 1522:PMID 1504:ISSN 1460:PMID 1442:ISSN 1403:PMID 1365:PMID 1325:PMID 1307:ISSN 1265:PMID 1247:ISSN 1149:PMID 1114:PMID 1063:PMID 1014:PMID 996:ISSN 940:PMID 890:PMID 854:PMID 836:ISSN 824:2009 706:lice 702:bees 662:and 619:and 469:wasp 401:and 302:had 289:and 263:and 199:and 170:and 160:wasp 1887:638 1804:EoL 1791:CoL 1675:doi 1671:154 1627:PMC 1609:doi 1554:doi 1512:PMC 1494:doi 1450:PMC 1434:doi 1395:doi 1391:106 1357:doi 1315:PMC 1299:doi 1255:PMC 1239:doi 1235:109 1197:doi 1141:doi 1137:358 1104:PMC 1094:doi 1053:PMC 1045:doi 1004:PMC 986:doi 932:doi 882:doi 844:PMC 828:doi 792:doi 676:to 450:in 318:or 1919:: 1897:: 1884:: 1871:: 1858:: 1845:: 1832:: 1819:: 1806:: 1793:: 1780:: 1765:: 1689:. 1681:. 1669:. 1649:^ 1635:. 1625:. 1617:. 1607:. 1597:11 1595:. 1591:. 1568:. 1560:. 1550:13 1548:. 1534:^ 1520:. 1510:. 1502:. 1490:12 1488:. 1484:. 1472:^ 1458:. 1448:. 1440:. 1428:. 1424:. 1401:. 1389:. 1377:^ 1363:. 1353:46 1351:. 1337:^ 1323:. 1313:. 1305:. 1295:18 1293:. 1289:. 1277:^ 1263:. 1253:. 1245:. 1233:. 1229:. 1217:^ 1203:. 1195:. 1185:10 1183:. 1169:^ 1155:. 1147:. 1135:. 1112:. 1102:. 1088:. 1084:. 1061:. 1051:. 1041:68 1039:. 1035:. 1012:. 1002:. 994:. 980:. 976:. 960:^ 946:. 938:. 928:19 926:. 902:^ 888:. 878:91 876:. 852:. 842:. 834:. 822:. 818:. 806:^ 788:41 786:. 782:. 760:^ 704:, 700:, 696:, 613:, 564:. 454:. 397:, 365:, 358:. 312:, 207:, 166:, 1697:. 1677:: 1643:. 1611:: 1603:: 1576:. 1556:: 1528:. 1496:: 1466:. 1436:: 1430:6 1409:. 1397:: 1371:. 1359:: 1331:. 1301:: 1271:. 1241:: 1211:. 1199:: 1191:: 1163:. 1143:: 1120:. 1096:: 1090:2 1069:. 1047:: 1020:. 988:: 982:9 954:. 934:: 896:. 884:: 860:. 830:: 800:. 794:: 735:. 646:.

Index

Scientific classification
Edit this classification
Bacteria
Pseudomonadota
Gammaproteobacteria
Enterobacterales
Morganellaceae
Arsenophonus
Binomial name
Nasonia vitripennis
parasitoid
wasp
blowflies
houseflies
flesh flies.
Pseudomonadota
Morganellaceae
Arsenophonus
Proteus (bacterium)
Salmonella
Escherichia
gammaproteobacterial
secondary-endosymbionts
gram-negative.
non-flagellated
motile
spore
filamentous
septation.
pyrosequencing

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.