Knowledge

Buchwald–Hartwig amination

Source 📝

752:(DPPF) as ligands for the Buchwald–Hartwig amination provided the first reliable extension to primary amines and allowed efficient coupling of aryl iodides and triflates. (It is believed that the bidentate ligands prevent formation of the palladium iodide dimer after oxidative addition, speeding up the reaction.) These ligands typically produce the coupled products at higher rates and better yields than the first generation of catalysts. The initial reports of these ligands as catalysts were somewhat unexpected given the mechanistic evidence for monoligated complexes serving as the active catalysts in the first-generation system. In fact, the first examples from both labs were published in the same issue of 655:(Chelating systems have been shown to undergo these two steps in reverse order, with base complexation preceding amide formation.) This key intermediate reductively eliminates to produce the product and regenerate the catalyst. However, a side reaction can occur wherein β-hydride elimination followed by reductive elimination produces the hydrodehalogenated arene and the corresponding imine. Not shown are additional equilibria wherein various intermediates coordinate to additional phosphine ligands at various stages in the catalytic cycle. 496: 369: 733: 628: 891: 801: 766: 857: 1026: 938: 473: 36: 274: 324: 535: 988: 411: 716:) catalyst system was found to be effective for the coupling of both cyclic and acyclic secondary amines bearing both alkyl and aryl functionality (though not diarylamines) with a variety of aryl bromides. In general, these conditions were not able to couple primary amines due to competitive hydrodehalogenation of the arene. 879:
The dramatic increase in activity seen with these ligands is attributed to their propensity to sterically favor the monoligated palladium species at all stages of the catalytic cycle, dramatically increasing the rate of oxidative addition, amide formation, and reductive elimination. Several of these
687:
Although the scope of the Buchwald–Hartwig amination has been expanded to include a wide variety of aryl and amine coupling partners, the conditions required for any particular reactants are still largely substrate dependent. Various ligand systems have been developed, each with varying capabilities
1017:
Enolates and other similar carbon nucleophiles can also be coupled to produce α-aryl ketones, malonates, nitriles, etc. The scope of this transformation is similarly ligand-dependent and a number of systems have been developed. Several enantioselective methods for this process have been developed.
280:
Over the course of its development, several 'generations' of catalyst systems have been developed, with each system allowing greater scope in terms of coupling partners and milder conditions, allowing virtually any amine to be coupled with a wide variety of aryl coupling partners. Because of the
654:
with the μ-halogen dimer. The stability of this dimer decreases in the order of X = I > Br > Cl, and is thought to be responsible for the slow reaction of aryl iodides with the first-generation catalyst system. Amine ligation followed by deprotonation by base produces the palladium amide.
828:
Bulky tri- and di-alkyl phosphine ligands have been shown to be remarkably active catalysts, allowing the coupling of a wide range of amines (primary, secondary, electron withdrawn, heterocyclic, etc.) with aryl chlorides, bromides, iodides, and triflates. Additionally, reactions employing
592:
for this reaction has been demonstrated to proceed through steps similar to those known for palladium catalyzed CC coupling reactions. Steps include oxidative addition of the aryl halide to a Pd(0) species, addition of the amine to the oxidative addition complex, deprotonation followed by
662:
Pd complexes. The Hartwig group found that "reductive elimination can occur from either a four-coordinate bisphosphine or three-coordinate monophosphine arylpalladium amido complex. Eliminations from the three-coordinate compounds are faster. Second, β-hydrogen elimination occurs from a
921:
remains one of the most challenging coupling partners for Buchwald–Hartwig amination reactions, a problem attributed to its tight binding with palladium complexes. Several strategies have been developed to overcome this based on reagents that serve as ammonia equivalents. The use of a
1376:
Hartwig, J.F.; Richards, S.; Barañano, D.; Paul, F. (1996), "Influences on the Relative Rates for C−N Bond-Forming Reductive Elimination and β-Hydrogen Elimination of Amides. A Case Study on the Origins of Competing Reduction in the Palladium-Catalyzed Amination of Aryl Halides",
792:
from these ligands is thought to suppress β-hydride elimination by preventing an open coordination site. In fact, α-chiral amines were found not to racemize when chelating ligands were employed, in contrast to the first-generation catalyst system.
688:
and limitations, and the choice of conditions requires consideration of the steric and electronic properties of both partners. Detailed below are the substrates and conditions for the major generations of ligand systems. (Not included herein are
2085:
Huang, X.; Anderson, K.W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S.L. (2003), "Expanding Pd-Catalyzed C–N Bond-Forming Processes: The First Amidation of Aryl Sulfonates, Aqueous Amination, and Complementarity with Cu-Catalyzed Reactions",
1981:
Hamann, B.C.; Hartwig, J.F. (1998), "Sterically Hindered Chelating Alkyl Phosphines Provide Large Rate Accelerations in Palladium-Catalyzed Amination of Aryl Iodides, Bromides, and Chlorides, and the First Amination of Aryl Tosylates",
2120:
Anderson, K.W.; Tundel, R.E.; Ikawa, T.; Altman, R.A.; Buchwald, S.L. (2006), "Monodentate Phosphines Provide Highly Active Catalysts for Pd-Catalyzed C–N Bond-Forming Reactions of Heteroaromatic Halides/Amines and (H)N-Heterocycles",
663:
three-coordinate intermediate. Therefore, β-hydrogen elimination occurs slowly from arylpalladium complexes containing chelating phosphines while reductive elimination can still occur from these four-coordinate species."
2328:
Mann, G.; Incarvito, C.; Rheingold, A.L.; Hartwig, J.F. (1999), "Palladium-Catalyzed C–O Coupling Involving Unactivated Aryl Halides. Sterically Induced Reductive Elimination To Form the C–O Bond in Diaryl Ethers",
604:
Throughout the development of the reaction the group sought to identify reaction intermediates through fundamental mechanistic studies. These studies have revealed a divergent reaction pathways depending on whether
1186:
Paul,F.; Patt, J.; Hartwig, J.F. (1994), "Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides",
461:. Secondly, the yield for electron rich and electron poor arenes was improved via minor modifications to the reaction procedure (higher catalyst loading, higher temperature, longer reaction time), although no 1835:
Wolfe, J.P.; Wagaw, S.; Buchwald, S.L. (1996), "An Improved Catalyst System for Aromatic Carbon-Nitrogen Bond Formation: The Possible Involvement of Bis(Phosphine) Palladium Complexes as Key Intermediates",
237:
have been credited, whose publications between 1994 and the late 2000s established the scope of the transformation. The reaction's synthetic utility stems primarily from the shortcomings of typical methods
2155:
Ikawa, T.; Barder, T.E.; Biscoe, M.R.; Buchwald, S.L. (2007), "Pd-Catalyzed Amidations of Aryl Chlorides Using Monodentate Biaryl Phosphine Ligands: A Kinetic, Computational, and Synthetic Investigation",
1920:
Old, D.W.; Wolfe, J.P.; Buchwald, S.L. (1998), "A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions: Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides",
297:
The first example of a palladium catalyzed C–N cross-coupling reaction was published in 1983 by Migita and coworkers and described a reaction between several aryl bromides and N,N-diethylamino-tributyl
5727: 2049:
Stambuli, J.P.; Kuwano, R.; Hartwig, J.F. (2002), "Unparalleled Rates for the Activation of Aryl Chlorides and Bromides: Coupling with Amines and Boronic Acids in Minutes at Room Temperature",
1429:
Widenhoefer, R.A.; Buchwald, S.L. (1996), "Halide and Amine Influence in the Equilibrium Formation of Palladium Tris(o-tolyl)phosphine Mono(amine) Complexes from Palladium Aryl Halide Dimers",
1010:
Thiols and thiophenols can be coupled with aryl halides under Buchwald-Hartwig-type conditions to produce the corresponding aryl thioethers. Furthermore, mercaptoesters have been employed as H
391:
These reports were virtually uncited for a decade. In February 1994, Hartwig reported a systematic study of the palladium compounds involved in the original Migita paper, concluding that the
2284:
Vo, G.D.; Hartwig, J.F. (2009), "Palladium-Catalyzed Coupling of Ammonia with Aryl Chlorides, Bromides, Iodides, and Sulfonates: A General Method for the Preparation of Primary Arylamines",
679:
and the industrial preparation of numerous pharmaceuticals. Industrial applications include α-arylation of carbonyl compounds (such as ketones, esters, amides, aldehydes) and nitriles.
1809:
Driver, M.S.; Hartwig, J.F. (1996), "A Second-Generation Catalyst for Aryl Halide Amination: Mixed Secondary Amines from Aryl Halides and Primary Amines Catalyzed by (DPPF)PdCl2",
1403:
Driver, M.S.; Hartwig, J.F. (1995), "A Rare, Low-Valent Alkylamido Complex, a Diphenylamido Complex, and Their Reductive Elimination of Amines by Three-Coordinate Intermediates",
2547: 2216:
Lee, S.; Jorgensen, M.; Hartwig, J.F. (2001), "Palladium-Catalyzed Synthesis of Arylamines from Aryl Halides and Lithium Bis(trimethylsilyl)amide as an Ammonia Equivalent",
4843: 4788: 2190:
Wolfe, J.P.; Ahman, J.; Sadighi, J.P.; Singer, R.A.; Buchwald, S.L. (1997), "An Ammonia Equivalent for the Palladium-Catalyzed Amination of Aryl Halides and Triflates",
597:. An unproductive side reaction can compete with reductive elimination wherein the amide undergoes beta hydride elimination to yield the hydrodehalogenated arene and an 5556: 350:
and James S. Panek reported an example of Pd(0)-mediated C–N bond formation in the context of their work on the synthesis of lavendamycin which utilized stoichiometric
4898: 1246:
Louie,J.; Hartwig, J.F. (1995), "Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents",
2539: 2484:
Liao, X.; Weng, Z.; Hartwig, J.F. (2008), "Enantioselective r-Arylation of Ketones with Aryl Triflates Catalyzed by Difluorphos Complexes of Palladium and Nickel",
519:-free coupling. Though these improved conditions proceeded at a faster rate, the substrate scope was limited almost entirely to secondary amines due to competitive 5048: 3682: 2389:
Heesgaard Jepsen Tue (2011). "Synthesis of Functionalized Dibenzothiophenes - An Efficient Three-Step Approach Based on Pd-Catalyzed C–C and CS Bond Formations".
5777: 5551: 883:
Even electron withdrawn amines and heterocyclic substrates can be coupled under these conditions, despite their tendency to deactivate the palladium catalyst.
4653: 1072:
Forero-Cortés, Paola A.; Haydl, Alexander M. (2 July 2019). "The 25th Anniversary of the Buchwald–Hartwig Amination: Development, Applications, and Outlook".
3377: 4423: 2574: 557:
These results established the so-called "first generation" of Buchwald–Hartwig catalyst systems. The following years saw development of more sophisticated
5223: 3167: 5318: 3422: 1864:
Louie, J.; Driver, M.S.; Hamann, B.C.; Hartwig, J.F. (1997), "Palladium-Catalyzed Amination of Aryl Triflates and Importance of Triflate Addition Rate",
1554:
Wolfe, J.P.; Wagaw, S.; Marcoux, J.F.; Buchwald, S.L. (1998), "Rational Development of Practical Catalysts for Aromatic Carbon-Nitrogen Bond Formation",
256:
tolerance. The development of the Buchwald–Hartwig reaction allowed for the facile synthesis of aryl amines, replacing to an extent harsher methods (the
5298: 4793: 3960: 880:
ligands also seem to enhance the rate of reductive elimination relative to β-hydride elimination via the electron donating arene-palladium interaction.
368: 3841: 3397: 890: 5388: 754: 658:
For chelating ligands, the monophosphine palladium species is not formed; oxidative addition, amide formation and reductive elimination occur from L
5143: 1025: 2610: 1283: 576:
eventually became suitable substrates, and reactions run with weaker bases at room temperature were developed. These advances are detailed in the
3975: 1583:
Hartwig, J.F. (1998), "Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism",
749: 627: 100: 5621: 5078: 5571: 1350:
Driver, M.S.; Hartwig, J.F. (1997), "Carbon−Nitrogen-Bond-Forming Reductive Elimination of Arylamines from Palladium(II) Phosphine Complexes",
72: 5183: 5163: 5123: 3930: 5717: 5642: 5526: 4138: 3542: 2873: 1960: 1596: 1335: 351: 5712: 5541: 5198: 5053: 4683: 2355:
Torraca, K.E.; Huang, X.; Parrish, C.A.; Buchwald, S.L. (2001), "An Efficient Intermolecular Palladium-Catalyzed Synthesis of Aryl Ethers",
188: 4528: 3765: 1132:
Kosugi, M.; Kameyama, M.; Migita, T. (1983), "Palladium-Catalyzed Aromatic Amination of Aryl Bromides With n,n-Di-Ethylamino-Tributyltin",
4888: 4378: 4053: 800: 79: 5792: 5576: 4598: 1947:
Wolfe, J.P.; Buchwald, S.L. (1999), "A Highly Active Catalyst for the Room-Temperature Amination and Suzuki Coupling of Aryl Chlorides",
1764: 5153: 856: 5787: 5501: 5363: 5118: 841:
bases in place of the traditional alkoxide and silylamide bases have been developed. The Buchwald group has developed a wide range of
261: 5677: 5148: 5063: 5033: 5013: 4878: 4873: 4248: 4173: 3816: 3770: 3637: 2898: 937: 503:
In 1995, back to back studies from each lab showed that the couplings could be conducted with free amines in the presence of a bulky
5616: 1158:
Boger, D.L.; Panek, J.S. (1984), "Palladium(0)- mediated -carboline synthesis: Preparation of the CDE ring system of lavendamycin",
119: 86: 5782: 5742: 5692: 5168: 4918: 4848: 3337: 2450:
Hamada, T.; Chieffi, A.; Ahman, J.; Buchwald, S.L. (2002), "An Improved Catalyst for the Asymmetric Arylation of Ketone Enolates",
5378: 4983: 3876: 3597: 1281:
Guram, A.S.; Rennels, R.A.; Buchwald, S.L. (1995), "A Simple Catalytic Method for the Conversion of Aryl Bromides to Arylamines",
650:
For monodentate ligand systems the monophosphine palladium (0) species is believed to form the palladium (II) species which is in
5368: 2908: 613:
phosphine ligands are employed in the reaction, and a number of nuanced influences have been revealed (especially concerning the
433:
In May 1994, Buchwald published an extension of the Migita paper offering two major improvements over the original paper. First,
5536: 5293: 5243: 4033: 3965: 3856: 3432: 3187: 3112: 2893: 5876: 5248: 5058: 4533: 4443: 2567: 1892:
Wagaw, S.; Rennels, R.A.; Buchwald, S.L. (1997), "Palladium-Catalyzed Coupling of Optically Active Amines with Aryl Bromides",
842: 614: 68: 5822: 5606: 5546: 4948: 4923: 4833: 4413: 4293: 3327: 2823: 5707: 5193: 4988: 3257: 1116: 57: 50: 5812: 5398: 4908: 4418: 4363: 4208: 4168: 4000: 3755: 3472: 3322: 1620:
Hartwig, J.F. (2008), "Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides",
323: 5772: 5333: 5288: 4778: 4633: 5807: 5722: 5581: 5496: 5393: 4468: 4123: 3791: 3202: 2763: 5697: 5672: 5657: 5353: 5218: 5173: 4938: 4483: 4333: 3547: 3227: 3172: 5702: 5647: 5178: 4593: 4308: 4303: 3796: 3612: 3602: 3317: 3177: 3127: 3122: 3097: 3003: 5871: 5757: 5358: 5278: 4893: 4858: 4703: 4128: 4088: 3985: 3760: 3512: 3457: 3057: 2768: 2758: 2733: 765: 462: 5732: 5433: 5238: 4673: 4238: 4213: 4153: 3745: 3452: 3102: 1215:
Guram, A.S.; Buchwald, S.L. (1994), "Palladium-Catalyzed Aromatic Aminations with in situ Generated Aminostannanes",
3287: 2010:"Simple, Efficient Catalyst System for the Palladium-Catalyzed Amination of Aryl Chlorides, Bromides, and Triflates" 5023: 4558: 4010: 3232: 3197: 2793: 2728: 2560: 309: 181: 5591: 5213: 4273: 4198: 3722: 3557: 3242: 3018: 2978: 2723: 2545:
Buchwald–Hartwig reaction Precious-Metal catalysts from Acros Organics for coupling reactions in organic synthesis
2530: 1458:
Hartwig, J.F. (1999), "Approaches to catalyst discovery. New carbon-heteroatom and carbon-carbon bond formation",
173: 5832: 5737: 5471: 5443: 5413: 5328: 5258: 5188: 5108: 5008: 4968: 4663: 4283: 3582: 3577: 3039: 2903: 239: 5797: 5667: 5531: 5373: 5233: 4753: 3727: 3277: 3237: 2988: 214: 93: 5687: 5283: 5253: 5128: 5083: 4913: 4823: 4638: 4628: 4458: 4015: 3955: 3920: 3707: 3667: 3442: 3312: 2828: 2818: 2748: 1528:
Hartwig, J.F. (1998), "Carbon-Heteroatom Bond-Forming Reductive Eliminations of Amines, Ethers, and Sulfides",
1494:
Hartwig, J.F. (1997), "Palladium-Catalyzed Amination of Aryl Halides: Mechanism and Rational Catalyst Design",
520: 5263: 4243: 3267: 2813: 2693: 495: 5476: 534: 5881: 5767: 5626: 5418: 5343: 5323: 5043: 4993: 4853: 4818: 4758: 4688: 3990: 3970: 3702: 3622: 3517: 3477: 3447: 3382: 3252: 3162: 3152: 3028: 2738: 2250:
Huang, X.; Buchwald, S.L. (2001), "New Ammonia Equivalents for the Pd-Catalyzed Amination of Aryl Halides",
720: 472: 218: 46: 5506: 5228: 4978: 4958: 4933: 4883: 4798: 4773: 4728: 4698: 4678: 4648: 4613: 4568: 4543: 4518: 4403: 4328: 4108: 3801: 3737: 3537: 3262: 3182: 2868: 2843: 2620: 2615: 2416:
Culkin, D.A.; Hartwig, J.F. (2003), "Palladium-Catalyzed r-Arylation of Carbonyl Compounds and Nitriles",
1711:
Surry, D.S.; Buchwald, S.L. (2011), "Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide",
689: 5842: 4588: 3212: 5428: 5383: 5098: 5068: 5038: 4973: 4953: 4868: 4863: 4828: 4783: 4768: 4763: 4743: 4733: 4668: 4658: 4538: 4058: 3861: 3437: 3392: 3222: 2958: 2678: 2640: 594: 2888: 2883: 5481: 5611: 5561: 5511: 5491: 5338: 5313: 5028: 5018: 4903: 4718: 4713: 4643: 4428: 4228: 4188: 4118: 4083: 4038: 4005: 3871: 3846: 3826: 3647: 3607: 3567: 3532: 3462: 3217: 3087: 3062: 2600: 977: 651: 508: 248: 5827: 5817: 5802: 5448: 5423: 5408: 5403: 5133: 5088: 5073: 4963: 4943: 4838: 4723: 4708: 4553: 4498: 4488: 4478: 4453: 4218: 4093: 4068: 3980: 3836: 3821: 3806: 3662: 3627: 3572: 3342: 3192: 3137: 3008: 2923: 2783: 2708: 1314:
Muci, A.R.; Buchwald, S.L. (2002), "Practical Palladium Catalysts for C–N and C–O Bond Formation",
1248: 1160: 969: 243: 230: 143: 2853: 5566: 5516: 5486: 5348: 5138: 4928: 4813: 4748: 4738: 4503: 4433: 4398: 4393: 4373: 4368: 4313: 4223: 4073: 3935: 3925: 3831: 3617: 3562: 3492: 3412: 3307: 3207: 3142: 3067: 2913: 2778: 2713: 1667:
Surry, D.S.; Buchwald, S.L. (2008), "Biaryl Phosphane Ligands in Palladium-Catalyzed Amination",
1511: 1477: 1089: 987: 923: 589: 400: 2698: 732: 5303: 4623: 4508: 4473: 4438: 4383: 4338: 4298: 4253: 4233: 4183: 4178: 4148: 4133: 4043: 3950: 3886: 3851: 3677: 3552: 3427: 3352: 3332: 3247: 3082: 3077: 3023: 2933: 2838: 2798: 2753: 2635: 2630: 2595: 2511: 2467: 2433: 2372: 2311: 2267: 2233: 2173: 2138: 2103: 2068: 2032: 2009: 1964: 1894: 1838: 1738: 1694: 1647: 1600: 1331: 1217: 1189: 1112: 926:
or silylamide can overcome this limitation, with subsequent hydrolysis furnishing the primary
257: 210: 202: 157: 1761: 580:
section below, and the extension to more complex systems remains an active area of research.
5837: 5682: 5652: 5596: 5521: 5453: 5208: 5158: 5003: 4808: 4583: 4578: 4523: 4513: 4288: 4098: 4078: 4048: 3945: 3881: 3866: 3697: 3652: 3642: 3632: 3527: 3507: 3502: 3487: 3482: 3362: 3357: 3297: 3282: 3272: 3117: 3107: 2973: 2963: 2953: 2863: 2858: 2833: 2773: 2625: 2584: 2501: 2493: 2459: 2425: 2398: 2364: 2338: 2301: 2293: 2259: 2225: 2199: 2165: 2130: 2095: 2058: 2024: 1991: 1956: 1930: 1903: 1875: 1847: 1818: 1792: 1728: 1720: 1684: 1676: 1637: 1629: 1592: 1563: 1537: 1503: 1467: 1438: 1412: 1386: 1359: 1323: 1292: 1257: 1226: 1198: 1169: 1141: 1081: 976:. This serves as a convenient replacement for harsher analogues of this process such as the 675:, the reaction has gained wide use in synthetic organic chemistry, with application in many 504: 313: 285:, the reaction has gained wide use in synthetic organic chemistry, with application in many 253: 5747: 5438: 5273: 5268: 4563: 4548: 4493: 4448: 4408: 4358: 4323: 4318: 4263: 4258: 4193: 4143: 4063: 3891: 3775: 3750: 3712: 3687: 3672: 3657: 3592: 3467: 3417: 3407: 3387: 3347: 3157: 3147: 3132: 2928: 2848: 2673: 2668: 1768: 676: 672: 454: 286: 282: 234: 147: 17: 2718: 2688: 410: 5752: 5662: 5601: 4693: 4603: 4573: 4348: 4203: 3940: 3717: 3587: 3402: 3372: 3072: 2968: 2743: 2605: 2506: 2306: 1781:
Wolfe, J. P.; Buchwald, S. L. (1996), "Palladium-Catalyzed Amination of Aryl Iodides",
1733: 1689: 1642: 789: 724: 610: 434: 2203: 1173: 1014:
S-equivalents in order to generate the thiophenol from the corresponding aryl halide.
727:
only if dioxane was used in place of toluene as a solvent, albeit with modest yields.
5865: 5762: 5463: 5308: 5203: 4998: 4388: 4353: 4343: 4278: 4268: 4158: 3995: 3811: 3522: 3497: 3367: 3013: 2998: 2983: 2878: 2808: 2788: 2703: 1866: 1783: 1515: 1262: 1093: 347: 1481: 4803: 4163: 3915: 3692: 3292: 3092: 2943: 2938: 2803: 2658: 450: 960:
A catalyst system that can directly couple ammonia using a Josiphos-type ligand.
3302: 2948: 2918: 2683: 1961:
10.1002/(sici)1521-3773(19990816)38:16<2413::aid-anie2413>3.0.co;2-h
1597:
10.1002/(sici)1521-3773(19980817)37:15<2046::aid-anie2046>3.0.co;2-l
606: 226: 35: 5586: 5113: 4463: 2552: 693: 273: 1085: 1472: 1327: 846: 838: 834: 830: 558: 516: 392: 2515: 2471: 2437: 2402: 2376: 2315: 2271: 2237: 2177: 2142: 2134: 2107: 2072: 2063: 2036: 1968: 1742: 1698: 1680: 1651: 1604: 1296: 564:
that allowed extension to a larger variety of amines and aryl groups. Aryl
2993: 2663: 701: 697: 573: 569: 2463: 2008:
Wolfe, J.P.; Tomori, H.; Sadighi, J.P.; Yin, J.; Buchwald, S.L. (2000),
1934: 1416: 1230: 1202: 1145: 2653: 1724: 1507: 927: 918: 561: 458: 2497: 2429: 2368: 2342: 2297: 2263: 2229: 2169: 2099: 2028: 1995: 1907: 1879: 1851: 1822: 1796: 1762:
The 2010 Nobel Prize in Chemistry: Palladium-Catalysed Cross-Coupling.
1633: 1567: 1541: 1442: 1390: 1363: 229:. Although Pd-catalyzed C–N couplings were reported as early as 1983, 1053: 1049: 565: 512: 252:
bonds, with most methods suffering from limited substrate scope and
1111:(4th ed.). New York: John Wiley & Sons, Inc. p. 461. 972:
can be coupled with aryl halides to produce the corresponding aryl
399:
was the active catalyst. Proposed was a catalytic cycle involving
1029:
Enolate coupling as an extension of the Buchwald–Hartwig amination
973: 745: 598: 494: 446: 222: 671:
Because of the ubiquity of aryl C–N bonds in pharmaceuticals and
264:, etc.) while significantly expanding the repertoire of possible 1771:
Platinum Metals Rev., 2011, 55, (2) doi:10.1595/147106711X558301
894:
Heteoaryl and amide substrates in the Buchwald–Hartwig amination
3037: 2556: 361:. Attempts to render the reaction catalytic were unsuccessful. 298: 29: 465:-substituted aryl groups were included in this publication. 1024: 986: 936: 889: 855: 799: 764: 723:
variant of this reaction, and importantly, could be coupled
626: 533: 471: 409: 372:
C–N coupling reaction in the total synthesis of lavendamycin
367: 322: 289:
and the industrial preparation of numerous pharmaceuticals.
1107:
Weygand, Conrad (1972). Hilgetag, G.; Martini, A. (eds.).
968:
Under conditions similar to those employed for amination,
719:
Aryl iodides were found to be suitable substrates for the
1048:
Several versions of the reaction employing complexes of
964:
Variations on C–N couplings: C–O, C–S, and C–C couplings
631:
Catalytic cycle for monodentate phosphine ligand systems
1662: 1660: 941:
Ammonia equivalents in the Buchwald–Hartwig amination
453:
allowed extension of the methodology to a variety of
5728:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
1578: 1576: 1453: 1451: 1309: 1307: 1305: 5635: 5462: 5097: 4612: 4107: 4024: 3904: 3784: 3736: 3046: 2538:Ian Mangion MacMillan Group Meeting July 30, 2002 281:ubiquity of aryl C–N bonds in pharmaceuticals and 4789:Divinylcyclopropane-cycloheptadiene rearrangement 308:. Though several aryl bromides were tested, only 1056:rather than palladium have also been developed. 327:Original precedent for Pd-catalyzed C–N coupling 860:Bulky ligands in the Buchwald–Hartwig amination 804:Chiral retention by chelating phosphine ligands 5049:Thermal rearrangement of aromatic hydrocarbons 3683:Thermal rearrangement of aromatic hydrocarbons 1615: 1613: 1109:Weygand/Hilgetag Preparative Organic Chemistry 704:which also have been developed considerably.) 5778:Lectka enantioselective beta-lactam synthesis 2568: 2531:Buchwald–Hartwig Coupling – Recent Literature 8: 5557:Inverse electron-demand Diels–Alder reaction 3378:Heterogeneous metal catalyzed cross-coupling 27:Chemical reaction for synthesizing C–N bonds 4899:Lobry de Bruyn–Van Ekenstein transformation 1276: 1274: 1272: 5459: 3733: 3034: 2575: 2561: 2553: 1241: 1239: 1074:Organic Process Research & Development 515:in the Hartwig publication), allowing for 316:substrates gave good to excellent yields. 131: 5389:Petrenko-Kritschenko piperidone synthesis 4844:Fritsch–Buttenberg–Wiechell rearrangement 2505: 2305: 2062: 1732: 1688: 1641: 1471: 1261: 849:-derived and trialkyl phosphine ligands. 845:, while the Hartwig group has focused on 620:The catalytic cycle proceeds as follows: 120:Learn how and when to remove this message 5552:Intramolecular Diels–Alder cycloaddition 1284:Angewandte Chemie International Edition 1064: 499:Stephen L. Buchwald and John F. Hartwig 5572:Metal-centered cycloaddition reactions 5224:Debus–Radziszewski imidazole synthesis 3168:Bodroux–Chichibabin aldehyde synthesis 457:(both cyclic and acyclic) and primary 246:, etc.) for the synthesis of aromatic 219:palladium-catalyzed coupling reactions 56:Please improve this article by adding 5718:Diazoalkane 1,3-dipolar cycloaddition 5622:Vinylcyclopropane (5+2) cycloaddition 5527:Diazoalkane 1,3-dipolar cycloaddition 5299:Hurd–Mori 1,2,3-thiadiazole synthesis 4794:Dowd–Beckwith ring-expansion reaction 3961:Hurd–Mori 1,2,3-thiadiazole synthesis 2874:LFER solvent coefficients (data page) 2391:European Journal of Organic Chemistry 7: 4529:Sharpless asymmetric dihydroxylation 3766:Methoxymethylenetriphenylphosphorane 1020: 982: 932: 885: 851: 795: 760: 622: 529: 467: 405: 363: 318: 4654:Allen–Millar–Trippett rearrangement 5793:Nitrone-olefin (3+2) cycloaddition 5788:Niementowski quinazoline synthesis 5577:Nitrone-olefin (3+2) cycloaddition 5502:Azide-alkyne Huisgen cycloaddition 5364:Niementowski quinazoline synthesis 5119:Azide-alkyne Huisgen cycloaddition 4424:Meerwein–Ponndorf–Verley reduction 3976:Leimgruber–Batcho indole synthesis 262:nucleophilic aromatic substitution 25: 5617:Trimethylenemethane cycloaddition 5319:Johnson–Corey–Chaykovsky reaction 5184:Cadogan–Sundberg indole synthesis 5164:Bohlmann–Rahtz pyridine synthesis 5124:Baeyer–Emmerling indole synthesis 3931:Cadogan–Sundberg indole synthesis 3423:Johnson–Corey–Chaykovsky reaction 538:1995 Tin-free coupling conditions 5713:Cook–Heilbron thiazole synthesis 5542:Hexadehydro Diels–Alder reaction 5369:Niementowski quinoline synthesis 5199:Cook–Heilbron thiazole synthesis 5144:Bischler–Möhlau indole synthesis 5054:Tiffeneau–Demjanov rearrangement 4684:Baker–Venkataraman rearrangement 3842:Horner–Wadsworth–Emmons reaction 3513:Mizoroki-Heck vs. Reductive Heck 3398:Horner–Wadsworth–Emmons reaction 2909:Neighbouring group participation 731: 708:First-generation catalyst system 272: 34: 5249:Fiesselmann thiophene synthesis 5079:Westphalen–Lettré rearrangement 5059:Vinylcyclopropane rearrangement 4889:Kornblum–DeLaMare rearrangement 4534:Epoxidation of allylic alcohols 4444:Noyori asymmetric hydrogenation 4379:Kornblum–DeLaMare rearrangement 4054:Gallagher–Hollander degradation 1318:, Topics in Current Chemistry, 843:dialkylbiaryl phosphine ligands 615:dialkylbiaryl phosphine ligands 5708:Chichibabin pyridine synthesis 5194:Chichibabin pyridine synthesis 5154:Blum–Ittah aziridine synthesis 4989:Ring expansion and contraction 3258:Cross dehydrogenative coupling 692:ligands and ligands with wide 524: 1: 5678:Bischler–Napieralski reaction 5636:Heterocycle forming reactions 5289:Hemetsberger indole synthesis 5149:Bischler–Napieralski reaction 5064:Wagner–Meerwein rearrangement 5034:Sommelet–Hauser rearrangement 5014:Seyferth–Gilbert homologation 4879:Ireland–Claisen rearrangement 4874:Hofmann–Martius rearrangement 4634:2,3-sigmatropic rearrangement 4249:Corey–Winter olefin synthesis 4174:Barton–McCombie deoxygenation 3817:Corey–Winter olefin synthesis 3771:Seyferth–Gilbert homologation 3638:Seyferth–Gilbert homologation 2204:10.1016/S0040-4039(97)01465-2 1174:10.1016/S0040-4039(01)91001-9 511:in the Buchwald publication, 449:purge to remove the volatile 58:secondary or tertiary sources 5783:Lehmstedt–Tanasescu reaction 5743:Gabriel–Colman rearrangement 5698:Bucherer carbazole synthesis 5693:Borsche–Drechsel cyclization 5673:Bernthsen acridine synthesis 5658:Bamberger triazine synthesis 5643:Algar–Flynn–Oyamada reaction 5354:Nazarov cyclization reaction 5219:De Kimpe aziridine synthesis 5174:Bucherer carbazole synthesis 5169:Borsche–Drechsel cyclization 4939:Nazarov cyclization reaction 4919:Meyer–Schuster rearrangement 4849:Gabriel–Colman rearrangement 4599:Wolffenstein–Böters reaction 4484:Reduction of nitro compounds 4334:Grundmann aldehyde synthesis 4139:Algar–Flynn–Oyamada reaction 3548:Olefin conversion technology 3543:Nozaki–Hiyama–Kishi reaction 3338:Gabriel–Colman rearrangement 3228:Claisen-Schmidt condensation 3173:Bouveault aldehyde synthesis 1263:10.1016/0040-4039(95)00605-C 69:"Buchwald–Hartwig amination" 5758:Hantzsch pyridine synthesis 5537:Enone–alkene cycloadditions 5359:Nenitzescu indole synthesis 5279:Hantzsch pyridine synthesis 5244:Ferrario–Ackermann reaction 4894:Kowalski ester homologation 4859:Halogen dance rearrangement 4704:Benzilic acid rearrangement 4129:Akabori amino-acid reaction 4089:Von Braun amide degradation 4034:Barbier–Wieland degradation 3986:Nenitzescu indole synthesis 3966:Kharasch–Sosnovsky reaction 3857:Julia–Kocienski olefination 3761:Kowalski ester homologation 3458:Kowalski ester homologation 3433:Julia–Kocienski olefination 3188:Cadiot–Chodkiewicz coupling 3113:Aza-Baylis–Hillman reaction 3058:Acetoacetic ester synthesis 2769:Dynamic binding (chemistry) 2759:Conrotatory and disrotatory 2734:Charge remote fragmentation 824:Sterically hindered ligands 740:Bidentate phosphine ligands 135:Buchwald-Hartwig amination 5898: 5823:Robinson–Gabriel synthesis 5773:Kröhnke pyridine synthesis 5607:Retro-Diels–Alder reaction 5547:Imine Diels–Alder reaction 5334:Kröhnke pyridine synthesis 4949:Newman–Kwart rearrangement 4924:Mislow–Evans rearrangement 4834:Fischer–Hepp rearrangement 4779:Di-π-methane rearrangement 4559:Stephen aldehyde synthesis 4294:Eschweiler–Clarke reaction 4011:Williamson ether synthesis 3328:Fujiwara–Moritani reaction 3233:Combes quinoline synthesis 3198:Carbonyl olefin metathesis 2899:More O'Ferrall–Jencks plot 2824:Grunwald–Winstein equation 2794:Electron-withdrawing group 2729:Catalytic resonance theory 2536:Buchwald–Hartwig Chemistry 750:diphenylphosphinoferrocene 746:diphenylphosphinobinapthyl 577: 207:Buchwald–Hartwig amination 18:Buchwald-Hartwig amination 5833:Urech hydantoin synthesis 5813:Pomeranz–Fritsch reaction 5738:Fischer oxazole synthesis 5472:1,3-Dipolar cycloaddition 5444:Urech hydantoin synthesis 5414:Reissert indole synthesis 5399:Pomeranz–Fritsch reaction 5329:Knorr quinoline synthesis 5259:Fischer oxazole synthesis 5189:Camps quinoline synthesis 5109:1,3-Dipolar cycloaddition 5009:Semipinacol rearrangement 4984:Ramberg–Bäcklund reaction 4969:Piancatelli rearrangement 4909:McFadyen–Stevens reaction 4664:Alpha-ketol rearrangement 4419:McFadyen–Stevens reaction 4364:Kiliani–Fischer synthesis 4284:Elbs persulfate oxidation 4209:Bouveault–Blanc reduction 4169:Baeyer–Villiger oxidation 4001:Schotten–Baumann reaction 3877:Ramberg–Bäcklund reaction 3756:Kiliani–Fischer synthesis 3598:Ramberg–Bäcklund reaction 3583:Pinacol coupling reaction 3578:Piancatelli rearrangement 3473:Liebeskind–Srogl coupling 3323:Fujimoto–Belleau reaction 3040:List of organic reactions 2904:Negative hyperconjugation 2649: 2591: 769:Bidentate ligand examples 523:of the bromoarenes. (See 476:Buchwald 1994 publication 240:nucleophilic substitution 195: 174:buchwald-hartwig-reaction 169:Organic Chemistry Portal 163: 134: 5808:Pictet–Spengler reaction 5723:Einhorn–Brunner reaction 5688:Boger pyridine synthesis 5582:Oxo-Diels–Alder reaction 5497:Aza-Diels–Alder reaction 5394:Pictet–Spengler reaction 5294:Hofmann–Löffler reaction 5284:Hegedus indole synthesis 5254:Fischer indole synthesis 5129:Bartoli indole synthesis 5084:Willgerodt rearrangement 4914:McLafferty rearrangement 4824:Ferrier carbocyclization 4639:2,3-Wittig rearrangement 4629:1,2-Wittig rearrangement 4469:Parikh–Doering oxidation 4459:Oxygen rebound mechanism 4124:Adkins–Peterson reaction 4016:Yamaguchi esterification 3956:Hegedus indole synthesis 3921:Bartoli indole synthesis 3792:Bamford–Stevens reaction 3708:Weinreb ketone synthesis 3668:Stork enamine alkylation 3443:Knoevenagel condensation 3313:Ferrier carbocyclization 3203:Castro–Stephens coupling 2829:Hammett acidity function 2819:Free-energy relationship 2764:Curtin–Hammett principle 2749:Conformational isomerism 1086:10.1021/acs.oprd.9b00161 712:The first generation (Pd 617:developed by Buchwald). 5768:Knorr pyrrole synthesis 5703:Bucherer–Bergs reaction 5648:Allan–Robinson reaction 5627:Wagner-Jauregg reaction 5419:Ring-closing metathesis 5344:Larock indole synthesis 5324:Knorr pyrrole synthesis 5179:Bucherer–Bergs reaction 5044:Stieglitz rearrangement 5024:Skattebøl rearrangement 4994:Ring-closing metathesis 4854:Group transfer reaction 4819:Favorskii rearrangement 4759:Cornforth rearrangement 4689:Bamberger rearrangement 4594:Wolff–Kishner reduction 4414:Markó–Lam deoxygenation 4309:Fleming–Tamao oxidation 4304:Fischer–Tropsch process 3991:Oxymercuration reaction 3971:Knorr pyrrole synthesis 3797:Barton–Kellogg reaction 3703:Wagner-Jauregg reaction 3623:Ring-closing metathesis 3613:Reimer–Tiemann reaction 3603:Rauhut–Currier reaction 3518:Nef isocyanide reaction 3478:Malonic ester synthesis 3448:Knorr pyrrole synthesis 3383:High dilution principle 3318:Friedel–Crafts reaction 3253:Cross-coupling reaction 3178:Bucherer–Bergs reaction 3163:Blanc chloromethylation 3153:Blaise ketone synthesis 3128:Baylis–Hillman reaction 3123:Barton–Kellogg reaction 3098:Allan–Robinson reaction 3004:Woodward–Hoffmann rules 2739:Charge-transfer complex 1473:10.1351/pac199971081417 1328:10.1007/3-540-45313-x_5 314:sterically unencumbered 5877:Substitution reactions 5733:Feist–Benary synthesis 5507:Bradsher cycloaddition 5477:4+4 Photocycloaddition 5434:Simmons–Smith reaction 5379:Paternò–Büchi reaction 5239:Feist–Benary synthesis 5229:Dieckmann condensation 4979:Pummerer rearrangement 4959:Oxy-Cope rearrangement 4934:Myers allene synthesis 4884:Jacobsen rearrangement 4799:Electrocyclic reaction 4774:Demjanov rearrangement 4729:Buchner ring expansion 4699:Beckmann rearrangement 4679:Aza-Cope rearrangement 4674:Arndt–Eistert reaction 4649:Alkyne zipper reaction 4569:Transfer hydrogenation 4544:Sharpless oxyamination 4519:Selenoxide elimination 4404:Lombardo methylenation 4329:Griesbaum coozonolysis 4239:Corey–Itsuno reduction 4214:Boyland–Sims oxidation 4154:Angeli–Rimini reaction 3802:Boord olefin synthesis 3746:Arndt–Eistert reaction 3738:Homologation reactions 3538:Nitro-Mannich reaction 3453:Kolbe–Schmitt reaction 3263:Cross-coupling partner 3183:Buchner ring expansion 3103:Arndt–Eistert reaction 2869:Kinetic isotope effect 2616:Rearrangement reaction 2403:10.1002/ejoc.201001393 2135:10.1002/anie.200601612 2064:10.1002/anie.200290036 1681:10.1002/anie.200800497 1297:10.1002/anie.199513481 1030: 992: 942: 895: 861: 805: 770: 690:N-heterocyclic carbene 632: 539: 500: 477: 415: 373: 328: 310:electronically neutral 301:using 1 mol% PdCl 45:relies excessively on 5592:Pauson–Khand reaction 5429:Sharpless epoxidation 5384:Pechmann condensation 5264:Friedländer synthesis 5214:Davis–Beirut reaction 5069:Wallach rearrangement 5039:Stevens rearrangement 4974:Pinacol rearrangement 4954:Overman rearrangement 4869:Hofmann rearrangement 4864:Hayashi rearrangement 4829:Ferrier rearrangement 4784:Dimroth rearrangement 4769:Curtius rearrangement 4764:Criegee rearrangement 4744:Claisen rearrangement 4734:Carroll rearrangement 4669:Amadori rearrangement 4659:Allylic rearrangement 4539:Sharpless epoxidation 4274:Dess–Martin oxidation 4199:Bohn–Schmidt reaction 4059:Hofmann rearrangement 3862:Kauffmann olefination 3785:Olefination reactions 3723:Wurtz–Fittig reaction 3558:Palladium–NHC complex 3438:Kauffmann olefination 3393:Homologation reaction 3243:Corey–House synthesis 3223:Claisen rearrangement 3019:Yukawa–Tsuno equation 2979:Swain–Lupton equation 2959:Spherical aromaticity 2894:Möbius–Hückel concept 2679:Aromatic ring current 2641:Substitution reaction 2123:Angew. Chem. Int. Ed. 2051:Angew. Chem. Int. Ed. 1949:Angew. Chem. Int. Ed. 1669:Angew. Chem. Int. Ed. 1585:Angew. Chem. Int. Ed. 1316:Topics in Curr. Chem. 1028: 990: 940: 893: 859: 803: 768: 630: 595:reductive elimination 537: 498: 475: 413: 403:of the aryl bromide. 371: 326: 215:carbon–nitrogen bonds 213:for the synthesis of 5798:Paal–Knorr synthesis 5668:Barton–Zard reaction 5612:Staudinger synthesis 5562:Ketene cycloaddition 5532:Diels–Alder reaction 5512:Cheletropic reaction 5492:Alkyne trimerisation 5374:Paal–Knorr synthesis 5339:Kulinkovich reaction 5314:Jacobsen epoxidation 5234:Diels–Alder reaction 5029:Smiles rearrangement 5019:Sigmatropic reaction 4904:Lossen rearrangement 4754:Corey–Fuchs reaction 4719:Boekelheide reaction 4714:Bergmann degradation 4644:Achmatowicz reaction 4429:Methionine sulfoxide 4229:Clemmensen reduction 4189:Bergmann degradation 4119:Acyloin condensation 4084:Strecker degradation 4039:Bergmann degradation 4006:Ullmann condensation 3872:Peterson olefination 3847:Hydrazone iodination 3827:Elimination reaction 3728:Zincke–Suhl reaction 3648:Sonogashira coupling 3608:Reformatsky reaction 3568:Peterson olefination 3533:Nierenstein reaction 3463:Kulinkovich reaction 3278:Diels–Alder reaction 3238:Corey–Fuchs reaction 3218:Claisen condensation 3088:Alkyne trimerisation 3063:Acyloin condensation 3029:Σ-bishomoaromaticity 2989:Thorpe–Ingold effect 2601:Elimination reaction 991:Aryl ether synthesis 978:Ullmann condensation 5818:Prilezhaev reaction 5803:Pellizzari reaction 5482:(4+3) cycloaddition 5449:Van Leusen reaction 5424:Robinson annulation 5409:Pschorr cyclization 5404:Prilezhaev reaction 5134:Bergman cyclization 5089:Wolff rearrangement 5074:Weerman degradation 4964:Pericyclic reaction 4944:Neber rearrangement 4839:Fries rearrangement 4724:Brook rearrangement 4709:Bergman cyclization 4554:Staudinger reaction 4499:Rosenmund reduction 4489:Reductive amination 4454:Oppenauer oxidation 4244:Corey–Kim oxidation 4219:Cannizzaro reaction 4094:Weerman degradation 4069:Isosaccharinic acid 3981:Mukaiyama hydration 3837:Hofmann elimination 3822:Dehydrohalogenation 3807:Chugaev elimination 3628:Robinson annulation 3573:Pfitzinger reaction 3343:Gattermann reaction 3288:Wulff–Dötz reaction 3268:Dakin–West reaction 3193:Carbonyl allylation 3138:Bergman cyclization 2924:Kennedy J. P. Orton 2844:Hammond's postulate 2814:Flippin–Lodge angle 2784:Electromeric effect 2709:Beta-silicon effect 2694:Baker–Nathan effect 2363:(43): 10770–10771, 2292:(31): 11049–11061, 2164:(43): 13001–13007, 1760:Thomas J. Colacot. 1417:10.1021/ja00121a030 1249:Tetrahedron Letters 1231:10.1021/ja00096a059 1203:10.1021/ja00092a058 1161:Tetrahedron Letters 1146:10.1246/cl.1983.927 914:Ammonia equivalents 744:The development of 521:hydrodehalogenation 244:reductive amination 231:Stephen L. Buchwald 144:Stephen L. Buchwald 5872:Coupling reactions 5567:McCormack reaction 5517:Conia-ene reaction 5349:Madelung synthesis 5139:Biginelli reaction 4929:Mumm rearrangement 4814:Favorskii reaction 4749:Cope rearrangement 4739:Chan rearrangement 4504:Rubottom oxidation 4434:Miyaura borylation 4399:Lipid peroxidation 4394:Lindgren oxidation 4374:Kornblum oxidation 4369:Kolbe electrolysis 4314:Fukuyama reduction 4224:Carbonyl reduction 4074:Marker degradation 3936:Diazonium compound 3926:Boudouard reaction 3905:Carbon-heteroatom 3832:Grieco elimination 3618:Rieche formylation 3563:Passerini reaction 3493:Meerwein arylation 3413:Hydroxymethylation 3308:Favorskii reaction 3208:Chan rearrangement 3143:Biginelli reaction 3068:Aldol condensation 2914:2-Norbornyl cation 2889:Möbius aromaticity 2884:Markovnikov's rule 2779:Effective molarity 2724:Bürgi–Dunitz angle 2714:Bicycloaromaticity 1767:2020-06-02 at the 1725:10.1039/c0sc00331j 1508:10.1055/s-1997-789 1031: 993: 943: 924:benzophenone imine 896: 862: 806: 771: 633: 590:reaction mechanism 540: 501: 478: 416: 401:oxidative addition 374: 329: 5859: 5858: 5855: 5854: 5851: 5850: 5843:Wohl–Aue reaction 5487:6+4 Cycloaddition 5304:Iodolactonization 4624:1,2-rearrangement 4589:Wohl–Aue reaction 4509:Sabatier reaction 4474:Pinnick oxidation 4439:Mozingo reduction 4384:Leuckart reaction 4339:Haloform reaction 4254:Criegee oxidation 4234:Collins oxidation 4184:Benkeser reaction 4179:Bechamp reduction 4149:Andrussow process 4134:Alcohol oxidation 4044:Edman degradation 3951:Haloform reaction 3900: 3899: 3887:Takai olefination 3852:Julia olefination 3678:Takai olefination 3553:Olefin metathesis 3428:Julia olefination 3353:Grignard reaction 3333:Fukuyama coupling 3248:Coupling reaction 3213:Chan–Lam coupling 3083:Alkyne metathesis 3078:Alkane metathesis 2934:Phosphaethynolate 2839:George S. Hammond 2799:Electronic effect 2754:Conjugated system 2636:Stereospecificity 2631:Stereoselectivity 2596:Addition reaction 2585:organic reactions 2498:10.1021/ja074453g 2486:J. Am. Chem. Soc. 2464:10.1021/ja011122+ 2452:J. Am. Chem. Soc. 2430:10.1021/ar0201106 2369:10.1021/ja016863p 2357:J. Am. Chem. Soc. 2343:10.1021/ja984321a 2331:J. Am. Chem. Soc. 2298:10.1021/ja903049z 2286:J. Am. Chem. Soc. 2264:10.1021/ol0166808 2258:(21): 3417–3419, 2230:10.1021/ol016333y 2224:(17): 2729–2732, 2198:(36): 6367–6370, 2192:Tetrahedron Lett. 2170:10.1021/ja0717414 2158:J. Am. Chem. Soc. 2129:(39): 6523–6527, 2100:10.1021/ja035483w 2094:(22): 6653–6655, 2088:J. Am. Chem. Soc. 2057:(24): 4746–4748, 2029:10.1021/jo991699y 1996:10.1021/ja981318i 1990:(29): 7369–7370, 1984:J. Am. Chem. Soc. 1955:(16): 2413–2416, 1935:10.1021/ja982250+ 1929:(37): 9722–9723, 1923:J. Am. Chem. Soc. 1908:10.1021/ja971583o 1902:(36): 8451–8458, 1895:J. Am. Chem. Soc. 1880:10.1021/jo961930x 1852:10.1021/ja9608306 1839:J. Am. Chem. Soc. 1823:10.1021/ja960937t 1817:(30): 7217–7218, 1811:J. Am. Chem. Soc. 1797:10.1021/jo951844h 1675:(34): 6338–6361, 1634:10.1021/ar800098p 1628:(11): 1534–1544, 1591:(15): 2046–2067, 1568:10.1021/ar9600650 1542:10.1021/ar970282g 1443:10.1021/om9509608 1437:(12): 2755–2763, 1411:(16): 4708–4709, 1405:J. Am. Chem. Soc. 1391:10.1021/ja954121o 1385:(15): 3626–3633, 1379:J. Am. Chem. Soc. 1364:10.1021/ja971057x 1358:(35): 8232–8245, 1352:J. Am. Chem. Soc. 1337:978-3-540-42175-7 1291:(12): 1348–1350, 1256:(21): 3609–3612, 1225:(17): 7901–7902, 1218:J. Am. Chem. Soc. 1197:(13): 5969–5970, 1190:J. Am. Chem. Soc. 1168:(30): 3175–3178, 1134:Chemistry Letters 1046: 1045: 1008: 1007: 958: 957: 911: 910: 877: 876: 821: 820: 786: 785: 648: 647: 555: 554: 493: 492: 431: 430: 389: 388: 344: 343: 268:bond formations. 258:Goldberg reaction 211:chemical reaction 203:organic chemistry 199: 198: 158:Coupling reaction 130: 129: 122: 104: 16:(Redirected from 5889: 5838:Wenker synthesis 5828:Stollé synthesis 5683:Bobbitt reaction 5653:Auwers synthesis 5597:Povarov reaction 5522:Cyclopropanation 5460: 5454:Wenker synthesis 5209:Darzens reaction 5159:Bobbitt reaction 5004:Schmidt reaction 4809:Enyne metathesis 4584:Whiting reaction 4579:Wharton reaction 4524:Shapiro reaction 4514:Sarett oxidation 4479:Prévost reaction 4289:Emde degradation 4099:Wohl degradation 4079:Ruff degradation 4049:Emde degradation 3946:Grignard reagent 3882:Shapiro reaction 3867:McMurry reaction 3734: 3698:Ullmann reaction 3663:Stollé synthesis 3653:Stetter reaction 3643:Shapiro reaction 3633:Sakurai reaction 3528:Negishi coupling 3508:Minisci reaction 3503:Michael reaction 3488:McMurry reaction 3483:Mannich reaction 3363:Hammick reaction 3358:Grignard reagent 3298:Enyne metathesis 3283:Doebner reaction 3273:Darzens reaction 3118:Barbier reaction 3108:Auwers synthesis 3035: 3009:Woodward's rules 2974:Superaromaticity 2964:Spiroaromaticity 2864:Inductive effect 2859:Hyperconjugation 2834:Hammett equation 2774:Edwards equation 2626:Regioselectivity 2577: 2570: 2563: 2554: 2519: 2518: 2509: 2481: 2475: 2474: 2458:(7): 1261–1268, 2447: 2441: 2440: 2413: 2407: 2406: 2386: 2380: 2379: 2352: 2346: 2345: 2325: 2319: 2318: 2309: 2281: 2275: 2274: 2247: 2241: 2240: 2213: 2207: 2206: 2187: 2181: 2180: 2152: 2146: 2145: 2117: 2111: 2110: 2082: 2076: 2075: 2066: 2046: 2040: 2039: 2023:(4): 1158–1174, 2014: 2005: 1999: 1998: 1978: 1972: 1971: 1944: 1938: 1937: 1917: 1911: 1910: 1889: 1883: 1882: 1874:(5): 1268–1273, 1861: 1855: 1854: 1832: 1826: 1825: 1806: 1800: 1799: 1791:(3): 1133–1135, 1778: 1772: 1758: 1752: 1746: 1745: 1736: 1708: 1702: 1701: 1692: 1664: 1655: 1654: 1645: 1617: 1608: 1607: 1580: 1571: 1570: 1551: 1545: 1544: 1525: 1519: 1518: 1491: 1485: 1484: 1475: 1466:(8): 1416–1423, 1460:Pure Appl. Chem. 1455: 1446: 1445: 1426: 1420: 1419: 1400: 1394: 1393: 1373: 1367: 1366: 1347: 1341: 1340: 1311: 1300: 1299: 1278: 1267: 1266: 1265: 1243: 1234: 1233: 1212: 1206: 1205: 1183: 1177: 1176: 1155: 1149: 1148: 1129: 1123: 1122: 1104: 1098: 1097: 1080:(8): 1478–1483. 1069: 1040: 1021: 1002: 983: 952: 933: 905: 886: 871: 852: 815: 796: 780: 761: 735: 725:intermolecularly 673:natural products 642: 623: 549: 530: 487: 468: 455:secondary amines 425: 406: 383: 364: 338: 319: 283:natural products 276: 267: 254:functional group 251: 191: 176: 132: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 5897: 5896: 5892: 5891: 5890: 5888: 5887: 5886: 5862: 5861: 5860: 5847: 5748:Gewald reaction 5631: 5458: 5439:Skraup reaction 5274:Graham reaction 5269:Gewald reaction 5100: 5093: 4615: 4608: 4564:Swern oxidation 4549:Stahl oxidation 4494:Riley oxidation 4449:Omega oxidation 4409:Luche reduction 4359:Jones oxidation 4324:Glycol cleavage 4319:Ganem oxidation 4264:Davis oxidation 4259:Dakin oxidation 4194:Birch reduction 4144:Amide reduction 4110: 4103: 4064:Hooker reaction 4026: 4020: 3908: 3906: 3896: 3892:Wittig reaction 3780: 3776:Wittig reaction 3751:Hooker reaction 3732: 3713:Wittig reaction 3688:Thorpe reaction 3673:Suzuki reaction 3658:Stille reaction 3593:Quelet reaction 3468:Kumada coupling 3418:Ivanov reaction 3408:Hydrovinylation 3388:Hiyama coupling 3348:Glaser coupling 3158:Blaise reaction 3148:Bingel reaction 3133:Benary reaction 3050: 3048: 3042: 3033: 2929:Passive binding 2849:Homoaromaticity 2699:Baldwin's rules 2674:Antiaromaticity 2669:Anomeric effect 2645: 2587: 2581: 2527: 2522: 2483: 2482: 2478: 2449: 2448: 2444: 2418:Acc. Chem. Res. 2415: 2414: 2410: 2388: 2387: 2383: 2354: 2353: 2349: 2327: 2326: 2322: 2283: 2282: 2278: 2249: 2248: 2244: 2215: 2214: 2210: 2189: 2188: 2184: 2154: 2153: 2149: 2119: 2118: 2114: 2084: 2083: 2079: 2048: 2047: 2043: 2012: 2007: 2006: 2002: 1980: 1979: 1975: 1946: 1945: 1941: 1919: 1918: 1914: 1891: 1890: 1886: 1863: 1862: 1858: 1834: 1833: 1829: 1808: 1807: 1803: 1780: 1779: 1775: 1769:Wayback Machine 1759: 1755: 1749: 1710: 1709: 1705: 1666: 1665: 1658: 1622:Acc. Chem. Res. 1619: 1618: 1611: 1582: 1581: 1574: 1556:Acc. Chem. Res. 1553: 1552: 1548: 1530:Acc. Chem. Res. 1527: 1526: 1522: 1493: 1492: 1488: 1457: 1456: 1449: 1431:Organometallics 1428: 1427: 1423: 1402: 1401: 1397: 1375: 1374: 1370: 1349: 1348: 1344: 1338: 1313: 1312: 1303: 1280: 1279: 1270: 1245: 1244: 1237: 1214: 1213: 1209: 1185: 1184: 1180: 1157: 1156: 1152: 1131: 1130: 1126: 1119: 1106: 1105: 1101: 1071: 1070: 1066: 1062: 1038: 1013: 1000: 966: 950: 916: 903: 869: 826: 813: 778: 742: 715: 710: 685: 677:total syntheses 669: 661: 640: 586: 547: 485: 444: 440: 423: 398: 381: 359: 355: 336: 307: 304: 295: 287:total syntheses 265: 247: 235:John F. Hartwig 187: 172: 148:John F. Hartwig 146: 126: 115: 109: 106: 63: 61: 55: 51:primary sources 39: 28: 23: 22: 15: 12: 11: 5: 5895: 5893: 5885: 5884: 5882:Name reactions 5879: 5874: 5864: 5863: 5857: 5856: 5853: 5852: 5849: 5848: 5846: 5845: 5840: 5835: 5830: 5825: 5820: 5815: 5810: 5805: 5800: 5795: 5790: 5785: 5780: 5775: 5770: 5765: 5760: 5755: 5753:Hantzsch ester 5750: 5745: 5740: 5735: 5730: 5725: 5720: 5715: 5710: 5705: 5700: 5695: 5690: 5685: 5680: 5675: 5670: 5665: 5663:Banert cascade 5660: 5655: 5650: 5645: 5639: 5637: 5633: 5632: 5630: 5629: 5624: 5619: 5614: 5609: 5604: 5602:Prato reaction 5599: 5594: 5589: 5584: 5579: 5574: 5569: 5564: 5559: 5554: 5549: 5544: 5539: 5534: 5529: 5524: 5519: 5514: 5509: 5504: 5499: 5494: 5489: 5484: 5479: 5474: 5468: 5466: 5457: 5456: 5451: 5446: 5441: 5436: 5431: 5426: 5421: 5416: 5411: 5406: 5401: 5396: 5391: 5386: 5381: 5376: 5371: 5366: 5361: 5356: 5351: 5346: 5341: 5336: 5331: 5326: 5321: 5316: 5311: 5306: 5301: 5296: 5291: 5286: 5281: 5276: 5271: 5266: 5261: 5256: 5251: 5246: 5241: 5236: 5231: 5226: 5221: 5216: 5211: 5206: 5201: 5196: 5191: 5186: 5181: 5176: 5171: 5166: 5161: 5156: 5151: 5146: 5141: 5136: 5131: 5126: 5121: 5116: 5111: 5105: 5103: 5095: 5094: 5092: 5091: 5086: 5081: 5076: 5071: 5066: 5061: 5056: 5051: 5046: 5041: 5036: 5031: 5026: 5021: 5016: 5011: 5006: 5001: 4996: 4991: 4986: 4981: 4976: 4971: 4966: 4961: 4956: 4951: 4946: 4941: 4936: 4931: 4926: 4921: 4916: 4911: 4906: 4901: 4896: 4891: 4886: 4881: 4876: 4871: 4866: 4861: 4856: 4851: 4846: 4841: 4836: 4831: 4826: 4821: 4816: 4811: 4806: 4801: 4796: 4791: 4786: 4781: 4776: 4771: 4766: 4761: 4756: 4751: 4746: 4741: 4736: 4731: 4726: 4721: 4716: 4711: 4706: 4701: 4696: 4694:Banert cascade 4691: 4686: 4681: 4676: 4671: 4666: 4661: 4656: 4651: 4646: 4641: 4636: 4631: 4626: 4620: 4618: 4614:Rearrangement 4610: 4609: 4607: 4606: 4604:Zinin reaction 4601: 4596: 4591: 4586: 4581: 4576: 4574:Wacker process 4571: 4566: 4561: 4556: 4551: 4546: 4541: 4536: 4531: 4526: 4521: 4516: 4511: 4506: 4501: 4496: 4491: 4486: 4481: 4476: 4471: 4466: 4461: 4456: 4451: 4446: 4441: 4436: 4431: 4426: 4421: 4416: 4411: 4406: 4401: 4396: 4391: 4386: 4381: 4376: 4371: 4366: 4361: 4356: 4351: 4349:Hydrogenolysis 4346: 4341: 4336: 4331: 4326: 4321: 4316: 4311: 4306: 4301: 4299:Étard reaction 4296: 4291: 4286: 4281: 4276: 4271: 4266: 4261: 4256: 4251: 4246: 4241: 4236: 4231: 4226: 4221: 4216: 4211: 4206: 4204:Bosch reaction 4201: 4196: 4191: 4186: 4181: 4176: 4171: 4166: 4161: 4156: 4151: 4146: 4141: 4136: 4131: 4126: 4121: 4115: 4113: 4109:Organic redox 4105: 4104: 4102: 4101: 4096: 4091: 4086: 4081: 4076: 4071: 4066: 4061: 4056: 4051: 4046: 4041: 4036: 4030: 4028: 4022: 4021: 4019: 4018: 4013: 4008: 4003: 3998: 3993: 3988: 3983: 3978: 3973: 3968: 3963: 3958: 3953: 3948: 3943: 3941:Esterification 3938: 3933: 3928: 3923: 3918: 3912: 3910: 3902: 3901: 3898: 3897: 3895: 3894: 3889: 3884: 3879: 3874: 3869: 3864: 3859: 3854: 3849: 3844: 3839: 3834: 3829: 3824: 3819: 3814: 3809: 3804: 3799: 3794: 3788: 3786: 3782: 3781: 3779: 3778: 3773: 3768: 3763: 3758: 3753: 3748: 3742: 3740: 3731: 3730: 3725: 3720: 3718:Wurtz reaction 3715: 3710: 3705: 3700: 3695: 3690: 3685: 3680: 3675: 3670: 3665: 3660: 3655: 3650: 3645: 3640: 3635: 3630: 3625: 3620: 3615: 3610: 3605: 3600: 3595: 3590: 3588:Prins reaction 3585: 3580: 3575: 3570: 3565: 3560: 3555: 3550: 3545: 3540: 3535: 3530: 3525: 3520: 3515: 3510: 3505: 3500: 3495: 3490: 3485: 3480: 3475: 3470: 3465: 3460: 3455: 3450: 3445: 3440: 3435: 3430: 3425: 3420: 3415: 3410: 3405: 3403:Hydrocyanation 3400: 3395: 3390: 3385: 3380: 3375: 3373:Henry reaction 3370: 3365: 3360: 3355: 3350: 3345: 3340: 3335: 3330: 3325: 3320: 3315: 3310: 3305: 3300: 3295: 3290: 3285: 3280: 3275: 3270: 3265: 3260: 3255: 3250: 3245: 3240: 3235: 3230: 3225: 3220: 3215: 3210: 3205: 3200: 3195: 3190: 3185: 3180: 3175: 3170: 3165: 3160: 3155: 3150: 3145: 3140: 3135: 3130: 3125: 3120: 3115: 3110: 3105: 3100: 3095: 3090: 3085: 3080: 3075: 3073:Aldol reaction 3070: 3065: 3060: 3054: 3052: 3047:Carbon-carbon 3044: 3043: 3038: 3032: 3031: 3026: 3024:Zaitsev's rule 3021: 3016: 3011: 3006: 3001: 2996: 2991: 2986: 2981: 2976: 2971: 2969:Steric effects 2966: 2961: 2956: 2951: 2946: 2941: 2936: 2931: 2926: 2921: 2916: 2911: 2906: 2901: 2896: 2891: 2886: 2881: 2876: 2871: 2866: 2861: 2856: 2851: 2846: 2841: 2836: 2831: 2826: 2821: 2816: 2811: 2806: 2801: 2796: 2791: 2786: 2781: 2776: 2771: 2766: 2761: 2756: 2751: 2746: 2741: 2736: 2731: 2726: 2721: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2650: 2647: 2646: 2644: 2643: 2638: 2633: 2628: 2623: 2621:Redox reaction 2618: 2613: 2608: 2606:Polymerization 2603: 2598: 2592: 2589: 2588: 2582: 2580: 2579: 2572: 2565: 2557: 2551: 2550: 2542: 2533: 2526: 2525:External links 2523: 2521: 2520: 2492:(1): 195–200, 2476: 2442: 2424:(4): 234–245, 2408: 2381: 2347: 2320: 2276: 2242: 2208: 2182: 2147: 2112: 2077: 2041: 2000: 1973: 1939: 1912: 1884: 1856: 1827: 1801: 1773: 1753: 1747: 1703: 1656: 1609: 1572: 1546: 1520: 1502:(4): 329–340, 1486: 1447: 1421: 1395: 1368: 1342: 1336: 1301: 1268: 1235: 1207: 1178: 1150: 1140:(6): 927–928, 1124: 1117: 1099: 1063: 1061: 1058: 1044: 1043: 1034: 1032: 1011: 1006: 1005: 996: 994: 965: 962: 956: 955: 946: 944: 915: 912: 909: 908: 899: 897: 875: 874: 865: 863: 825: 822: 819: 818: 809: 807: 784: 783: 774: 772: 741: 738: 737: 736: 721:intramolecular 713: 709: 706: 684: 681: 668: 665: 659: 646: 645: 636: 634: 585: 582: 553: 552: 543: 541: 491: 490: 481: 479: 442: 438: 435:transamination 429: 428: 419: 417: 396: 387: 386: 377: 375: 357: 353: 342: 341: 332: 330: 305: 302: 294: 291: 278: 277: 197: 196: 193: 192: 185: 178: 177: 170: 166: 165: 161: 160: 155: 154:Reaction type 151: 150: 141: 137: 136: 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5894: 5883: 5880: 5878: 5875: 5873: 5870: 5869: 5867: 5844: 5841: 5839: 5836: 5834: 5831: 5829: 5826: 5824: 5821: 5819: 5816: 5814: 5811: 5809: 5806: 5804: 5801: 5799: 5796: 5794: 5791: 5789: 5786: 5784: 5781: 5779: 5776: 5774: 5771: 5769: 5766: 5764: 5763:Herz reaction 5761: 5759: 5756: 5754: 5751: 5749: 5746: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5724: 5721: 5719: 5716: 5714: 5711: 5709: 5706: 5704: 5701: 5699: 5696: 5694: 5691: 5689: 5686: 5684: 5681: 5679: 5676: 5674: 5671: 5669: 5666: 5664: 5661: 5659: 5656: 5654: 5651: 5649: 5646: 5644: 5641: 5640: 5638: 5634: 5628: 5625: 5623: 5620: 5618: 5615: 5613: 5610: 5608: 5605: 5603: 5600: 5598: 5595: 5593: 5590: 5588: 5585: 5583: 5580: 5578: 5575: 5573: 5570: 5568: 5565: 5563: 5560: 5558: 5555: 5553: 5550: 5548: 5545: 5543: 5540: 5538: 5535: 5533: 5530: 5528: 5525: 5523: 5520: 5518: 5515: 5513: 5510: 5508: 5505: 5503: 5500: 5498: 5495: 5493: 5490: 5488: 5485: 5483: 5480: 5478: 5475: 5473: 5470: 5469: 5467: 5465: 5464:Cycloaddition 5461: 5455: 5452: 5450: 5447: 5445: 5442: 5440: 5437: 5435: 5432: 5430: 5427: 5425: 5422: 5420: 5417: 5415: 5412: 5410: 5407: 5405: 5402: 5400: 5397: 5395: 5392: 5390: 5387: 5385: 5382: 5380: 5377: 5375: 5372: 5370: 5367: 5365: 5362: 5360: 5357: 5355: 5352: 5350: 5347: 5345: 5342: 5340: 5337: 5335: 5332: 5330: 5327: 5325: 5322: 5320: 5317: 5315: 5312: 5310: 5309:Isay reaction 5307: 5305: 5302: 5300: 5297: 5295: 5292: 5290: 5287: 5285: 5282: 5280: 5277: 5275: 5272: 5270: 5267: 5265: 5262: 5260: 5257: 5255: 5252: 5250: 5247: 5245: 5242: 5240: 5237: 5235: 5232: 5230: 5227: 5225: 5222: 5220: 5217: 5215: 5212: 5210: 5207: 5205: 5204:Cycloaddition 5202: 5200: 5197: 5195: 5192: 5190: 5187: 5185: 5182: 5180: 5177: 5175: 5172: 5170: 5167: 5165: 5162: 5160: 5157: 5155: 5152: 5150: 5147: 5145: 5142: 5140: 5137: 5135: 5132: 5130: 5127: 5125: 5122: 5120: 5117: 5115: 5112: 5110: 5107: 5106: 5104: 5102: 5099:Ring forming 5096: 5090: 5087: 5085: 5082: 5080: 5077: 5075: 5072: 5070: 5067: 5065: 5062: 5060: 5057: 5055: 5052: 5050: 5047: 5045: 5042: 5040: 5037: 5035: 5032: 5030: 5027: 5025: 5022: 5020: 5017: 5015: 5012: 5010: 5007: 5005: 5002: 5000: 4999:Rupe reaction 4997: 4995: 4992: 4990: 4987: 4985: 4982: 4980: 4977: 4975: 4972: 4970: 4967: 4965: 4962: 4960: 4957: 4955: 4952: 4950: 4947: 4945: 4942: 4940: 4937: 4935: 4932: 4930: 4927: 4925: 4922: 4920: 4917: 4915: 4912: 4910: 4907: 4905: 4902: 4900: 4897: 4895: 4892: 4890: 4887: 4885: 4882: 4880: 4877: 4875: 4872: 4870: 4867: 4865: 4862: 4860: 4857: 4855: 4852: 4850: 4847: 4845: 4842: 4840: 4837: 4835: 4832: 4830: 4827: 4825: 4822: 4820: 4817: 4815: 4812: 4810: 4807: 4805: 4802: 4800: 4797: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4750: 4747: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4715: 4712: 4710: 4707: 4705: 4702: 4700: 4697: 4695: 4692: 4690: 4687: 4685: 4682: 4680: 4677: 4675: 4672: 4670: 4667: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4635: 4632: 4630: 4627: 4625: 4622: 4621: 4619: 4617: 4611: 4605: 4602: 4600: 4597: 4595: 4592: 4590: 4587: 4585: 4582: 4580: 4577: 4575: 4572: 4570: 4567: 4565: 4562: 4560: 4557: 4555: 4552: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4525: 4522: 4520: 4517: 4515: 4512: 4510: 4507: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4485: 4482: 4480: 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4460: 4457: 4455: 4452: 4450: 4447: 4445: 4442: 4440: 4437: 4435: 4432: 4430: 4427: 4425: 4422: 4420: 4417: 4415: 4412: 4410: 4407: 4405: 4402: 4400: 4397: 4395: 4392: 4390: 4389:Ley oxidation 4387: 4385: 4382: 4380: 4377: 4375: 4372: 4370: 4367: 4365: 4362: 4360: 4357: 4355: 4354:Hydroxylation 4352: 4350: 4347: 4345: 4344:Hydrogenation 4342: 4340: 4337: 4335: 4332: 4330: 4327: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4279:DNA oxidation 4277: 4275: 4272: 4270: 4269:Deoxygenation 4267: 4265: 4262: 4260: 4257: 4255: 4252: 4250: 4247: 4245: 4242: 4240: 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4220: 4217: 4215: 4212: 4210: 4207: 4205: 4202: 4200: 4197: 4195: 4192: 4190: 4187: 4185: 4182: 4180: 4177: 4175: 4172: 4170: 4167: 4165: 4162: 4160: 4159:Aromatization 4157: 4155: 4152: 4150: 4147: 4145: 4142: 4140: 4137: 4135: 4132: 4130: 4127: 4125: 4122: 4120: 4117: 4116: 4114: 4112: 4106: 4100: 4097: 4095: 4092: 4090: 4087: 4085: 4082: 4080: 4077: 4075: 4072: 4070: 4067: 4065: 4062: 4060: 4057: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4031: 4029: 4023: 4017: 4014: 4012: 4009: 4007: 4004: 4002: 3999: 3997: 3996:Reed reaction 3994: 3992: 3989: 3987: 3984: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3937: 3934: 3932: 3929: 3927: 3924: 3922: 3919: 3917: 3914: 3913: 3911: 3907:bond forming 3903: 3893: 3890: 3888: 3885: 3883: 3880: 3878: 3875: 3873: 3870: 3868: 3865: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3845: 3843: 3840: 3838: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3812:Cope reaction 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3789: 3787: 3783: 3777: 3774: 3772: 3769: 3767: 3764: 3762: 3759: 3757: 3754: 3752: 3749: 3747: 3744: 3743: 3741: 3739: 3735: 3729: 3726: 3724: 3721: 3719: 3716: 3714: 3711: 3709: 3706: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3619: 3616: 3614: 3611: 3609: 3606: 3604: 3601: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3529: 3526: 3524: 3523:Nef synthesis 3521: 3519: 3516: 3514: 3511: 3509: 3506: 3504: 3501: 3499: 3498:Methylenation 3496: 3494: 3491: 3489: 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3454: 3451: 3449: 3446: 3444: 3441: 3439: 3436: 3434: 3431: 3429: 3426: 3424: 3421: 3419: 3416: 3414: 3411: 3409: 3406: 3404: 3401: 3399: 3396: 3394: 3391: 3389: 3386: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3368:Heck reaction 3366: 3364: 3361: 3359: 3356: 3354: 3351: 3349: 3346: 3344: 3341: 3339: 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3319: 3316: 3314: 3311: 3309: 3306: 3304: 3301: 3299: 3296: 3294: 3291: 3289: 3286: 3284: 3281: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3231: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3211: 3209: 3206: 3204: 3201: 3199: 3196: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3149: 3146: 3144: 3141: 3139: 3136: 3134: 3131: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3055: 3053: 3049:bond forming 3045: 3041: 3036: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3014:Y-aromaticity 3012: 3010: 3007: 3005: 3002: 3000: 2999:Walsh diagram 2997: 2995: 2992: 2990: 2987: 2985: 2984:Taft equation 2982: 2980: 2977: 2975: 2972: 2970: 2967: 2965: 2962: 2960: 2957: 2955: 2954:Σ-aromaticity 2952: 2950: 2947: 2945: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2882: 2880: 2879:Marcus theory 2877: 2875: 2872: 2870: 2867: 2865: 2862: 2860: 2857: 2855: 2854:Hückel's rule 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2830: 2827: 2825: 2822: 2820: 2817: 2815: 2812: 2810: 2809:Evelyn effect 2807: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2789:Electron-rich 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2755: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2715: 2712: 2710: 2707: 2705: 2704:Bema Hapothle 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2651: 2648: 2642: 2639: 2637: 2634: 2632: 2629: 2627: 2624: 2622: 2619: 2617: 2614: 2612: 2609: 2607: 2604: 2602: 2599: 2597: 2594: 2593: 2590: 2586: 2578: 2573: 2571: 2566: 2564: 2559: 2558: 2555: 2549: 2546: 2543: 2541: 2537: 2534: 2532: 2529: 2528: 2524: 2517: 2513: 2508: 2503: 2499: 2495: 2491: 2487: 2480: 2477: 2473: 2469: 2465: 2461: 2457: 2453: 2446: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2412: 2409: 2404: 2400: 2396: 2392: 2385: 2382: 2378: 2374: 2370: 2366: 2362: 2358: 2351: 2348: 2344: 2340: 2337:: 3224–3225, 2336: 2332: 2324: 2321: 2317: 2313: 2308: 2303: 2299: 2295: 2291: 2287: 2280: 2277: 2273: 2269: 2265: 2261: 2257: 2253: 2246: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2212: 2209: 2205: 2201: 2197: 2193: 2186: 2183: 2179: 2175: 2171: 2167: 2163: 2159: 2151: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2116: 2113: 2109: 2105: 2101: 2097: 2093: 2089: 2081: 2078: 2074: 2070: 2065: 2060: 2056: 2052: 2045: 2042: 2038: 2034: 2030: 2026: 2022: 2018: 2017:J. Org. Chem. 2011: 2004: 2001: 1997: 1993: 1989: 1985: 1977: 1974: 1970: 1966: 1962: 1958: 1954: 1950: 1943: 1940: 1936: 1932: 1928: 1924: 1916: 1913: 1909: 1905: 1901: 1897: 1896: 1888: 1885: 1881: 1877: 1873: 1869: 1868: 1867:J. Org. Chem. 1860: 1857: 1853: 1849: 1846:: 7215–7216, 1845: 1841: 1840: 1831: 1828: 1824: 1820: 1816: 1812: 1805: 1802: 1798: 1794: 1790: 1786: 1785: 1784:J. Org. Chem. 1777: 1774: 1770: 1766: 1763: 1757: 1754: 1751: 1748: 1744: 1740: 1735: 1730: 1726: 1722: 1718: 1714: 1707: 1704: 1700: 1696: 1691: 1686: 1682: 1678: 1674: 1670: 1663: 1661: 1657: 1653: 1649: 1644: 1639: 1635: 1631: 1627: 1623: 1616: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1579: 1577: 1573: 1569: 1565: 1561: 1557: 1550: 1547: 1543: 1539: 1535: 1531: 1524: 1521: 1517: 1513: 1509: 1505: 1501: 1497: 1490: 1487: 1483: 1479: 1474: 1469: 1465: 1461: 1454: 1452: 1448: 1444: 1440: 1436: 1432: 1425: 1422: 1418: 1414: 1410: 1406: 1399: 1396: 1392: 1388: 1384: 1380: 1372: 1369: 1365: 1361: 1357: 1353: 1346: 1343: 1339: 1333: 1329: 1325: 1321: 1317: 1310: 1308: 1306: 1302: 1298: 1294: 1290: 1286: 1285: 1277: 1275: 1273: 1269: 1264: 1259: 1255: 1251: 1250: 1242: 1240: 1236: 1232: 1228: 1224: 1220: 1219: 1211: 1208: 1204: 1200: 1196: 1192: 1191: 1182: 1179: 1175: 1171: 1167: 1163: 1162: 1154: 1151: 1147: 1143: 1139: 1135: 1128: 1125: 1120: 1114: 1110: 1103: 1100: 1095: 1091: 1087: 1083: 1079: 1075: 1068: 1065: 1059: 1057: 1055: 1051: 1042: 1035: 1033: 1027: 1023: 1022: 1019: 1015: 1004: 997: 995: 989: 985: 984: 981: 979: 975: 971: 963: 961: 954: 947: 945: 939: 935: 934: 931: 929: 925: 920: 913: 907: 900: 898: 892: 888: 887: 884: 881: 873: 866: 864: 858: 854: 853: 850: 848: 844: 840: 836: 832: 823: 817: 810: 808: 802: 798: 797: 794: 791: 782: 775: 773: 767: 763: 762: 759: 757: 756: 751: 747: 739: 734: 730: 729: 728: 726: 722: 717: 707: 705: 703: 699: 695: 691: 682: 680: 678: 674: 666: 664: 656: 653: 644: 637: 635: 629: 625: 624: 621: 618: 616: 612: 608: 602: 600: 596: 591: 583: 581: 579: 575: 571: 567: 563: 560: 551: 544: 542: 536: 532: 531: 528: 526: 522: 518: 514: 510: 506: 497: 489: 482: 480: 474: 470: 469: 466: 464: 460: 456: 452: 448: 436: 427: 420: 418: 412: 408: 407: 404: 402: 394: 385: 378: 376: 370: 366: 365: 362: 360: 349: 348:Dale L. Boger 340: 333: 331: 325: 321: 320: 317: 315: 311: 300: 292: 290: 288: 284: 275: 271: 270: 269: 263: 259: 255: 250: 245: 241: 236: 232: 228: 224: 220: 216: 212: 208: 204: 194: 190: 186: 183: 180: 179: 175: 171: 168: 167: 162: 159: 156: 153: 152: 149: 145: 142: 139: 138: 133: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 53: 52: 48: 43:This article 41: 37: 32: 31: 19: 4804:Ene reaction 4164:Autoxidation 4025:Degradation 3916:Azo coupling 3693:Ugi reaction 3293:Ene reaction 3093:Alkynylation 2944:Polyfluorene 2939:Polar effect 2804:Electrophile 2719:Bredt's rule 2689:Baird's rule 2659:Alpha effect 2544: 2535: 2489: 2485: 2479: 2455: 2451: 2445: 2421: 2417: 2411: 2394: 2390: 2384: 2360: 2356: 2350: 2334: 2330: 2323: 2289: 2285: 2279: 2255: 2251: 2245: 2221: 2217: 2211: 2195: 2191: 2185: 2161: 2157: 2150: 2126: 2122: 2115: 2091: 2087: 2080: 2054: 2050: 2044: 2020: 2016: 2003: 1987: 1983: 1976: 1952: 1948: 1942: 1926: 1922: 1915: 1899: 1893: 1887: 1871: 1865: 1859: 1843: 1837: 1830: 1814: 1810: 1804: 1788: 1782: 1776: 1756: 1750: 1719:(1): 27–50, 1716: 1712: 1706: 1672: 1668: 1625: 1621: 1588: 1584: 1559: 1555: 1549: 1533: 1529: 1523: 1499: 1495: 1489: 1463: 1459: 1434: 1430: 1424: 1408: 1404: 1398: 1382: 1378: 1371: 1355: 1351: 1345: 1319: 1315: 1288: 1282: 1253: 1247: 1222: 1216: 1210: 1194: 1188: 1181: 1165: 1159: 1153: 1137: 1133: 1127: 1108: 1102: 1077: 1073: 1067: 1047: 1036: 1016: 1009: 998: 967: 959: 948: 917: 901: 882: 878: 867: 827: 811: 787: 776: 753: 748:(BINAP) and 743: 718: 711: 686: 670: 657: 649: 638: 619: 603: 587: 556: 545: 502: 483: 451:diethylamine 445:followed by 432: 421: 414:hartwig 1994 390: 379: 345: 334: 296: 279: 227:aryl halides 206: 200: 189:RXNO:0000192 184:ontology ID 164:Identifiers 140:Named after 116: 107: 97: 90: 83: 76: 64: 44: 3303:Ethenolysis 2949:Ring strain 2919:Nucleophile 2744:Clar's rule 2684:Aromaticity 1562:: 805–818, 1536:: 852–860, 1322:: 131–209, 694:bite angles 667:Application 652:equilibrium 607:monodentate 110:August 2016 5866:Categories 5587:Ozonolysis 5114:Annulation 4464:Ozonolysis 2583:Topics in 2252:Org. Lett. 2218:Org. Lett. 1713:Chem. Sci. 1118:0471937495 1060:References 395:complex Pd 80:newspapers 47:references 5101:reactions 4616:reactions 4111:reactions 4027:reactions 3909:reactions 3051:reactions 2397:: 53–57. 1516:196704196 1094:198366762 847:ferrocene 839:phosphate 835:carbonate 831:hydroxide 790:chelation 611:chelating 601:product. 584:Mechanism 574:triflates 570:chlorides 559:phosphine 525:Mechanism 517:organotin 346:In 1984, 2994:Vinylogy 2664:Annulene 2611:Reagents 2516:18076166 2472:11841295 2438:12693921 2377:11674023 2316:19591470 2272:11594848 2238:11506620 2178:17918833 2143:16955526 2108:12769573 2073:12481346 2037:10814067 1969:10458806 1765:Archived 1743:22432049 1699:18663711 1652:18681463 1605:29711045 1482:34700080 970:alcohols 702:Spanphos 698:Xantphos 696:such as 459:anilines 217:via the 2654:A value 2507:2551326 2307:2823124 1734:3306613 1690:3517088 1643:2819174 1496:Synlett 928:aniline 919:Ammonia 566:iodides 562:ligands 527:below) 293:History 94:scholar 2514:  2504:  2470:  2436:  2375:  2314:  2304:  2270:  2236:  2176:  2141:  2106:  2071:  2035:  1967:  1741:  1731:  1697:  1687:  1650:  1640:  1603:  1514:  1480:  1334:  1115:  1092:  1054:nickel 1050:copper 974:ethers 837:, and 572:, and 513:LiHMDS 509:NaOtBu 352:Pd(PPh 223:amines 205:, the 96:  89:  82:  75:  67:  2013:(PDF) 1512:S2CID 1478:S2CID 1090:S2CID 1039:Eq.14 1001:Eq.13 951:Eq.12 904:Eq.11 870:Eq.10 683:Scope 599:imine 578:Scope 463:ortho 447:argon 441:SnNEt 437:of Bu 225:with 209:is a 101:JSTOR 87:books 2548:Link 2540:Link 2512:PMID 2468:PMID 2434:PMID 2395:2011 2373:PMID 2312:PMID 2268:PMID 2234:PMID 2174:PMID 2139:PMID 2104:PMID 2069:PMID 2033:PMID 1965:PMID 1739:PMID 1695:PMID 1648:PMID 1601:PMID 1500:1997 1332:ISBN 1113:ISBN 1052:and 814:Eq.9 788:The 779:Eq.8 755:JACS 700:and 641:Eq.7 588:The 548:Eq.6 505:base 486:Eq.5 424:Eq.4 382:Eq.3 337:Eq.2 233:and 73:news 2502:PMC 2494:doi 2490:130 2460:doi 2456:124 2426:doi 2399:doi 2365:doi 2361:123 2339:doi 2335:121 2302:PMC 2294:doi 2290:131 2260:doi 2226:doi 2200:doi 2166:doi 2162:129 2131:doi 2096:doi 2092:125 2059:doi 2025:doi 1992:doi 1988:120 1957:doi 1931:doi 1927:120 1904:doi 1900:119 1876:doi 1848:doi 1844:118 1819:doi 1815:118 1793:doi 1729:PMC 1721:doi 1685:PMC 1677:doi 1638:PMC 1630:doi 1593:doi 1564:doi 1538:doi 1504:doi 1468:doi 1439:doi 1413:doi 1409:117 1387:doi 1383:118 1360:doi 1356:119 1324:doi 1320:219 1293:doi 1258:doi 1227:doi 1223:116 1199:doi 1195:116 1170:doi 1142:doi 1082:doi 609:or 299:tin 266:C−N 249:C−N 221:of 201:In 182:RSC 49:to 5868:: 2510:, 2500:, 2488:, 2466:, 2454:, 2432:, 2422:36 2420:, 2393:. 2371:, 2359:, 2333:, 2310:, 2300:, 2288:, 2266:, 2254:, 2232:, 2220:, 2196:38 2194:, 2172:, 2160:, 2137:, 2127:45 2125:, 2102:, 2090:, 2067:, 2055:41 2053:, 2031:, 2021:65 2019:, 2015:, 1986:, 1963:, 1953:38 1951:, 1925:, 1898:, 1872:62 1870:, 1842:, 1813:, 1789:61 1787:, 1737:, 1727:, 1715:, 1693:, 1683:, 1673:47 1671:, 1659:^ 1646:, 1636:, 1626:41 1624:, 1612:^ 1599:, 1589:37 1587:, 1575:^ 1560:31 1558:, 1534:31 1532:, 1510:, 1498:, 1476:, 1464:71 1462:, 1450:^ 1435:15 1433:, 1407:, 1381:, 1354:, 1330:, 1304:^ 1289:34 1287:, 1271:^ 1254:36 1252:, 1238:^ 1221:, 1193:, 1166:25 1164:, 1138:12 1136:, 1088:. 1078:23 1076:. 980:. 930:. 833:, 758:. 568:, 312:, 260:, 242:, 60:. 2576:e 2569:t 2562:v 2496:: 2462:: 2428:: 2405:. 2401:: 2367:: 2341:: 2296:: 2262:: 2256:3 2228:: 2222:3 2202:: 2168:: 2133:: 2098:: 2061:: 2027:: 1994:: 1959:: 1933:: 1906:: 1878:: 1850:: 1821:: 1795:: 1723:: 1717:2 1679:: 1632:: 1595:: 1566:: 1540:: 1506:: 1470:: 1441:: 1415:: 1389:: 1362:: 1326:: 1295:: 1260:: 1229:: 1201:: 1172:: 1144:: 1121:. 1096:. 1084:: 1041:) 1037:( 1012:2 1003:) 999:( 953:) 949:( 906:) 902:( 872:) 868:( 816:) 812:( 781:) 777:( 714:2 660:2 643:) 639:( 550:) 546:( 507:( 488:) 484:( 443:2 439:3 426:) 422:( 397:2 393:d 384:) 380:( 358:4 356:) 354:3 339:) 335:( 306:2 303:2 238:( 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 54:. 20:)

Index

Buchwald-Hartwig amination

references
primary sources
secondary or tertiary sources
"Buchwald–Hartwig amination"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Stephen L. Buchwald
John F. Hartwig
Coupling reaction
buchwald-hartwig-reaction
RSC
RXNO:0000192
organic chemistry
chemical reaction
carbon–nitrogen bonds
palladium-catalyzed coupling reactions
amines
aryl halides
Stephen L. Buchwald
John F. Hartwig
nucleophilic substitution
reductive amination
C−N
functional group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.