Knowledge

Basis pursuit denoising

Source 📝

138: 426: 642:
Exact solutions to basis pursuit denoising are often the best computationally tractable approximation of an underdetermined system of equations. Basis pursuit denoising has potential applications in statistics (see the
475:. The two problems are quite similar. In practice, the unconstrained formulation, for which most specialized and efficient computational algorithms are developed, is usually preferred. 617: 686: 570: 303: 257: 211: 449: 161: 473: 329: 523: 637: 543: 500: 277: 231: 185: 41: 344: 803: 846: 888: 735: 868: 776: 872: 648: 479: 719:. For very large problems, many specialized methods that are faster than interior-point methods have been proposed. 801:
Gill, Patrick R.; Wang, Albert; Molnar, Alyosha (2011). "The In-Crowd Algorithm for Fast Basis Pursuit Denoising".
32: 731: 727: 716: 579: 850: 332: 20: 820: 782: 739: 723: 700: 656: 644: 715:
The problem is a convex quadratic problem, so it can be solved by many general solvers, such as
665: 548: 282: 236: 190: 772: 704: 652: 434: 146: 458: 834: 812: 764: 573: 308: 699:
in 1994, in the field of signal processing. In statistics, it is well known under the name
505: 338:
Some authors refer to basis pursuit denoising as the following closely related problem:
622: 528: 485: 262: 216: 170: 133:{\displaystyle \min _{x}\left({\frac {1}{2}}\|y-Ax\|_{2}^{2}+\lambda \|x\|_{1}\right),} 882: 689: 164: 824: 786: 421:{\displaystyle \min _{x}\|x\|_{1}{\text{ subject to }}\|y-Ax\|_{2}^{2}\leq \delta ,} 696: 768: 761:
Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers
24: 816: 451:, is equivalent to the unconstrained formulation for some (usually unknown 722:
Several popular methods for solving basis pursuit denoising include the
830: 576:, finding the simplest possible explanation (i.e. one that yields 572:-norm sense. It can be thought of as a mathematical statement of 482:
problem with a trade-off between having a small residual (making
734:(a special case of the forward–backward algorithm) and 668: 625: 582: 551: 531: 508: 488: 461: 437: 347: 311: 285: 265: 239: 219: 193: 173: 149: 44: 759:
Chen, Shaobing; Donoho, D. (1994). "Basis pursuit".
695:Basis pursuit denoising was introduced by Chen and 163:is a parameter that controls the trade-off between 680: 631: 611: 564: 537: 517: 494: 467: 443: 420: 323: 297: 271: 251: 225: 205: 179: 155: 132: 584: 478:Either types of basis pursuit denoising solve a 349: 46: 736:spectral projected gradient for L1 minimization 619:) capable of accounting for the observations 8: 726:(a fast solver for large, sparse problems), 600: 593: 395: 379: 365: 358: 113: 106: 86: 70: 525:in terms of the squared error) and making 667: 624: 603: 587: 581: 556: 550: 530: 507: 487: 460: 436: 403: 398: 374: 368: 352: 346: 310: 284: 264: 238: 218: 192: 172: 148: 116: 94: 89: 60: 49: 43: 873:sparse- and low-rank approximation wiki 751: 804:IEEE Transactions on Signal Processing 7: 612:{\displaystyle \min _{x}\|x\|_{1}} 14: 16:Mathematical optimization problem 763:. Vol. 1. pp. 41–44. 711:Solving basis pursuit denoising 1: 167:and reconstruction fidelity, 847:"Forward Backward Algorithm" 703:, after being introduced by 905: 889:Mathematical optimization 769:10.1109/ACSSC.1994.471413 681:{\displaystyle \delta =0} 565:{\displaystyle \ell _{1}} 331:. This is an instance of 298:{\displaystyle M\times N} 252:{\displaystyle M\times 1} 206:{\displaystyle N\times 1} 33:mathematical optimization 817:10.1109/TSP.2011.2161292 732:fixed-point continuation 444:{\displaystyle \lambda } 259:vector of observations, 156:{\displaystyle \lambda } 738:(which actually solves 688:, this problem becomes 468:{\displaystyle \delta } 29:basis pursuit denoising 742:, a related problem). 717:interior-point methods 682: 633: 613: 566: 539: 519: 496: 469: 445: 422: 376: subject to  325: 324:{\displaystyle M<N} 299: 273: 253: 227: 207: 181: 157: 134: 853:on February 16, 2014. 728:homotopy continuation 683: 634: 614: 567: 540: 520: 497: 470: 446: 431:which, for any given 423: 326: 305:transform matrix and 300: 274: 254: 228: 208: 182: 158: 135: 666: 623: 580: 549: 529: 506: 486: 459: 435: 345: 309: 283: 263: 237: 217: 191: 171: 147: 42: 35:problem of the form 408: 333:convex optimization 99: 31:(BPDN) refers to a 21:applied mathematics 724:in-crowd algorithm 678: 657:compressed sensing 629: 609: 592: 562: 535: 518:{\displaystyle Ax} 515: 492: 465: 441: 418: 394: 357: 321: 295: 269: 249: 223: 203: 177: 153: 130: 85: 54: 811:(10): 4595–4605. 653:image compression 632:{\displaystyle y} 583: 538:{\displaystyle x} 495:{\displaystyle y} 377: 348: 272:{\displaystyle A} 226:{\displaystyle y} 213:solution vector, 180:{\displaystyle x} 68: 45: 896: 855: 854: 849:. Archived from 843: 837: 828: 797: 791: 790: 756: 687: 685: 684: 679: 638: 636: 635: 630: 618: 616: 615: 610: 608: 607: 591: 571: 569: 568: 563: 561: 560: 544: 542: 541: 536: 524: 522: 521: 516: 501: 499: 498: 493: 474: 472: 471: 466: 450: 448: 447: 442: 427: 425: 424: 419: 407: 402: 378: 375: 373: 372: 356: 330: 328: 327: 322: 304: 302: 301: 296: 278: 276: 275: 270: 258: 256: 255: 250: 232: 230: 229: 224: 212: 210: 209: 204: 186: 184: 183: 178: 162: 160: 159: 154: 139: 137: 136: 131: 126: 122: 121: 120: 98: 93: 69: 61: 53: 904: 903: 899: 898: 897: 895: 894: 893: 879: 878: 864: 859: 858: 845: 844: 840: 833:code available 800: 798: 794: 779: 758: 757: 753: 748: 713: 664: 663: 621: 620: 599: 578: 577: 552: 547: 546: 527: 526: 504: 503: 484: 483: 457: 456: 433: 432: 364: 343: 342: 307: 306: 281: 280: 261: 260: 235: 234: 215: 214: 189: 188: 169: 168: 145: 144: 112: 59: 55: 40: 39: 17: 12: 11: 5: 902: 900: 892: 891: 881: 880: 877: 876: 863: 862:External links 860: 857: 856: 838: 792: 777: 750: 749: 747: 744: 712: 709: 677: 674: 671: 649:regularization 628: 606: 602: 598: 595: 590: 586: 559: 555: 545:simple in the 534: 514: 511: 491: 480:regularization 464: 440: 429: 428: 417: 414: 411: 406: 401: 397: 393: 390: 387: 384: 381: 371: 367: 363: 360: 355: 351: 320: 317: 314: 294: 291: 288: 268: 248: 245: 242: 222: 202: 199: 196: 176: 152: 141: 140: 129: 125: 119: 115: 111: 108: 105: 102: 97: 92: 88: 84: 81: 78: 75: 72: 67: 64: 58: 52: 48: 15: 13: 10: 9: 6: 4: 3: 2: 901: 890: 887: 886: 884: 874: 870: 866: 865: 861: 852: 848: 842: 839: 835: 832: 826: 822: 818: 814: 810: 806: 805: 796: 793: 788: 784: 780: 778:0-8186-6405-3 774: 770: 766: 762: 755: 752: 745: 743: 741: 737: 733: 729: 725: 720: 718: 710: 708: 706: 702: 698: 693: 691: 690:basis pursuit 675: 672: 669: 660: 658: 654: 650: 646: 640: 626: 604: 596: 588: 575: 574:Occam's razor 557: 553: 532: 512: 509: 489: 481: 476: 462: 454: 438: 415: 412: 409: 404: 399: 391: 388: 385: 382: 369: 361: 353: 341: 340: 339: 336: 334: 318: 315: 312: 292: 289: 286: 266: 246: 243: 240: 220: 200: 197: 194: 174: 166: 150: 127: 123: 117: 109: 103: 100: 95: 90: 82: 79: 76: 73: 65: 62: 56: 50: 38: 37: 36: 34: 30: 26: 22: 869:BPDN solvers 851:the original 841: 808: 802: 795: 760: 754: 721: 714: 694: 661: 641: 477: 452: 430: 337: 142: 28: 18: 455:) value of 867:A list of 746:References 705:Tibshirani 647:method of 25:statistics 707:in 1996. 670:δ 601:‖ 594:‖ 554:ℓ 502:close to 463:δ 439:λ 413:δ 410:≤ 396:‖ 386:− 380:‖ 366:‖ 359:‖ 290:× 244:× 198:× 151:λ 114:‖ 107:‖ 104:λ 87:‖ 77:− 71:‖ 883:Category 825:15320645 787:96447294 453:a priori 165:sparsity 871:at the 831:MATLAB 823:  785:  775:  697:Donoho 279:is an 233:is an 187:is an 143:where 829:demo 821:S2CID 783:S2CID 740:LASSO 701:LASSO 662:When 645:LASSO 799:See 773:ISBN 655:and 316:< 23:and 813:doi 765:doi 651:), 585:min 350:min 47:min 19:In 885:: 819:. 809:59 807:. 781:. 771:. 730:, 692:. 659:. 639:. 335:. 27:, 875:. 836:. 827:; 815:: 789:. 767:: 676:0 673:= 627:y 605:1 597:x 589:x 558:1 533:x 513:x 510:A 490:y 416:, 405:2 400:2 392:x 389:A 383:y 370:1 362:x 354:x 319:N 313:M 293:N 287:M 267:A 247:1 241:M 221:y 201:1 195:N 175:x 128:, 124:) 118:1 110:x 101:+ 96:2 91:2 83:x 80:A 74:y 66:2 63:1 57:( 51:x

Index

applied mathematics
statistics
mathematical optimization
sparsity
convex optimization
regularization
Occam's razor
LASSO
regularization
image compression
compressed sensing
basis pursuit
Donoho
LASSO
Tibshirani
interior-point methods
in-crowd algorithm
homotopy continuation
fixed-point continuation
spectral projected gradient for L1 minimization
LASSO
doi
10.1109/ACSSC.1994.471413
ISBN
0-8186-6405-3
S2CID
96447294
IEEE Transactions on Signal Processing
doi
10.1109/TSP.2011.2161292

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.