Knowledge (XXG)

Baroclinity

Source đź“ť

987:. Similar waves can be generated between a layer of water and a layer of oil. When the interface between these two surfaces is not horizontal and the system is close to hydrostatic equilibrium, the gradient of the pressure is vertical but the gradient of the density is not. Therefore the baroclinic vector is nonzero, and the sense of the baroclinic vector is to create vorticity to make the interface level out. In the process, the interface overshoots, and the result is an oscillation which is an internal gravity wave. Unlike surface gravity waves, internal gravity waves do not require a sharp interface. For example, in bodies of water, a gradual gradient in temperature or salinity is sufficient to support internal gravity waves driven by the baroclinic vector. 753: 455: 2407: 145: 153: 3295: 3316: 748:{\displaystyle {\frac {D{\vec {\omega }}}{Dt}}\equiv {\frac {\partial {\vec {\omega }}}{\partial t}}+\left({\vec {u}}\cdot {\vec {\nabla }}\right){\vec {\omega }}=\left({\vec {\omega }}\cdot {\vec {\nabla }}\right){\vec {u}}-{\vec {\omega }}\left({\vec {\nabla }}\cdot {\vec {u}}\right)+\underbrace {{\frac {1}{\rho ^{2}}}{\vec {\nabla }}\rho \times {\vec {\nabla }}p} _{\text{baroclinic contribution}}} 36: 2396: 3305: 133: 338:. The Rossby number is a measure of the departure of the vorticity from that of solid body rotation. The Rossby number must be small for the concept of baroclinic instability to be relevant. When the Rossby number is large, other kinds of instabilities, often referred to as inertial, become more relevant. 157: 160: 159: 155: 154: 161: 372:
on baroclinic instability in the late 1940s, most theories trying to explain the structure of mid-latitude eddies took as their starting points the high Rossby number or small Richardson number instabilities familiar to fluid dynamicists at that time. The most important feature of baroclinic
158: 402:
and twisting (as vortex tubes are pulled or twisted by the flow) and baroclinic vorticity generation, which occurs whenever there is a density gradient along surfaces of constant pressure. Baroclinic flows can be contrasted with
257:, where density surfaces and pressure surfaces are both nearly level, whereas in higher latitudes the flow is more baroclinic. These midlatitude belts of high atmospheric baroclinity are characterized by the frequent formation of 967:
as well as unstable Rayleigh–Taylor modes can be analyzed from the perspective of the baroclinic vector. It is also of interest in the creation of vorticity by the passage of shocks through inhomogeneous media, such as in the
958: 844: 1039:, p. 179: ″In general, a barotropic situation is one in which surfaces of constant pressure and surfaces of constant density coincide; a baroclinic situation is one in which they intersect.″ 156: 373:
instability is that it exists even in the situation of rapid rotation (small Rossby number) and strong stable stratification (large Richardson's number) typically observed in the atmosphere.
410:
The study of the evolution of these baroclinic instabilities as they grow and then decay is a crucial part of developing theories for the fundamental characteristics of midlatitude weather.
398:
is generated. Vorticity is the curl of the velocity field. In general, the evolution of vorticity can be broken into contributions from advection (as vortex tubes move with the flow),
233: 351:
The strength of the stratification is measured by asking how large the vertical shear of the horizontal winds has to be in order to destabilize the flow and produce the classic
1084: 1633: 3035: 785: 1324:
Fujisawa, K.; Jackson, T. L.; Balachandar, S. (2019-02-22). "Influence of baroclinic vorticity production on unsteady drag coefficient in shock–particle interaction".
3025: 2084: 888: 384:
of the fluid is lowered. In growing waves in the atmosphere, cold air moving downwards and equatorwards displaces the warmer air moving polewards and upwards.
868: 963:
This vector, sometimes called the solenoidal vector, is of interest both in compressible fluids and in incompressible (but inhomogeneous) fluids. Internal
896: 2941: 391:. The annulus is heated at the outer wall and cooled at the inner wall, and the resulting fluid flows give rise to baroclinically unstable waves. 2356: 2124: 1626: 1775: 1597: 1574: 1548: 1521: 1494: 2588: 2478: 2077: 790: 3183: 2610: 2498: 969: 3030: 2301: 1795: 1619: 1146: 1105: 119: 2448: 352: 185:
a baroclinic flow is one in which the density depends on both temperature and pressure (the fully general case). A simpler case,
2488: 1943: 419: 1027:, p. 122: ″The strict meaning of the term ′barotropic′ is that the pressure is constant on surfaces of constant density...″ 3308: 3218: 2204: 181:) of a stratified fluid is a measure of how misaligned the gradient of pressure is from the gradient of density in a fluid. In 2891: 3298: 2070: 1990: 57: 3346: 1790: 1737: 1129:
Houze, Robert A. (2014-01-01), Houze, Robert A. (ed.), "Chapter 11 - Clouds and Precipitation in Extratropical Cyclones",
100: 2346: 330:, which is a measure of how close the flow is to solid body rotation. More precisely, a flow in solid body rotation has 148:
Visualization of a (fictive) formation of isotherms (red-orange) and isobars (blue) in a baroclinic atmospheric layering.
72: 53: 2406: 2051: 2543: 1985: 1742: 1589: 258: 79: 2443: 46: 3078: 2483: 1965: 1899: 1727: 206: 1383:
Boris, J. P.; Picone, J. M. (April 1988). "Vorticity generation by shock propagation through bubbles in a gas".
1187: 1162: 341:
The simplest example of a stably stratified flow is an incompressible flow with density decreasing with height.
3208: 2583: 2573: 2513: 2149: 2119: 1832: 1684: 361:. When the Richardson number is large, the stratification is strong enough to prevent this shear instability. 86: 3341: 3245: 3228: 3065: 2558: 2423: 2361: 2351: 2244: 2033: 1955: 1822: 1566: 1486: 1272: 194: 3240: 3178: 2605: 2291: 1887: 1847: 1800: 1785: 1767: 407:
flows in which density and pressure surfaces coincide and there is no baroclinic generation of vorticity.
3073: 3055: 2563: 2458: 2093: 1934: 1827: 1817: 1780: 388: 68: 3260: 3093: 2796: 2653: 2518: 2229: 2013: 1980: 1882: 1877: 1842: 1443: 1392: 1333: 1211: 1174: 137: 1054: 3255: 3140: 3135: 2861: 2533: 2493: 2209: 1975: 1960: 446: 344:
In a compressible gas such as the atmosphere, the relevant measure is the vertical gradient of the
270: 3198: 2911: 2901: 2866: 2766: 2751: 2648: 1747: 1416: 1365: 434: 423: 274: 190: 761: 3280: 3270: 3213: 3193: 2876: 2841: 2776: 2756: 2746: 2628: 2316: 2174: 2028: 1924: 1812: 1654: 1593: 1570: 1544: 1517: 1490: 1459: 1408: 1357: 1349: 1142: 1111: 1101: 399: 357: 1051:, p. 74: ″A barotropic atmosphere is one in which density depends only on the pressure, 3235: 3203: 3173: 2982: 2967: 2836: 2771: 2663: 2578: 2508: 2433: 2214: 2184: 2114: 2109: 1451: 1400: 1341: 1250: 1219: 1182: 1134: 1003:
Marshall, J., and R.A. Plumb. 2007. Atmosphere, Ocean, and Climate Dynamics. Academic Press,
387:
Baroclinic instability can be investigated in the laboratory using a rotating, fluid filled
377: 335: 312: 1455: 873: 144: 3040: 2936: 2886: 2851: 2811: 2703: 2673: 2523: 2473: 2383: 2341: 2274: 2199: 2159: 1679: 1540: 1276: 315:(100 km or smaller) that play various roles in oceanic dynamics and the transport of 1100:. Henderson-Sellers, A. (Second ed.). Oxfordshire, England: Routledge. p. 151. 291:
Baroclinic instability is a fluid dynamical instability of fundamental importance in the
93: 2395: 1447: 1396: 1337: 1215: 1178: 3150: 3145: 3050: 3045: 2881: 2821: 2816: 2548: 2438: 2259: 2194: 2169: 1970: 1513: 1506: 1223: 1138: 853: 381: 170: 1481:
Holton, James R. (2004). Dmowska, Renata; Holton, James R.; Rossby, H. Thomas (eds.).
3335: 3320: 3168: 3088: 2977: 2896: 2871: 2806: 2736: 2643: 2538: 2415: 2336: 2296: 2269: 2179: 2129: 1752: 1558: 1533: 1420: 1369: 327: 1611: 3315: 3275: 3223: 3163: 3114: 2992: 2987: 2962: 2946: 2921: 2638: 2528: 2468: 2254: 2164: 2139: 1929: 1904: 1837: 1714: 964: 953:{\displaystyle {\frac {1}{\rho ^{2}}}{\vec {\nabla }}\rho \times {\vec {\nabla }}p} 365: 975:
Experienced divers are familiar with the very slow waves that can be excited at a
3265: 2997: 2926: 2791: 2731: 2698: 2688: 2683: 2568: 2503: 2463: 2453: 2311: 2284: 2264: 2224: 2189: 1857: 1757: 1586:
Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation
1485:. International Geophysics Series. Vol. 88 (4th ed.). Burlington, MA: 976: 316: 304: 182: 35: 27:
Measure of misalignment between the gradients of pressure and density in a fluid
132: 3083: 2931: 2906: 2801: 2781: 2708: 2693: 2678: 2668: 2633: 2553: 2373: 2368: 2331: 2326: 2321: 2219: 2023: 1995: 1909: 1704: 1689: 1669: 1404: 404: 292: 286: 186: 1463: 1412: 1353: 1115: 433:
In a fluid that is not all of the same density, a source term appears in the
17: 3155: 3017: 3002: 2916: 2761: 2600: 2595: 2378: 2306: 2234: 2154: 2144: 2101: 1865: 1694: 1674: 1659: 1255: 1238: 980: 847: 442: 438: 427: 395: 369: 331: 238:
which is proportional to the sine of the angle between surfaces of constant
250:
fluid (which is defined by zero baroclinity), these surfaces are parallel.
1239:"A Tabletop Demonstration of Atmospheric Dynamics: Baroclinic Instability" 3250: 2972: 2831: 2723: 2713: 2658: 2134: 2043: 2005: 1919: 1664: 239: 2062: 348:, which must increase with height for the flow to be stably stratified. 253:
In Earth's atmosphere, barotropic flow is a better approximation in the
165:
A rotating tank experiment modelling baroclinic eddies in the atmosphere
3119: 3109: 2279: 2249: 1914: 1434:
Brouillette, Martin (2002-01-01). "The richtmyer-meshkov instability".
345: 308: 300: 262: 254: 243: 1361: 1345: 2826: 2239: 296: 418:
Beginning with the equation of motion for a frictionless fluid (the
1133:, Cloud Dynamics, vol. 104, Academic Press, pp. 329–367, 1086:, so that isobaric surfaces are also surfaces of constant density.″ 189:
flow, allows for density dependence only on pressure, so that the
3188: 3007: 2786: 2741: 1722: 1584:
Vallis, Geoffrey K. (2007) . "Vorticity and Potential Vorticity".
839:{\displaystyle {\vec {\omega }}={\vec {\nabla }}\times {\vec {u}}} 265:, although these are not really dependent on the baroclinity term 151: 143: 131: 1512:. International Geophysical Series. Vol. 30. San Diego, CA: 1270:"Lab demos from MIT's Programmes in Atmosphere, Ocean and Climate 1269: 2620: 1699: 2066: 1615: 1732: 299:. In the atmosphere it is the dominant mechanism shaping the 29: 1163:"The dynamics of long waves in a baroclinic westerly current" 890:
is the density). The baroclinic contribution is the vector:
1202:
Eady, E. T. (August 1949). "Long Waves and Cyclone Waves".
1188:
10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
380:
in the environmental flow. As the instability grows, the
311:
in mid-latitudes. In the ocean it generates a field of
394:
The term "baroclinic" refers to the mechanism by which
1057: 899: 876: 856: 793: 764: 458: 424:
equation of motion for the curl of the fluid velocity
209: 376:
The energy source for baroclinic instability is the
273:
iso-surfaces where that term has no contribution to
3128: 3102: 3064: 3016: 2955: 2850: 2722: 2619: 2414: 2100: 2042: 2004: 1856: 1766: 1713: 1647: 60:. Unsourced material may be challenged and removed. 1532: 1505: 1078: 952: 882: 862: 838: 779: 747: 227: 3036:North West Shelf Operational Oceanographic System 1504:Gill, Adrian E. (1982). Donn, William L. (ed.). 3026:Deep-ocean Assessment and Reporting of Tsunamis 2078: 1627: 441:surfaces) and surfaces of constant pressure ( 269:: for instance, they are commonly studied on 8: 1776:Convective available potential energy (CAPE) 228:{\displaystyle \nabla p\times \nabla \rho } 2085: 2071: 2063: 1634: 1620: 1612: 422:) and taking the curl, one arrives at the 1254: 1186: 1056: 936: 935: 918: 917: 909: 900: 898: 875: 855: 825: 824: 810: 809: 795: 794: 792: 766: 765: 763: 739: 719: 718: 701: 700: 692: 683: 680: 660: 659: 645: 644: 628: 627: 613: 612: 596: 595: 581: 580: 561: 560: 544: 543: 529: 528: 498: 497: 491: 466: 465: 459: 457: 208: 120:Learn how and when to remove this message 1287: 1036: 996: 437:whenever surfaces of constant density ( 140:cross vertically in a baroclinic fluid. 2357:one-dimensional Saint-Venant equations 1483:An Introduction to Dynamic Meteorology 1456:10.1146/annurev.fluid.34.090101.162238 1311: 1048: 1012: 1237:Nadiga, B. T.; Aurnou, J. M. (2008). 326:is determined in this context by the 7: 3304: 1299: 1024: 449:of the local vorticity is given by: 58:adding citations to reliable sources 1738:Convective condensation level (CCL) 3184:National Oceanographic Data Center 2611:World Ocean Circulation Experiment 2499:Global Ocean Data Analysis Project 1944:Equivalent potential temperature ( 1224:10.1111/j.2153-3490.1949.tb01265.x 1139:10.1016/b978-0-12-374266-7.00011-1 938: 920: 812: 721: 703: 647: 598: 546: 511: 494: 219: 210: 25: 3031:Global Sea Level Observing System 1796:Conditional symmetric instability 1642:Meteorological data and variables 3314: 3303: 3294: 3293: 2489:Geochemical Ocean Sections Study 2405: 2394: 1743:Lifting condensation level (LCL) 1436:Annual Review of Fluid Mechanics 200:Baroclinity is proportional to: 34: 3219:Ocean thermal energy conversion 2942:Vine–Matthews–Morley hypothesis 1728:Cloud condensation nuclei (CCN) 445:surfaces) are not aligned. The 45:needs additional citations for 1991:Wet-bulb potential temperature 1833:Level of free convection (LFC) 1565:(2nd ed.). New York, NJ: 1079:{\displaystyle \rho =\rho (p)} 1073: 1067: 941: 923: 830: 815: 800: 771: 724: 706: 665: 650: 633: 618: 601: 586: 566: 549: 534: 503: 471: 1: 2034:Pressure-gradient force (PGF) 1956:Sea surface temperature (SST) 1791:Convective momentum transport 970:Richtmyer–Meshkov instability 355:. This measure is called the 2479:El Niño–Southern Oscillation 2449:Craik–Leibovich vortex force 2205:Luke's variational principle 1848:Bulk Richardson number (BRN) 353:Kelvin–Helmholtz instability 334:that is proportional to its 2052:Maximum potential intensity 1818:Free convective layer (FCL) 1781:Convective inhibition (CIN) 364:Before the classic work of 3363: 2544:Ocean dynamical thermostat 2392: 1986:Wet-bulb globe temperature 1843:Maximum parcel level (MPL) 1590:Cambridge University Press 1539:(2nd ed.). New York: 1535:Geophysical Fluid Dynamics 1531:Pedlosky, Joseph (1987) . 1385:Journal of Fluid Mechanics 1326:Journal of Applied Physics 780:{\displaystyle {\vec {u}}} 322:Whether a fluid counts as 284: 3289: 3079:Ocean acoustic tomography 2892:MohoroviÄŤić discontinuity 2484:General circulation model 2120:Benjamin–Feir instability 1966:Thermodynamic temperature 1900:Forest fire weather index 1508:Atmosphere-Ocean Dynamics 1405:10.1017/S0022112088000904 242:and surfaces of constant 3209:Ocean surface topography 2584:Thermohaline circulation 2574:Subsurface ocean current 2514:Hydrothermal circulation 2347:Wave–current interaction 2125:Boussinesq approximation 1888:Equivalent temperature ( 1801:Convective temperature ( 1685:Surface weather analysis 1131:International Geophysics 1098:Contemporary climatology 1096:Robinson, J. P. (1999). 3246:Sea surface temperature 3229:Outline of oceanography 2424:Atmospheric circulation 2362:shallow water equations 2352:Waves and shallow water 2245:Significant wave height 1935:Potential temperature ( 1680:Surface solar radiation 1567:Oxford University Press 1563:Physical Fluid Dynamics 1487:Elsevier Academic Press 1256:10.5670/oceanog.2008.24 1161:Charney, J. G. (1947). 741:baroclinic contribution 195:pressure-gradient force 3241:Sea surface microlayer 2606:Wind generated current 1925:Relative humidity (RH) 1813:Equilibrium level (EL) 1786:Convective instability 1167:Journal of Meteorology 1080: 954: 884: 864: 840: 781: 749: 426:, that is to say, the 281:Baroclinic instability 229: 166: 149: 141: 3074:Deep scattering layer 3056:World Geodetic System 2564:Princeton Ocean Model 2444:Coriolis–Stokes force 2094:Physical oceanography 1081: 983:, which are known as 955: 885: 883:{\displaystyle \rho } 870:is the pressure, and 865: 841: 782: 750: 230: 164: 147: 135: 3347:Atmospheric dynamics 3094:Underwater acoustics 2654:Perigean spring tide 2519:Langmuir circulation 2230:Rossby-gravity waves 2014:Atmospheric pressure 1981:Wet-bulb temperature 1883:Dry-bulb temperature 1878:Dew point depression 1055: 897: 874: 854: 791: 787:is the velocity and 762: 456: 207: 54:improve this article 3256:Science On a Sphere 2862:Convergent boundary 2534:Modular Ocean Model 2494:Geostrophic current 2210:Mild-slope equation 1976:Virtual temperature 1961:Temperature anomaly 1655:Adiabatic processes 1448:2002AnRFM..34..445B 1397:1988JFM...189...23P 1338:2019JAP...125h4901F 1216:1949Tell....1c..33E 1179:1947JAtS....4..136C 447:material derivative 271:pressure coordinate 2912:Seafloor spreading 2902:Outer trench swell 2867:Divergent boundary 2767:Continental margin 2752:Carbonate platform 2649:Lunitidal interval 1748:Precipitable water 1275:2011-05-26 at the 1076: 950: 880: 860: 836: 777: 745: 744: 737: 435:vorticity equation 225: 167: 150: 142: 136:Density lines and 3329: 3328: 3321:Oceans portal 3281:World Ocean Atlas 3271:Underwater glider 3214:Ocean temperature 2877:Hydrothermal vent 2842:Submarine volcano 2777:Continental shelf 2757:Coastal geography 2747:Bathymetric chart 2629:Amphidromic point 2317:Wave nonlinearity 2175:Infragravity wave 2060: 2059: 2029:Pressure gradient 1838:Lifted index (LI) 1599:978-0-521-84969-2 1576:978-0-19-854493-7 1550:978-0-387-96387-7 1523:978-0-12-283522-3 1496:978-0-12-354015-7 1346:10.1063/1.5055002 944: 926: 915: 863:{\displaystyle p} 833: 818: 803: 774: 742: 727: 709: 698: 681: 679: 668: 653: 636: 621: 604: 589: 569: 552: 537: 518: 506: 486: 474: 414:Baroclinic vector 358:Richardson number 162: 130: 129: 122: 104: 16:(Redirected from 3354: 3319: 3318: 3307: 3306: 3297: 3296: 3236:Pelagic sediment 3174:Marine pollution 2968:Deep ocean water 2837:Submarine canyon 2772:Continental rise 2664:Rule of twelfths 2579:Sverdrup balance 2509:Humboldt Current 2434:Boundary current 2409: 2398: 2215:Radiation stress 2185:Iribarren number 2160:Equatorial waves 2115:Ballantine scale 2110:Airy wave theory 2087: 2080: 2073: 2064: 1636: 1629: 1622: 1613: 1603: 1580: 1554: 1538: 1527: 1511: 1500: 1468: 1467: 1431: 1425: 1424: 1380: 1374: 1373: 1321: 1315: 1309: 1303: 1297: 1291: 1285: 1279: 1267: 1261: 1260: 1258: 1234: 1228: 1227: 1199: 1193: 1192: 1190: 1158: 1152: 1151: 1126: 1120: 1119: 1093: 1087: 1085: 1083: 1082: 1077: 1046: 1040: 1034: 1028: 1022: 1016: 1010: 1004: 1001: 959: 957: 956: 951: 946: 945: 937: 928: 927: 919: 916: 914: 913: 901: 889: 887: 886: 881: 869: 867: 866: 861: 845: 843: 842: 837: 835: 834: 826: 820: 819: 811: 805: 804: 796: 786: 784: 783: 778: 776: 775: 767: 754: 752: 751: 746: 743: 740: 738: 733: 729: 728: 720: 711: 710: 702: 699: 697: 696: 684: 675: 671: 670: 669: 661: 655: 654: 646: 638: 637: 629: 623: 622: 614: 611: 607: 606: 605: 597: 591: 590: 582: 571: 570: 562: 559: 555: 554: 553: 545: 539: 538: 530: 519: 517: 509: 508: 507: 499: 492: 487: 485: 477: 476: 475: 467: 460: 378:potential energy 336:angular velocity 324:rapidly rotating 313:mesoscale eddies 234: 232: 231: 226: 163: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 3362: 3361: 3357: 3356: 3355: 3353: 3352: 3351: 3332: 3331: 3330: 3325: 3313: 3285: 3124: 3098: 3060: 3041:Sea-level curve 3012: 2951: 2937:Transform fault 2887:Mid-ocean ridge 2853: 2846: 2812:Oceanic plateau 2718: 2704:Tidal resonance 2674:Theory of tides 2615: 2524:Longshore drift 2474:Ekman transport 2410: 2404: 2403: 2402: 2401: 2400: 2399: 2390: 2342:Wave turbulence 2275:Trochoidal wave 2200:Longshore drift 2096: 2091: 2061: 2056: 2038: 2000: 1950: 1894: 1872: 1852: 1807: 1762: 1709: 1643: 1640: 1610: 1600: 1583: 1577: 1557: 1551: 1541:Springer-Verlag 1530: 1524: 1503: 1497: 1480: 1477: 1472: 1471: 1433: 1432: 1428: 1382: 1381: 1377: 1323: 1322: 1318: 1310: 1306: 1298: 1294: 1288:Pedlosky (1987) 1286: 1282: 1277:Wayback Machine 1268: 1264: 1236: 1235: 1231: 1201: 1200: 1196: 1160: 1159: 1155: 1149: 1128: 1127: 1123: 1108: 1095: 1094: 1090: 1053: 1052: 1047: 1043: 1035: 1031: 1023: 1019: 1011: 1007: 1002: 998: 993: 905: 895: 894: 872: 871: 852: 851: 789: 788: 760: 759: 688: 682: 643: 639: 579: 575: 527: 523: 510: 493: 478: 461: 454: 453: 420:Euler equations 416: 289: 283: 205: 204: 152: 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 3360: 3358: 3350: 3349: 3344: 3342:Fluid dynamics 3334: 3333: 3327: 3326: 3324: 3323: 3311: 3301: 3290: 3287: 3286: 3284: 3283: 3278: 3273: 3268: 3263: 3261:Stratification 3258: 3253: 3248: 3243: 3238: 3233: 3232: 3231: 3221: 3216: 3211: 3206: 3201: 3196: 3191: 3186: 3181: 3176: 3171: 3166: 3161: 3153: 3151:Color of water 3148: 3146:Benthic lander 3143: 3138: 3132: 3130: 3126: 3125: 3123: 3122: 3117: 3112: 3106: 3104: 3100: 3099: 3097: 3096: 3091: 3086: 3081: 3076: 3070: 3068: 3062: 3061: 3059: 3058: 3053: 3051:Sea level rise 3048: 3046:Sea level drop 3043: 3038: 3033: 3028: 3022: 3020: 3014: 3013: 3011: 3010: 3005: 3000: 2995: 2990: 2985: 2980: 2975: 2970: 2965: 2959: 2957: 2953: 2952: 2950: 2949: 2944: 2939: 2934: 2929: 2924: 2919: 2914: 2909: 2904: 2899: 2894: 2889: 2884: 2882:Marine geology 2879: 2874: 2869: 2864: 2858: 2856: 2848: 2847: 2845: 2844: 2839: 2834: 2829: 2824: 2822:Passive margin 2819: 2817:Oceanic trench 2814: 2809: 2804: 2799: 2794: 2789: 2784: 2779: 2774: 2769: 2764: 2759: 2754: 2749: 2744: 2739: 2734: 2728: 2726: 2720: 2719: 2717: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2646: 2641: 2636: 2631: 2625: 2623: 2617: 2616: 2614: 2613: 2608: 2603: 2598: 2593: 2592: 2591: 2581: 2576: 2571: 2566: 2561: 2556: 2551: 2549:Ocean dynamics 2546: 2541: 2536: 2531: 2526: 2521: 2516: 2511: 2506: 2501: 2496: 2491: 2486: 2481: 2476: 2471: 2466: 2461: 2456: 2451: 2446: 2441: 2439:Coriolis force 2436: 2431: 2426: 2420: 2418: 2412: 2411: 2393: 2391: 2389: 2388: 2387: 2386: 2376: 2371: 2366: 2365: 2364: 2359: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2289: 2288: 2287: 2277: 2272: 2267: 2262: 2260:Stokes problem 2257: 2252: 2247: 2242: 2237: 2232: 2227: 2222: 2217: 2212: 2207: 2202: 2197: 2195:Kinematic wave 2192: 2187: 2182: 2177: 2172: 2167: 2162: 2157: 2152: 2147: 2142: 2137: 2132: 2127: 2122: 2117: 2112: 2106: 2104: 2098: 2097: 2092: 2090: 2089: 2082: 2075: 2067: 2058: 2057: 2055: 2054: 2048: 2046: 2040: 2039: 2037: 2036: 2031: 2026: 2021: 2016: 2010: 2008: 2002: 2001: 1999: 1998: 1993: 1988: 1983: 1978: 1973: 1971:Vapor pressure 1968: 1963: 1958: 1953: 1948: 1941: 1932: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1892: 1885: 1880: 1875: 1870: 1862: 1860: 1854: 1853: 1851: 1850: 1845: 1840: 1835: 1830: 1825: 1820: 1815: 1810: 1805: 1798: 1793: 1788: 1783: 1778: 1772: 1770: 1764: 1763: 1761: 1760: 1755: 1750: 1745: 1740: 1735: 1730: 1725: 1719: 1717: 1711: 1710: 1708: 1707: 1702: 1697: 1692: 1687: 1682: 1677: 1672: 1667: 1662: 1657: 1651: 1649: 1645: 1644: 1641: 1639: 1638: 1631: 1624: 1616: 1609: 1608:External links 1606: 1605: 1604: 1598: 1581: 1575: 1555: 1549: 1528: 1522: 1514:Academic Press 1501: 1495: 1476: 1473: 1470: 1469: 1442:(1): 445–468. 1426: 1375: 1316: 1314:, p. 166. 1304: 1302:, p. 238. 1292: 1280: 1262: 1249:(4): 196–201. 1229: 1194: 1173:(5): 136–162. 1153: 1147: 1121: 1106: 1088: 1075: 1072: 1069: 1066: 1063: 1060: 1041: 1037:Tritton (1988) 1029: 1017: 1005: 995: 994: 992: 989: 985:internal waves 961: 960: 949: 943: 940: 934: 931: 925: 922: 912: 908: 904: 879: 859: 832: 829: 823: 817: 814: 808: 802: 799: 773: 770: 756: 755: 736: 732: 726: 723: 717: 714: 708: 705: 695: 691: 687: 678: 674: 667: 664: 658: 652: 649: 642: 635: 632: 626: 620: 617: 610: 603: 600: 594: 588: 585: 578: 574: 568: 565: 558: 551: 548: 542: 536: 533: 526: 522: 516: 513: 505: 502: 496: 490: 484: 481: 473: 470: 464: 415: 412: 382:center of mass 307:that dominate 282: 279: 246:. Thus, in a 236: 235: 224: 221: 218: 215: 212: 177:(often called 171:fluid dynamics 128: 127: 110:September 2009 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3359: 3348: 3345: 3343: 3340: 3339: 3337: 3322: 3317: 3312: 3310: 3302: 3300: 3292: 3291: 3288: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3247: 3244: 3242: 3239: 3237: 3234: 3230: 3227: 3226: 3225: 3222: 3220: 3217: 3215: 3212: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3175: 3172: 3170: 3169:Marine energy 3167: 3165: 3162: 3160: 3159: 3154: 3152: 3149: 3147: 3144: 3142: 3139: 3137: 3136:Acidification 3134: 3133: 3131: 3127: 3121: 3118: 3116: 3113: 3111: 3108: 3107: 3105: 3101: 3095: 3092: 3090: 3089:SOFAR channel 3087: 3085: 3082: 3080: 3077: 3075: 3072: 3071: 3069: 3067: 3063: 3057: 3054: 3052: 3049: 3047: 3044: 3042: 3039: 3037: 3034: 3032: 3029: 3027: 3024: 3023: 3021: 3019: 3015: 3009: 3006: 3004: 3001: 2999: 2996: 2994: 2991: 2989: 2986: 2984: 2981: 2979: 2976: 2974: 2971: 2969: 2966: 2964: 2961: 2960: 2958: 2954: 2948: 2945: 2943: 2940: 2938: 2935: 2933: 2930: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2897:Oceanic crust 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2872:Fracture zone 2870: 2868: 2865: 2863: 2860: 2859: 2857: 2855: 2849: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2808: 2807:Oceanic basin 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2763: 2760: 2758: 2755: 2753: 2750: 2748: 2745: 2743: 2740: 2738: 2737:Abyssal plain 2735: 2733: 2730: 2729: 2727: 2725: 2721: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2644:Internal tide 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2626: 2624: 2622: 2618: 2612: 2609: 2607: 2604: 2602: 2599: 2597: 2594: 2590: 2587: 2586: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2539:Ocean current 2537: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2430: 2427: 2425: 2422: 2421: 2419: 2417: 2413: 2408: 2397: 2385: 2382: 2381: 2380: 2377: 2375: 2372: 2370: 2367: 2363: 2360: 2358: 2355: 2354: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2337:Wave shoaling 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2297:Ursell number 2295: 2293: 2290: 2286: 2283: 2282: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2216: 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2180:Internal wave 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2148: 2146: 2143: 2141: 2138: 2136: 2133: 2131: 2130:Breaking wave 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2107: 2105: 2103: 2099: 2095: 2088: 2083: 2081: 2076: 2074: 2069: 2068: 2065: 2053: 2050: 2049: 2047: 2045: 2041: 2035: 2032: 2030: 2027: 2025: 2024:Barotropicity 2022: 2020: 2017: 2015: 2012: 2011: 2009: 2007: 2003: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1947: 1942: 1940: 1938: 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1891: 1886: 1884: 1881: 1879: 1876: 1874: 1869: 1864: 1863: 1861: 1859: 1855: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1804: 1799: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1773: 1771: 1769: 1765: 1759: 1756: 1754: 1753:Precipitation 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1720: 1718: 1716: 1712: 1706: 1703: 1701: 1698: 1696: 1693: 1691: 1688: 1686: 1683: 1681: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1661: 1658: 1656: 1653: 1652: 1650: 1646: 1637: 1632: 1630: 1625: 1623: 1618: 1617: 1614: 1607: 1601: 1595: 1591: 1588:. Cambridge: 1587: 1582: 1578: 1572: 1568: 1564: 1560: 1559:Tritton, D.J. 1556: 1552: 1546: 1542: 1537: 1536: 1529: 1525: 1519: 1515: 1510: 1509: 1502: 1498: 1492: 1488: 1484: 1479: 1478: 1474: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1430: 1427: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1379: 1376: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1332:(8): 084901. 1331: 1327: 1320: 1317: 1313: 1312:Vallis (2007) 1308: 1305: 1301: 1296: 1293: 1290:, p. 22. 1289: 1284: 1281: 1278: 1274: 1271: 1266: 1263: 1257: 1252: 1248: 1244: 1240: 1233: 1230: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1195: 1189: 1184: 1180: 1176: 1172: 1168: 1164: 1157: 1154: 1150: 1148:9780123742667 1144: 1140: 1136: 1132: 1125: 1122: 1117: 1113: 1109: 1107:9781315842660 1103: 1099: 1092: 1089: 1070: 1064: 1061: 1058: 1050: 1049:Holton (2004) 1045: 1042: 1038: 1033: 1030: 1026: 1021: 1018: 1015:, p. 77. 1014: 1013:Holton (2004) 1009: 1006: 1000: 997: 990: 988: 986: 982: 978: 973: 971: 966: 965:gravity waves 947: 932: 929: 910: 906: 902: 893: 892: 891: 877: 857: 849: 827: 821: 806: 797: 768: 734: 730: 715: 712: 693: 689: 685: 676: 672: 662: 656: 640: 630: 624: 615: 608: 592: 583: 576: 572: 563: 556: 540: 531: 524: 520: 514: 500: 488: 482: 479: 468: 462: 452: 451: 450: 448: 444: 440: 436: 431: 429: 425: 421: 413: 411: 408: 406: 401: 397: 392: 390: 385: 383: 379: 374: 371: 367: 362: 360: 359: 354: 349: 347: 342: 339: 337: 333: 329: 328:Rossby number 325: 320: 318: 314: 310: 306: 302: 298: 294: 288: 280: 278: 276: 272: 268: 264: 260: 256: 251: 249: 245: 241: 222: 216: 213: 203: 202: 201: 198: 196: 192: 188: 184: 180: 179:baroclinicity 176: 172: 146: 139: 134: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: â€“  70: 69:"Baroclinity" 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 18:Baroclinicity 3276:Water column 3224:Oceanography 3199:Observations 3194:Explorations 3164:Marginal sea 3157: 3115:OSTM/Jason-2 2947:Volcanic arc 2922:Slab suction 2639:Head of tide 2529:Loop Current 2469:Ekman spiral 2428: 2255:Stokes drift 2165:Gravity wave 2140:Cnoidal wave 2018: 1945: 1936: 1930:Mixing ratio 1905:Haines Index 1889: 1867: 1802: 1715:Condensation 1585: 1562: 1534: 1507: 1482: 1475:Bibliography 1439: 1435: 1429: 1388: 1384: 1378: 1329: 1325: 1319: 1307: 1295: 1283: 1265: 1246: 1243:Oceanography 1242: 1232: 1210:(3): 33–52. 1207: 1203: 1197: 1170: 1166: 1156: 1130: 1124: 1097: 1091: 1044: 1032: 1020: 1008: 999: 984: 974: 962: 757: 432: 417: 409: 393: 386: 375: 366:Jule Charney 363: 356: 350: 343: 340: 323: 321: 305:anticyclones 290: 277:production. 266: 252: 247: 237: 199: 178: 174: 168: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 3266:Thermocline 2983:Mesopelagic 2956:Ocean zones 2927:Slab window 2792:Hydrography 2732:Abyssal fan 2699:Tidal range 2689:Tidal power 2684:Tidal force 2569:Rip current 2504:Gulf Stream 2464:Ekman layer 2454:Downwelling 2429:Baroclinity 2416:Circulation 2312:Wave height 2302:Wave action 2285:megatsunami 2265:Stokes wave 2225:Rossby wave 2190:Kelvin wave 2170:Green's law 2019:Baroclinity 1866:Dew point ( 1858:Temperature 1758:Water vapor 1300:Gill (1982) 1025:Gill (1982) 977:thermocline 295:and in the 183:meteorology 175:baroclinity 3336:Categories 3204:Reanalysis 3103:Satellites 3084:Sofar bomb 2932:Subduction 2907:Ridge push 2802:Ocean bank 2782:Contourite 2709:Tide gauge 2694:Tidal race 2679:Tidal bore 2669:Slack tide 2634:Earth tide 2554:Ocean gyre 2374:Wind setup 2369:Wind fetch 2332:Wave setup 2327:Wave radar 2322:Wave power 2220:Rogue wave 2150:Dispersion 1996:Wind chill 1910:Heat index 1768:Convection 1705:Wind shear 1690:Visibility 1670:Lapse rate 991:References 405:barotropic 400:stretching 293:atmosphere 287:Eady model 285:See also: 248:barotropic 197:vanishes. 187:barotropic 80:newspapers 3066:Acoustics 3018:Sea level 2917:Slab pull 2854:tectonics 2762:Cold seep 2724:Landforms 2601:Whirlpool 2596:Upwelling 2379:Wind wave 2307:Wave base 2235:Sea state 2155:Edge wave 2145:Cross sea 1695:Vorticity 1675:Lightning 1660:Advection 1561:(1988) . 1464:0066-4189 1421:121116029 1413:1469-7645 1391:: 23–51. 1370:127387592 1354:0021-8979 1116:893676683 1065:ρ 1059:ρ 981:halocline 942:→ 939:∇ 933:× 930:ρ 924:→ 921:∇ 907:ρ 878:ρ 848:vorticity 831:→ 822:× 816:→ 813:∇ 801:→ 798:ω 772:→ 735:⏟ 725:→ 722:∇ 716:× 713:ρ 707:→ 704:∇ 690:ρ 666:→ 657:⋅ 651:→ 648:∇ 634:→ 631:ω 625:− 619:→ 602:→ 599:∇ 593:⋅ 587:→ 584:ω 567:→ 564:ω 550:→ 547:∇ 541:⋅ 535:→ 512:∂ 504:→ 501:ω 495:∂ 489:≡ 472:→ 469:ω 439:isopycnic 428:vorticity 396:vorticity 370:Eric Eady 332:vorticity 275:vorticity 223:ρ 220:∇ 217:× 211:∇ 3299:Category 3251:Seawater 2978:Littoral 2973:Deep sea 2832:Seamount 2714:Tideline 2659:Rip tide 2589:shutdown 2559:Overflow 2292:Undertow 2135:Clapotis 2044:Velocity 2006:Pressure 1920:Humidity 1823:Helicity 1665:Buoyancy 1273:Archived 443:isobaric 301:cyclones 263:cyclones 259:synoptic 240:pressure 3309:Commons 3179:Mooring 3129:Related 3120:Jason-3 3110:Jason-1 2993:Pelagic 2988:Oceanic 2963:Benthic 2280:Tsunami 2250:Soliton 1915:Humidex 1828:K Index 1648:General 1444:Bibcode 1393:Bibcode 1362:1614518 1334:Bibcode 1212:Bibcode 1175:Bibcode 846:is the 758:(where 389:annulus 346:entropy 317:tracers 309:weather 261:-scale 255:tropics 244:density 193:of the 138:isobars 94:scholar 2998:Photic 2827:Seabed 2240:Seiche 1596:  1573:  1547:  1520:  1493:  1462:  1419:  1411:  1368:  1360:  1352:  1204:Tellus 1145:  1114:  1104:  297:oceans 267:per se 173:, the 96:  89:  82:  75:  67:  3189:Ocean 3158:Alvin 3008:Swash 2852:Plate 2797:Knoll 2787:Guyot 2742:Atoll 2621:Tides 2384:model 2270:Swell 2102:Waves 1723:Cloud 1417:S2CID 1366:S2CID 979:or a 101:JSTOR 87:books 3156:DSV 3141:Argo 3003:Surf 2459:Eddy 1700:Wind 1594:ISBN 1571:ISBN 1545:ISBN 1518:ISBN 1491:ISBN 1460:ISSN 1409:ISSN 1358:OSTI 1350:ISSN 1143:ISBN 1112:OCLC 1102:ISBN 368:and 303:and 191:curl 73:news 1733:Fog 1452:doi 1401:doi 1389:189 1342:doi 1330:125 1251:doi 1220:doi 1183:doi 1135:doi 169:In 56:by 3338:: 1592:. 1569:. 1543:. 1516:. 1489:. 1458:. 1450:. 1440:34 1438:. 1415:. 1407:. 1399:. 1387:. 1364:. 1356:. 1348:. 1340:. 1328:. 1247:21 1245:. 1241:. 1218:. 1206:. 1181:. 1169:. 1165:. 1141:, 1110:. 972:. 850:, 430:. 319:. 2086:e 2079:t 2072:v 1951:) 1949:e 1946:θ 1939:) 1937:θ 1895:) 1893:e 1890:T 1873:) 1871:d 1868:T 1808:) 1806:c 1803:T 1635:e 1628:t 1621:v 1602:. 1579:. 1553:. 1526:. 1499:. 1466:. 1454:: 1446:: 1423:. 1403:: 1395:: 1372:. 1344:: 1336:: 1259:. 1253:: 1226:. 1222:: 1214:: 1208:1 1191:. 1185:: 1177:: 1171:4 1137:: 1118:. 1074:) 1071:p 1068:( 1062:= 948:p 911:2 903:1 858:p 828:u 807:= 769:u 731:p 694:2 686:1 677:+ 673:) 663:u 641:( 616:u 609:) 577:( 573:= 557:) 532:u 525:( 521:+ 515:t 483:t 480:D 463:D 214:p 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Baroclinicity

verification
improve this article
adding citations to reliable sources
"Baroclinity"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

isobars

fluid dynamics
meteorology
barotropic
curl
pressure-gradient force
pressure
density
tropics
synoptic
cyclones
pressure coordinate
vorticity
Eady model
atmosphere
oceans

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑