Knowledge (XXG)

Bateman–Horn conjecture

Source 📝

555:
It is reasonable to allow negative numbers to count as primes as a step towards formulating more general conjectures that apply to other systems of numbers than the integers, but at the same time it is easy to just negate the polynomials if necessary to reduce to the case where the leading
847: 259: 543:
produces only negative numbers when given a positive argument, so the fraction of prime numbers among its values is always zero. There are two equally valid ways of refining the conjecture to avoid this difficulty:
675: 376: 468: 1153: 123:
or there would be a polynomial with infinitely many roots, whereas the conjecture is how to give conditions where the values are simultaneously prime for infinitely many
939: 506: 408: 64:
The Bateman–Horn conjecture provides a conjectured density for the positive integers at which a given set of polynomials all have prime values. For a set of
87:
with integer coefficients, an obvious necessary condition for the polynomials to simultaneously generate prime values infinitely often is that they satisfy
1343: 167: 1338: 1198: 1181: 1146: 1176: 41: 1068: 842:{\displaystyle \pi _{2}(x)\sim 2\prod _{p\geq 3}{\frac {p(p-2)}{(p-1)^{2}}}{\frac {x}{(\log x)^{2}}}\approx 1.32{\frac {x}{(\log x)^{2}}}.} 548:
One may require all the polynomials to have positive leading coefficients, so that only a constant number of their values can be negative.
520:
is itself positive, and with some work this can be proved. (Work is needed since some infinite products of positive numbers equal zero.)
1317: 551:
Alternatively, one may allow negative leading coefficients but count a negative number as being prime when its absolute value is prime.
1233: 1139: 281: 1171: 1348: 1263: 1006:
Bateman, Paul T.; Horn, Roger A. (1962), "A heuristic asymptotic formula concerning the distribution of prime numbers",
976:
runs over nonconstant polynomials with degree that is a multiple of 4. An analogue of the Bateman–Horn conjecture over
1238: 1312: 53: 1188: 1297: 1243: 88: 1223: 416: 1302: 1270: 1258: 1287: 1228: 1208: 1193: 1282: 1213: 69: 964:
of odd degree, but it appears to take (asymptotically) twice as many irreducible values as expected when
1275: 1248: 1292: 1253: 1094: 980:
which fits numerical data uses an additional factor in the asymptotics which depends on the value of
595: 1085:
Friedlander, John; Granville, Andrew (1991), "Limitations to the equi-distribution of primes. IV.",
1307: 1218: 1119: 1025: 910: 476: 1064: 594:) is prime are themselves the prime numbers, and the conjecture becomes a restatement of the 1102: 1074: 1041: 1015: 1037: 665:
on the density of twin primes, according to which the number of twin prime pairs less than
1078: 1060: 1045: 1033: 384: 33: 1098: 1052: 40:
who proposed it in 1962. It provides a vast generalization of such conjectures as the
1332: 1114:
Soren Laing Alethia-Zomlefer; Lenny Fukshansky; Stephan Ramon Garcia (25 July 2018),
17: 157:) is the number of prime-generating integers among the positive integers less than 25: 254:{\displaystyle P(x)\sim {\frac {C}{D}}\int _{2}^{x}{\frac {dt}{(\log t)^{m}}},\,} 662: 658: 45: 37: 29: 902:, but the analogue is wrong. For example, data suggest that the polynomial 134:
is prime-generating for the given system of polynomials if every polynomial
1131: 1106: 968:
runs over polynomials of degree that is 2 mod 4, while it (provably) takes
111:, having all values of the polynomials simultaneously prime for a given 1029: 953:
takes (asymptotically) the expected number of irreducible values when
516:
is positive. Intuitively one then naturally expects that the constant
1020: 657:) are prime are just the smaller of the two primes in every pair of 1124: 528:
As stated above, the conjecture is not true: the single polynomial
1135: 564:
If the system of polynomials consists of the single polynomial
601:
If the system of polynomials consists of the two polynomials
371:{\displaystyle C=\prod _{p}{\frac {1-N(p)/p}{(1-1/p)^{m}}}\ } 661:. In this case, the Bateman–Horn conjecture reduces to the 268:
is the product of the degrees of the polynomials and where
898:
suggest an analogue of the Bateman–Horn conjecture over
115:
would imply that at least one of them must be equal to
857:
When the integers are replaced by the polynomial ring
913: 678: 479: 419: 387: 284: 170: 865:, one can ask how often a finite set of polynomials 119:, which can only happen for finitely many values of 933: 841: 500: 462: 402: 370: 253: 161:, then the Bateman–Horn conjecture states that 52: + 1; it is also a strengthening of 1147: 1116:ONE CONJECTURE TO RULE THEM ALL: BATEMAN–HORN 894:. Well-known analogies between integers and 8: 882:simultaneously takes irreducible values in 853:Analogue for polynomials over a finite field 91:, that there does not exist a prime number 24:is a statement concerning the frequency of 1154: 1140: 1132: 463:{\displaystyle f(n)\equiv 0{\pmod {p}}.\ } 48:or their conjecture on primes of the form 1123: 1019: 930: 918: 912: 827: 805: 790: 768: 759: 720: 708: 683: 677: 512:, so each factor in the infinite product 478: 438: 418: 386: 356: 344: 322: 301: 295: 283: 250: 238: 211: 205: 200: 186: 169: 145:) produces a prime number when given 7: 988:is the degree of the polynomials in 631: + 2, then the values of 446: 1344:Unsolved problems in number theory 1087:Proceedings of the Royal Society A 1057:Unsolved problems in number theory 107:. For, if there were such a prime 14: 54:Schinzel's hypothesis H 473:Bunyakovsky's property implies 28:among the values of a system of 1339:Conjectures about prime numbers 972:irreducible values at all when 439: 42:Hardy and Littlewood conjecture 824: 811: 787: 774: 756: 743: 738: 726: 695: 689: 489: 483: 450: 440: 429: 423: 397: 391: 353: 332: 319: 313: 235: 222: 180: 174: 1: 103:) for every positive integer 32:, named after mathematicians 95:that divides their product 663:Hardy–Littlewood conjecture 556:coefficients are positive. 410:the number of solutions to 272:is the product over primes 1365: 1008:Mathematics of Computation 1167: 957:runs over polynomials in 934:{\displaystyle x^{3}+u\,} 501:{\displaystyle N(p)<p} 1162:Prime number conjectures 1313:Schinzel's hypothesis H 886:when we substitute for 70:irreducible polynomials 22:Bateman–Horn conjecture 1349:Analytic number theory 1107:10.1098/rspa.1991.0138 935: 843: 502: 464: 404: 372: 255: 89:Bunyakovsky's property 1318:Waring's prime number 936: 844: 539:) = − 503: 465: 405: 373: 256: 911: 676: 596:prime number theorem 477: 417: 403:{\displaystyle N(p)} 385: 282: 168: 149:as its argument. If 1283:Legendre's constant 1099:1991RSPSA.435..197F 861:for a finite field 210: 1234:Elliott–Halberstam 1219:Chinese hypothesis 931: 839: 719: 579:, then the values 498: 460: 400: 368: 300: 251: 196: 44:on the density of 1326: 1325: 1254:Landau's problems 1118:, pp. 1–45, 1093:(1893): 197–204, 1070:978-0-387-20860-2 834: 797: 766: 704: 459: 367: 363: 291: 245: 194: 78:, ...,  1356: 1172:Hardy–Littlewood 1156: 1149: 1142: 1133: 1128: 1127: 1109: 1081: 1059:(3rd ed.), 1048: 1023: 940: 938: 937: 932: 923: 922: 848: 846: 845: 840: 835: 833: 832: 831: 806: 798: 796: 795: 794: 769: 767: 765: 764: 763: 741: 721: 718: 688: 687: 524:Negative numbers 507: 505: 504: 499: 469: 467: 466: 461: 457: 453: 409: 407: 406: 401: 377: 375: 374: 369: 365: 364: 362: 361: 360: 348: 330: 326: 302: 299: 260: 258: 257: 252: 246: 244: 243: 242: 220: 212: 209: 204: 195: 187: 1364: 1363: 1359: 1358: 1357: 1355: 1354: 1353: 1329: 1328: 1327: 1322: 1163: 1160: 1113: 1084: 1071: 1061:Springer-Verlag 1053:Guy, Richard K. 1051: 1021:10.2307/2004056 1014:(79): 363–367, 1005: 1002: 963: 952: 914: 909: 908: 873: 855: 823: 810: 786: 773: 755: 742: 722: 679: 674: 673: 652: 641: 635:for which both 622: 607: 589: 570: 562: 534: 526: 508:for all primes 475: 474: 415: 414: 383: 382: 352: 331: 303: 280: 279: 234: 221: 213: 166: 165: 139: 86: 77: 62: 34:Paul T. Bateman 12: 11: 5: 1362: 1360: 1352: 1351: 1346: 1341: 1331: 1330: 1324: 1323: 1321: 1320: 1315: 1310: 1305: 1300: 1295: 1290: 1285: 1280: 1279: 1278: 1273: 1268: 1267: 1266: 1251: 1246: 1241: 1236: 1231: 1226: 1221: 1216: 1211: 1206: 1201: 1196: 1191: 1186: 1185: 1184: 1179: 1168: 1165: 1164: 1161: 1159: 1158: 1151: 1144: 1136: 1130: 1129: 1111: 1082: 1069: 1049: 1001: 998: 961: 950: 944: 943: 942: 941: 929: 926: 921: 917: 869: 854: 851: 850: 849: 838: 830: 826: 822: 819: 816: 813: 809: 804: 801: 793: 789: 785: 782: 779: 776: 772: 762: 758: 754: 751: 748: 745: 740: 737: 734: 731: 728: 725: 717: 714: 711: 707: 703: 700: 697: 694: 691: 686: 682: 650: 639: 627:) =  620: 612:) =  605: 587: 575:) =  568: 561: 558: 553: 552: 549: 532: 525: 522: 497: 494: 491: 488: 485: 482: 471: 470: 456: 452: 449: 445: 442: 437: 434: 431: 428: 425: 422: 399: 396: 393: 390: 379: 378: 359: 355: 351: 347: 343: 340: 337: 334: 329: 325: 321: 318: 315: 312: 309: 306: 298: 294: 290: 287: 262: 261: 249: 241: 237: 233: 230: 227: 224: 219: 216: 208: 203: 199: 193: 190: 185: 182: 179: 176: 173: 137: 82: 75: 61: 58: 13: 10: 9: 6: 4: 3: 2: 1361: 1350: 1347: 1345: 1342: 1340: 1337: 1336: 1334: 1319: 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1277: 1274: 1272: 1269: 1265: 1262: 1261: 1260: 1257: 1256: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1239:Firoozbakht's 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1183: 1180: 1178: 1175: 1174: 1173: 1170: 1169: 1166: 1157: 1152: 1150: 1145: 1143: 1138: 1137: 1134: 1126: 1121: 1117: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1083: 1080: 1076: 1072: 1066: 1062: 1058: 1054: 1050: 1047: 1043: 1039: 1035: 1031: 1027: 1022: 1017: 1013: 1009: 1004: 1003: 999: 997: 995: 991: 987: 984:mod 4, where 983: 979: 975: 971: 967: 960: 956: 949: 927: 924: 919: 915: 907: 906: 905: 904: 903: 901: 897: 893: 889: 885: 881: 877: 872: 868: 864: 860: 852: 836: 828: 820: 817: 814: 807: 802: 799: 791: 783: 780: 777: 770: 760: 752: 749: 746: 735: 732: 729: 723: 715: 712: 709: 705: 701: 698: 692: 684: 680: 672: 671: 670: 668: 664: 660: 656: 649: 645: 638: 634: 630: 626: 619: 615: 611: 604: 599: 597: 593: 586: 582: 578: 574: 567: 559: 557: 550: 547: 546: 545: 542: 538: 531: 523: 521: 519: 515: 511: 495: 492: 486: 480: 454: 447: 443: 435: 432: 426: 420: 413: 412: 411: 394: 388: 357: 349: 345: 341: 338: 335: 327: 323: 316: 310: 307: 304: 296: 292: 288: 285: 278: 277: 276: 275: 271: 267: 247: 239: 231: 228: 225: 217: 214: 206: 201: 197: 191: 188: 183: 177: 171: 164: 163: 162: 160: 156: 152: 148: 144: 140: 133: 128: 126: 122: 118: 114: 110: 106: 102: 98: 94: 90: 85: 81: 74: 71: 67: 59: 57: 55: 51: 47: 43: 39: 38:Roger A. Horn 35: 31: 27: 26:prime numbers 23: 19: 18:number theory 1204:Bateman–Horn 1203: 1115: 1090: 1086: 1056: 1011: 1007: 996:is sampled. 993: 989: 985: 981: 977: 973: 969: 965: 958: 954: 947: 945: 899: 895: 891: 890:elements of 887: 883: 879: 875: 870: 866: 862: 858: 856: 666: 654: 647: 643: 636: 632: 628: 624: 617: 613: 609: 602: 600: 591: 584: 580: 576: 572: 565: 563: 554: 540: 536: 529: 527: 517: 513: 509: 472: 380: 273: 269: 265: 263: 158: 154: 150: 146: 142: 135: 131: 129: 124: 120: 116: 112: 108: 104: 100: 96: 92: 83: 79: 72: 65: 63: 49: 21: 15: 1298:Oppermann's 1244:Gilbreath's 1214:Bunyakovsky 992:over which 659:twin primes 130:An integer 46:twin primes 30:polynomials 1333:Categories 1303:Polignac's 1276:Twin prime 1271:Legendre's 1259:Goldbach's 1189:Agoh–Giuga 1125:1807.08899 1079:1058.11001 1046:0105.03302 1000:References 583:for which 60:Definition 1288:Lemoine's 1229:Dickson's 1209:Brocard's 1194:Andrica's 818:⁡ 800:≈ 781:⁡ 750:− 733:− 713:≥ 706:∏ 699:∼ 681:π 433:≡ 339:− 308:− 293:∏ 229:⁡ 198:∫ 184:∼ 68:distinct 1293:Mersenne 1224:Cramér's 1055:(2004), 560:Examples 1249:Grimm's 1199:Artin's 1095:Bibcode 1038:0148632 1030:2004056 1077:  1067:  1044:  1036:  1028:  646:) and 458:  366:  264:where 20:, the 1308:Pólya 1120:arXiv 1026:JSTOR 878:) in 381:with 1264:weak 1065:ISBN 803:1.32 616:and 493:< 36:and 1182:2nd 1177:1st 1103:doi 1091:435 1075:Zbl 1042:Zbl 1016:doi 946:in 815:log 778:log 669:is 444:mod 226:log 16:In 1335:: 1101:, 1089:, 1073:, 1063:, 1040:, 1034:MR 1032:, 1024:, 1012:16 1010:, 970:no 598:. 127:. 56:. 1155:e 1148:t 1141:v 1122:: 1110:. 1105:: 1097:: 1018:: 994:x 990:F 986:d 982:d 978:F 974:x 966:x 962:3 959:F 955:x 951:3 948:F 928:u 925:+ 920:3 916:x 900:F 896:F 892:F 888:x 884:F 880:F 876:x 874:( 871:i 867:f 863:F 859:F 837:. 829:2 825:) 821:x 812:( 808:x 792:2 788:) 784:x 775:( 771:x 761:2 757:) 753:1 747:p 744:( 739:) 736:2 730:p 727:( 724:p 716:3 710:p 702:2 696:) 693:x 690:( 685:2 667:x 655:n 653:( 651:2 648:ƒ 644:n 642:( 640:1 637:ƒ 633:n 629:x 625:x 623:( 621:2 618:ƒ 614:x 610:x 608:( 606:1 603:ƒ 592:n 590:( 588:1 585:ƒ 581:n 577:x 573:x 571:( 569:1 566:ƒ 541:x 537:x 535:( 533:1 530:ƒ 518:C 514:C 510:p 496:p 490:) 487:p 484:( 481:N 455:. 451:) 448:p 441:( 436:0 430:) 427:n 424:( 421:f 398:) 395:p 392:( 389:N 358:m 354:) 350:p 346:/ 342:1 336:1 333:( 328:p 324:/ 320:) 317:p 314:( 311:N 305:1 297:p 289:= 286:C 274:p 270:C 266:D 248:, 240:m 236:) 232:t 223:( 218:t 215:d 207:x 202:2 192:D 189:C 181:) 178:x 175:( 172:P 159:x 155:x 153:( 151:P 147:n 143:n 141:( 138:i 136:ƒ 132:n 125:n 121:n 117:p 113:n 109:p 105:n 101:n 99:( 97:f 93:p 84:m 80:ƒ 76:1 73:ƒ 66:m 50:n

Index

number theory
prime numbers
polynomials
Paul T. Bateman
Roger A. Horn
Hardy and Littlewood conjecture
twin primes
Schinzel's hypothesis H
irreducible polynomials
Bunyakovsky's property
prime number theorem
twin primes
Hardy–Littlewood conjecture
doi
10.2307/2004056
JSTOR
2004056
MR
0148632
Zbl
0105.03302
Guy, Richard K.
Springer-Verlag
ISBN
978-0-387-20860-2
Zbl
1058.11001
Bibcode
1991RSPSA.435..197F
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.