Knowledge

Bennett acceptance ratio

Source đź“ť

1582: 625: 829: 1381: 834:
The advantage of this formulation (apart from its simplicity) is that it can be computed without performing two simulations, one in each specific ensemble. Indeed, it is possible to define an extra kind of "potential switching" Metropolis trial move (taken every fixed number of steps), such that the
317:
Suppose that two super states of interest, A and B, are given. We assume that they have a common configuration space, i.e., they share all of their micro states, but the energies associated to these (and hence the probabilities) differ because of a change in some parameter (such as the strength of a
1896: 439: 667: 1705: 1577:{\displaystyle \Delta F\approx \left\langle U_{\text{B}}-U_{\text{A}}\right\rangle _{\text{A}}-{\frac {\beta }{2}}\left(\left\langle (U_{\text{B}}-U_{\text{A}})^{2}\right\rangle _{\text{A}}-\left(\left\langle (U_{\text{B}}-U_{\text{A}})\right\rangle _{\text{A}}\right)^{2}\right)} 991:(or FEP), involves sampling from state A only. It requires that all the high probability configurations of super state B are contained in high probability configurations of super state A, which is a much more stringent requirement than the overlap condition stated above. 161: 2040: 1197: 1093: 1316: 950:
The densities of the two super states (in their common configuration space) should have a large overlap. Otherwise, a chain of super states between A and B may be needed, such that the overlap of each two consecutive super states is
620:{\displaystyle e^{-\beta (\Delta F-C)}={\frac {\left\langle f\left(\beta (U_{\text{B}}-U_{\text{A}}-C)\right)\right\rangle _{\text{A}}}{\left\langle f\left(\beta (U_{\text{A}}-U_{\text{B}}+C)\right)\right\rangle _{\text{B}}}}} 1808: 824:{\displaystyle e^{-\beta \Delta F}={\frac {\left\langle M\left(\beta (U_{\text{B}}-U_{\text{A}})\right)\right\rangle _{\text{A}}}{\left\langle M\left(\beta (U_{\text{A}}-U_{\text{B}})\right)\right\rangle _{\text{B}}}}} 1801: 644:
are the potential energies of the same configurations, calculated using potential function A (when the system is in superstate A) and potential function B (when the system is in the superstate B) respectively.
1609: 974:) is a generalization of the Bennett acceptance ratio that calculates the (relative) free energies of several multi states. It essentially reduces to the BAR method when only two super states are involved. 1952: 49: 1960: 312: 1373: 905: 2049:(or TI) result. It can be approximated by dividing the range between states A and B into many values of λ at which the expectation value is estimated, and performing numerical integration. 957:
The cost of simulating both ensembles should be approximately equal - and then, in fact, the system is sampled roughly equally in both super states. Otherwise, the optimal expression for
1104: 268: 340:) on moving between the two super states be calculated from sampling in both ensembles? The kinetic energy part in the free energy is equal between states so can be ignored. Also the 1002: 423: 1229: 940: 286:
ensemble), the resulting states along the simulated trajectory are likewise distributed. Averaging along the trajectory (in either formulation) is denoted by angle brackets
1234: 27:) is an algorithm for estimating the difference in free energy between two systems (usually the systems will be simulated on the computer). It was suggested by 1891:{\displaystyle {\frac {\partial F(\lambda )}{\partial \lambda }}=\left\langle {\frac {\partial U(\lambda )}{\partial \lambda }}\right\rangle _{\lambda }} 954:
The sample size should be large. In particular, as successive states are correlated, the simulation time should be much larger than the correlation time.
847:
is the most efficient, in the sense of yielding the smallest standard error for a given simulation time. He shows that the optimal choice is to take
942:. This value, of course, is not known (it is exactly what one is trying to compute), but it can be approximately chosen in a self-consistent manner. 28: 1721: 1700:{\displaystyle \langle U_{\text{B}}-U_{\text{A}}\rangle _{\text{B}}\leq \Delta F\leq \langle U_{\text{B}}-U_{\text{A}}\rangle _{\text{A}}} 2101: 1599:, gives an inequality in the linear level; combined with the analogous result for the B ensemble one gets the following version of the 1710:
Note that the inequality agrees with the negative sign of the coefficient of the (positive) variance term in the second order result.
1901: 156:{\displaystyle p({\text{State}}_{x}\rightarrow {\text{State}}_{y})=\min \left(e^{-\beta \,\Delta U},1\right)=M(\beta \,\Delta U)} 1898:
This can either be directly verified from definitions or seen from the limit of the above Gibbs-Bogoliubov inequalities when
2148: 2035:{\displaystyle \Delta F=\int _{0}^{1}\left\langle {\frac {\partial U(\lambda )}{\partial \lambda }}\right\rangle \,d\lambda } 1202:
This exact result can be obtained from the general BAR method, using (for example) the Metropolis function, in the limit
289: 1587:
Note that the first term is the expected value of the energy difference, while the second is essentially its variance.
1375:
and Taylor expanding the second exact perturbation theory expression to the second order, one gets the approximation
1231:. Indeed, in that case, the denominator of the general case expression above tends to 1, while the numerator tends to 961:
is modified, and the sampling should devote equal times (rather than equal number of time steps) to the two ensembles.
1329: 908: 853: 1192:{\displaystyle \Delta F=-kT\cdot \log \left\langle e^{\beta (U_{\text{A}}-U_{\text{B}})}\right\rangle _{\text{A}}} 2046: 2127: 1088:{\displaystyle e^{-\beta \Delta F}=\left\langle e^{-\beta (U_{\text{B}}-U_{\text{A}})}\right\rangle _{\text{A}}} 988: 213: 363: 2143: 1595:
Using the convexity of the log function appearing in the exact perturbation analysis result, together with
1205: 1596: 271: 40: 1600: 319: 43:
walk it is possible to sample the landscape of states that the system moves between, using the equation
1311:{\displaystyle e^{\beta C}\left\langle e^{-\beta (U_{\text{B}}-U_{\text{A}})}\right\rangle _{\text{A}}} 916: 657:
the Metropolis function defined above (which satisfies the detailed balance condition), and setting
2121: 2096:
Charles H. Bennett (1976) Efficient estimation of free energy differences from Monte Carlo data.
2077: 2058: 279: 207: 341: 426: 2115: 2137: 270:
is the Metropolis function. The resulting states are then sampled according to the
318:
certain interaction). The basic question to be addressed is, then, how can the
1318:. A direct derivation from the definitions is more straightforward, though. 16:
Algorithm for estimating the difference in free energy between two systems
835:
single sampling from the "mixed" ensemble suffices for the computation.
2066: 2062: 1796:{\displaystyle U_{\text{A}}=U(\lambda =0),U_{\text{B}}=U(\lambda =1),} 1718:
writing the potential energy as depending on a continuous parameter,
199: 39:
Take a system in a certain super (i.e. Gibbs) state. By performing a
2065:. Python-based code for MBAR and BAR is available for download at 2128:
Weighted Histogram Analysis Method (MBAR being the unbinned case)
1947:{\displaystyle {\text{A}}=\lambda ^{+},{\text{B}}=\lambda ^{-}} 278:. Alternatively, if the system is dynamically simulated in the 946:
Some assumptions needed for the efficiency are the following:
2057:
The Bennett acceptance ratio method is implemented in modern
1963: 1904: 1811: 1724: 1612: 1384: 1332: 1237: 1208: 1107: 1005: 919: 856: 670: 442: 366: 292: 216: 52: 911:(satisfying indeed the detailed balance condition). 2034: 1946: 1890: 1795: 1699: 1576: 1367: 1310: 1223: 1191: 1087: 934: 899: 823: 619: 417: 307:{\displaystyle \left\langle \cdots \right\rangle } 306: 262: 155: 843:Bennett explores which specific expression for Δ 232: 92: 1368:{\displaystyle U_{\text{B}}-U_{\text{A}}\ll kT} 900:{\displaystyle f(x)\equiv {\frac {1}{1+e^{x}}}} 190:) is the difference in potential energy, β = 1/ 8: 1688: 1661: 1640: 1613: 2025: 1992: 1982: 1977: 1962: 1938: 1926: 1917: 1905: 1903: 1882: 1849: 1812: 1810: 1763: 1729: 1723: 1691: 1681: 1668: 1643: 1633: 1620: 1611: 1563: 1553: 1539: 1526: 1499: 1488: 1478: 1465: 1437: 1428: 1417: 1404: 1383: 1350: 1337: 1331: 1302: 1287: 1274: 1260: 1242: 1236: 1207: 1183: 1168: 1155: 1144: 1106: 1079: 1064: 1051: 1037: 1010: 1004: 970:The multistate Bennett acceptance ratio ( 918: 888: 872: 855: 813: 794: 781: 751: 732: 719: 693: 675: 669: 609: 584: 571: 541: 516: 503: 477: 447: 441: 406: 379: 365: 291: 263:{\displaystyle M(x)\equiv \min(e^{-x},1)} 242: 215: 143: 111: 104: 80: 75: 65: 60: 51: 429:condition), and for every energy offset 2089: 418:{\displaystyle f(x)/f(-x)\equiv e^{-x}} 356:Bennett shows that for every function 1322:The second order (approximate) result 1224:{\displaystyle C\rightarrow -\infty } 7: 1714:The thermodynamic integration method 2122:Multistate Bennett Acceptance Ratio 966:Multistate Bennett acceptance ratio 2012: 1995: 1964: 1869: 1852: 1832: 1815: 1652: 1385: 1218: 1108: 1017: 926: 682: 457: 274:of the super state at temperature 144: 112: 14: 995:The exact (infinite order) result 935:{\displaystyle C\approx \Delta F} 433:, one has the exact relationship 2098:Journal of Computational Physics 2007: 2001: 1864: 1858: 1827: 1821: 1787: 1775: 1753: 1741: 1545: 1519: 1485: 1458: 1293: 1267: 1212: 1174: 1148: 1070: 1044: 983:The perturbation theory method 866: 860: 800: 774: 738: 712: 596: 564: 528: 496: 469: 454: 396: 387: 376: 370: 257: 235: 226: 220: 150: 137: 86: 71: 56: 1: 1591:The first order inequalities 1601:Gibbs-Bogoliubov inequality 907:, which is essentially the 2165: 1805:one has the exact result 425:(which is essentially the 2047:thermodynamic integration 1954:. we can therefore write 987:This method, also called 978:Relation to other methods 360:satisfying the condition 2116:Bennett Acceptance Ratio 2100:22 : 245–268 989:Free energy perturbation 909:Fermi–Dirac distribution 21:Bennett acceptance ratio 839:The most efficient case 2036: 1948: 1892: 1797: 1701: 1578: 1369: 1312: 1225: 1193: 1089: 936: 901: 825: 621: 419: 308: 272:Boltzmann distribution 264: 198:is the temperature in 157: 41:Metropolis Monte Carlo 2149:Statistical mechanics 2130:from AlchemistryWiki. 2124:from AlchemistryWiki. 2118:from AlchemistryWiki. 2037: 1949: 1893: 1798: 1702: 1579: 1370: 1313: 1226: 1194: 1090: 937: 902: 826: 622: 420: 320:Helmholtz free energy 309: 265: 158: 1961: 1902: 1809: 1722: 1610: 1382: 1330: 1235: 1206: 1105: 1003: 917: 854: 668: 440: 364: 290: 214: 180:) −  50: 1987: 1597:Jensen's inequality 344:corresponds to the 333: −  2078:Parallel tempering 2059:molecular dynamics 2032: 1973: 1944: 1888: 1793: 1697: 1574: 1365: 1308: 1221: 1189: 1085: 932: 897: 821: 617: 415: 304: 280:canonical ensemble 260: 208:Boltzmann constant 153: 29:Charles H. Bennett 2061:systems, such as 2019: 1929: 1908: 1876: 1839: 1766: 1732: 1694: 1684: 1671: 1646: 1636: 1623: 1556: 1542: 1529: 1502: 1481: 1468: 1445: 1431: 1420: 1407: 1353: 1340: 1305: 1290: 1277: 1186: 1171: 1158: 1082: 1067: 1054: 895: 819: 816: 797: 784: 754: 735: 722: 653:Substituting for 615: 612: 587: 574: 544: 519: 506: 342:Gibbs free energy 282:(also called the 78: 63: 2156: 2103: 2094: 2041: 2039: 2038: 2033: 2024: 2020: 2018: 2010: 1993: 1986: 1981: 1953: 1951: 1950: 1945: 1943: 1942: 1930: 1927: 1922: 1921: 1909: 1906: 1897: 1895: 1894: 1889: 1887: 1886: 1881: 1877: 1875: 1867: 1850: 1840: 1838: 1830: 1813: 1802: 1800: 1799: 1794: 1768: 1767: 1764: 1734: 1733: 1730: 1706: 1704: 1703: 1698: 1696: 1695: 1692: 1686: 1685: 1682: 1673: 1672: 1669: 1648: 1647: 1644: 1638: 1637: 1634: 1625: 1624: 1621: 1583: 1581: 1580: 1575: 1573: 1569: 1568: 1567: 1562: 1558: 1557: 1554: 1552: 1548: 1544: 1543: 1540: 1531: 1530: 1527: 1504: 1503: 1500: 1498: 1494: 1493: 1492: 1483: 1482: 1479: 1470: 1469: 1466: 1446: 1438: 1433: 1432: 1429: 1427: 1423: 1422: 1421: 1418: 1409: 1408: 1405: 1374: 1372: 1371: 1366: 1355: 1354: 1351: 1342: 1341: 1338: 1317: 1315: 1314: 1309: 1307: 1306: 1303: 1301: 1297: 1296: 1292: 1291: 1288: 1279: 1278: 1275: 1250: 1249: 1230: 1228: 1227: 1222: 1198: 1196: 1195: 1190: 1188: 1187: 1184: 1182: 1178: 1177: 1173: 1172: 1169: 1160: 1159: 1156: 1094: 1092: 1091: 1086: 1084: 1083: 1080: 1078: 1074: 1073: 1069: 1068: 1065: 1056: 1055: 1052: 1024: 1023: 941: 939: 938: 933: 906: 904: 903: 898: 896: 894: 893: 892: 873: 830: 828: 827: 822: 820: 818: 817: 814: 812: 808: 807: 803: 799: 798: 795: 786: 785: 782: 756: 755: 752: 750: 746: 745: 741: 737: 736: 733: 724: 723: 720: 694: 689: 688: 626: 624: 623: 618: 616: 614: 613: 610: 608: 604: 603: 599: 589: 588: 585: 576: 575: 572: 546: 545: 542: 540: 536: 535: 531: 521: 520: 517: 508: 507: 504: 478: 473: 472: 427:detailed balance 424: 422: 421: 416: 414: 413: 383: 352:The general case 313: 311: 310: 305: 303: 269: 267: 266: 261: 250: 249: 162: 160: 159: 154: 130: 126: 119: 118: 85: 84: 79: 76: 70: 69: 64: 61: 2164: 2163: 2159: 2158: 2157: 2155: 2154: 2153: 2134: 2133: 2112: 2107: 2106: 2095: 2091: 2086: 2074: 2055: 2011: 1994: 1988: 1959: 1958: 1934: 1913: 1900: 1899: 1868: 1851: 1845: 1844: 1831: 1814: 1807: 1806: 1759: 1725: 1720: 1719: 1716: 1687: 1677: 1664: 1639: 1629: 1616: 1608: 1607: 1593: 1535: 1522: 1518: 1514: 1513: 1509: 1508: 1484: 1474: 1461: 1457: 1453: 1452: 1451: 1447: 1413: 1400: 1399: 1395: 1394: 1380: 1379: 1346: 1333: 1328: 1327: 1324: 1283: 1270: 1256: 1252: 1251: 1238: 1233: 1232: 1204: 1203: 1164: 1151: 1140: 1136: 1135: 1103: 1102: 1060: 1047: 1033: 1029: 1028: 1006: 1001: 1000: 997: 985: 980: 968: 915: 914: 884: 877: 852: 851: 841: 790: 777: 770: 766: 762: 758: 757: 728: 715: 708: 704: 700: 696: 695: 671: 666: 665: 661:to zero, gives 651: 643: 636: 580: 567: 560: 556: 552: 548: 547: 512: 499: 492: 488: 484: 480: 479: 443: 438: 437: 402: 362: 361: 354: 339: 332: 293: 288: 287: 238: 212: 211: 189: 179: 100: 99: 95: 74: 59: 48: 47: 37: 17: 12: 11: 5: 2162: 2160: 2152: 2151: 2146: 2144:Thermodynamics 2136: 2135: 2132: 2131: 2125: 2119: 2111: 2110:External links 2108: 2105: 2104: 2088: 2087: 2085: 2082: 2081: 2080: 2073: 2070: 2054: 2053:Implementation 2051: 2043: 2042: 2031: 2028: 2023: 2017: 2014: 2009: 2006: 2003: 2000: 1997: 1991: 1985: 1980: 1976: 1972: 1969: 1966: 1941: 1937: 1933: 1925: 1920: 1916: 1912: 1885: 1880: 1874: 1871: 1866: 1863: 1860: 1857: 1854: 1848: 1843: 1837: 1834: 1829: 1826: 1823: 1820: 1817: 1792: 1789: 1786: 1783: 1780: 1777: 1774: 1771: 1762: 1758: 1755: 1752: 1749: 1746: 1743: 1740: 1737: 1728: 1715: 1712: 1708: 1707: 1690: 1680: 1676: 1667: 1663: 1660: 1657: 1654: 1651: 1642: 1632: 1628: 1619: 1615: 1592: 1589: 1585: 1584: 1572: 1566: 1561: 1551: 1547: 1538: 1534: 1525: 1521: 1517: 1512: 1507: 1497: 1491: 1487: 1477: 1473: 1464: 1460: 1456: 1450: 1444: 1441: 1436: 1426: 1416: 1412: 1403: 1398: 1393: 1390: 1387: 1364: 1361: 1358: 1349: 1345: 1336: 1326:Assuming that 1323: 1320: 1300: 1295: 1286: 1282: 1273: 1269: 1266: 1263: 1259: 1255: 1248: 1245: 1241: 1220: 1217: 1214: 1211: 1200: 1199: 1181: 1176: 1167: 1163: 1154: 1150: 1147: 1143: 1139: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1096: 1095: 1077: 1072: 1063: 1059: 1050: 1046: 1043: 1040: 1036: 1032: 1027: 1022: 1019: 1016: 1013: 1009: 996: 993: 984: 981: 979: 976: 967: 964: 963: 962: 955: 952: 944: 943: 931: 928: 925: 922: 912: 891: 887: 883: 880: 876: 871: 868: 865: 862: 859: 840: 837: 832: 831: 811: 806: 802: 793: 789: 780: 776: 773: 769: 765: 761: 749: 744: 740: 731: 727: 718: 714: 711: 707: 703: 699: 692: 687: 684: 681: 678: 674: 650: 649:The basic case 647: 641: 634: 628: 627: 607: 602: 598: 595: 592: 583: 579: 570: 566: 563: 559: 555: 551: 539: 534: 530: 527: 524: 515: 511: 502: 498: 495: 491: 487: 483: 476: 471: 468: 465: 462: 459: 456: 453: 450: 446: 412: 409: 405: 401: 398: 395: 392: 389: 386: 382: 378: 375: 372: 369: 353: 350: 337: 330: 322:change (Δ 302: 299: 296: 259: 256: 253: 248: 245: 241: 237: 234: 231: 228: 225: 222: 219: 185: 175: 164: 163: 152: 149: 146: 142: 139: 136: 133: 129: 125: 122: 117: 114: 110: 107: 103: 98: 94: 91: 88: 83: 73: 68: 58: 55: 36: 33: 15: 13: 10: 9: 6: 4: 3: 2: 2161: 2150: 2147: 2145: 2142: 2141: 2139: 2129: 2126: 2123: 2120: 2117: 2114: 2113: 2109: 2102: 2099: 2093: 2090: 2083: 2079: 2076: 2075: 2071: 2069: 2067: 2064: 2060: 2052: 2050: 2048: 2045:which is the 2029: 2026: 2021: 2015: 2004: 1998: 1989: 1983: 1978: 1974: 1970: 1967: 1957: 1956: 1955: 1939: 1935: 1931: 1923: 1918: 1914: 1910: 1883: 1878: 1872: 1861: 1855: 1846: 1841: 1835: 1824: 1818: 1803: 1790: 1784: 1781: 1778: 1772: 1769: 1760: 1756: 1750: 1747: 1744: 1738: 1735: 1726: 1713: 1711: 1678: 1674: 1665: 1658: 1655: 1649: 1630: 1626: 1617: 1606: 1605: 1604: 1602: 1598: 1590: 1588: 1570: 1564: 1559: 1549: 1536: 1532: 1523: 1515: 1510: 1505: 1495: 1489: 1475: 1471: 1462: 1454: 1448: 1442: 1439: 1434: 1424: 1414: 1410: 1401: 1396: 1391: 1388: 1378: 1377: 1376: 1362: 1359: 1356: 1347: 1343: 1334: 1321: 1319: 1298: 1284: 1280: 1271: 1264: 1261: 1257: 1253: 1246: 1243: 1239: 1215: 1209: 1179: 1165: 1161: 1152: 1145: 1141: 1137: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1101: 1100: 1099: 1075: 1061: 1057: 1048: 1041: 1038: 1034: 1030: 1025: 1020: 1014: 1011: 1007: 999: 998: 994: 992: 990: 982: 977: 975: 973: 965: 960: 956: 953: 949: 948: 947: 929: 923: 920: 913: 910: 889: 885: 881: 878: 874: 869: 863: 857: 850: 849: 848: 846: 838: 836: 809: 804: 791: 787: 778: 771: 767: 763: 759: 747: 742: 729: 725: 716: 709: 705: 701: 697: 690: 685: 679: 676: 672: 664: 663: 662: 660: 656: 648: 646: 640: 633: 605: 600: 593: 590: 581: 577: 568: 561: 557: 553: 549: 537: 532: 525: 522: 513: 509: 500: 493: 489: 485: 481: 474: 466: 463: 460: 451: 448: 444: 436: 435: 434: 432: 428: 410: 407: 403: 399: 393: 390: 384: 380: 373: 367: 359: 351: 349: 347: 343: 336: 329: 326: =  325: 321: 315: 300: 297: 294: 285: 281: 277: 273: 254: 251: 246: 243: 239: 229: 223: 217: 209: 205: 201: 197: 193: 188: 183: 178: 173: 169: 147: 140: 134: 131: 127: 123: 120: 115: 108: 105: 101: 96: 89: 81: 66: 53: 46: 45: 44: 42: 35:Preliminaries 34: 32: 30: 26: 22: 2097: 2092: 2056: 2044: 1804: 1717: 1709: 1594: 1586: 1325: 1201: 1097: 986: 971: 969: 958: 945: 844: 842: 833: 658: 654: 652: 638: 631: 629: 430: 357: 355: 345: 334: 327: 323: 316: 283: 275: 203: 195: 191: 186: 181: 176: 171: 167: 165: 38: 24: 20: 18: 2138:Categories 2084:References 348:ensemble. 2030:λ 2016:λ 2013:∂ 2005:λ 1996:∂ 1975:∫ 1965:Δ 1940:− 1936:λ 1915:λ 1884:λ 1873:λ 1870:∂ 1862:λ 1853:∂ 1836:λ 1833:∂ 1825:λ 1816:∂ 1779:λ 1745:λ 1689:⟩ 1675:− 1662:⟨ 1659:≤ 1653:Δ 1650:≤ 1641:⟩ 1627:− 1614:⟨ 1533:− 1506:− 1472:− 1440:β 1435:− 1411:− 1392:≈ 1386:Δ 1357:≪ 1344:− 1281:− 1265:β 1262:− 1244:β 1219:∞ 1216:− 1213:→ 1162:− 1146:β 1133:⁡ 1127:⋅ 1118:− 1109:Δ 1058:− 1042:β 1039:− 1018:Δ 1015:β 1012:− 951:adequate. 927:Δ 924:≈ 870:≡ 788:− 772:β 726:− 710:β 683:Δ 680:β 677:− 578:− 562:β 523:− 510:− 494:β 464:− 458:Δ 452:β 449:− 408:− 400:≡ 391:− 298:⋯ 244:− 230:≡ 145:Δ 141:β 113:Δ 109:β 106:− 72:→ 31:in 1976. 2072:See also 2022:⟩ 1990:⟨ 1879:⟩ 1847:⟨ 1550:⟩ 1516:⟨ 1496:⟩ 1455:⟨ 1425:⟩ 1397:⟨ 1299:⟩ 1254:⟨ 1180:⟩ 1138:⟨ 1076:⟩ 1031:⟨ 810:⟩ 760:⟨ 748:⟩ 698:⟨ 606:⟩ 550:⟨ 538:⟩ 482:⟨ 301:⟩ 295:⟨ 202:, while 23:method ( 2063:Gromacs 210:), and 206:is the 200:kelvins 170:=  166:where Δ 630:where 184:(State 174:(State 77:State 62:State 1098:or 972:MBAR 637:and 19:The 1130:log 346:NpT 284:NVT 233:min 93:min 25:BAR 2140:: 2068:. 1603:: 314:. 192:kT 2027:d 2008:) 2002:( 1999:U 1984:1 1979:0 1971:= 1968:F 1932:= 1928:B 1924:, 1919:+ 1911:= 1907:A 1865:) 1859:( 1856:U 1842:= 1828:) 1822:( 1819:F 1791:, 1788:) 1785:1 1782:= 1776:( 1773:U 1770:= 1765:B 1761:U 1757:, 1754:) 1751:0 1748:= 1742:( 1739:U 1736:= 1731:A 1727:U 1693:A 1683:A 1679:U 1670:B 1666:U 1656:F 1645:B 1635:A 1631:U 1622:B 1618:U 1571:) 1565:2 1560:) 1555:A 1546:) 1541:A 1537:U 1528:B 1524:U 1520:( 1511:( 1501:A 1490:2 1486:) 1480:A 1476:U 1467:B 1463:U 1459:( 1449:( 1443:2 1430:A 1419:A 1415:U 1406:B 1402:U 1389:F 1363:T 1360:k 1352:A 1348:U 1339:B 1335:U 1304:A 1294:) 1289:A 1285:U 1276:B 1272:U 1268:( 1258:e 1247:C 1240:e 1210:C 1185:A 1175:) 1170:B 1166:U 1157:A 1153:U 1149:( 1142:e 1124:T 1121:k 1115:= 1112:F 1081:A 1071:) 1066:A 1062:U 1053:B 1049:U 1045:( 1035:e 1026:= 1021:F 1008:e 959:C 930:F 921:C 890:x 886:e 882:+ 879:1 875:1 867:) 864:x 861:( 858:f 845:F 815:B 805:) 801:) 796:B 792:U 783:A 779:U 775:( 768:( 764:M 753:A 743:) 739:) 734:A 730:U 721:B 717:U 713:( 706:( 702:M 691:= 686:F 673:e 659:C 655:f 642:B 639:U 635:A 632:U 611:B 601:) 597:) 594:C 591:+ 586:B 582:U 573:A 569:U 565:( 558:( 554:f 543:A 533:) 529:) 526:C 518:A 514:U 505:B 501:U 497:( 490:( 486:f 475:= 470:) 467:C 461:F 455:( 445:e 431:C 411:x 404:e 397:) 394:x 388:( 385:f 381:/ 377:) 374:x 371:( 368:f 358:f 338:A 335:F 331:B 328:F 324:F 276:T 258:) 255:1 252:, 247:x 240:e 236:( 227:) 224:x 221:( 218:M 204:k 196:T 194:( 187:x 182:U 177:y 172:U 168:U 151:) 148:U 138:( 135:M 132:= 128:) 124:1 121:, 116:U 102:e 97:( 90:= 87:) 82:y 67:x 57:( 54:p

Index

Charles H. Bennett
Metropolis Monte Carlo
kelvins
Boltzmann constant
Boltzmann distribution
canonical ensemble
Helmholtz free energy
Gibbs free energy
detailed balance
Fermi–Dirac distribution
Free energy perturbation
Jensen's inequality
Gibbs-Bogoliubov inequality
thermodynamic integration
molecular dynamics
Gromacs

Parallel tempering

Bennett Acceptance Ratio
Multistate Bennett Acceptance Ratio
Weighted Histogram Analysis Method (MBAR being the unbinned case)
Categories
Thermodynamics
Statistical mechanics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑