Knowledge

Free-energy perturbation

Source đź“ť

257: 376:
is another free-energy calculation technique that is typically used for calculating the free-energy change associated with a change in "position" coordinates as opposed to "chemical" coordinates, although umbrella sampling can also be used for a chemical transformation when the "chemical" coordinate
318:
Free-energy perturbation calculations only converge properly when the difference between the two states is small enough; therefore it is usually necessary to divide a perturbation into a series of smaller "windows", which are computed independently. Since there is no need for constant communication
78: 252:{\displaystyle \Delta F(\mathbf {A} \to \mathbf {B} )=F_{\mathbf {B} }-F_{\mathbf {A} }=-k_{\text{B}}T\ln \left\langle \exp \left(-{\frac {E_{\text{B}}-E_{\mathbf {A} }}{k_{\text{B}}T}}\right)\right\rangle _{\mathbf {A} },} 377:
is treated as a dynamic variable (as in the case of the Lambda dynamics approach of Kong and Brooks). An alternative to free-energy perturbation for computing potentials of mean force in chemical space is
605:
Sampson, Jared M.; Cannon, Daniel A.; Duan, Jianxin; Epstein, Jordan C. K.; Sergeeva, Alina P.; Katsamba, Phinikoula S.; Mannepalli, Seetha M.; Bahna, Fabiana A.; Adihou, Hélène (2024-04-24),
506:
Sampson, Jared M.; Cannon, Daniel A.; Duan, Jianxin; Epstein, Jordan C. K.; Sergeeva, Alina P.; Katsamba, Phinikoula S.; Mannepalli, Seetha M.; Bahna, Fabiana A.; Adihou, Hélène (2024-04-24),
319:
between the simulation for one window and the next, the process can be trivially parallelized by running each window on a different CPU, in what is known as an "
60:
The FEP method was introduced by Robert W. Zwanzig in 1954. According to the free-energy perturbation method, the free-energy difference for going from state
305:
obtained is for "mutating" one molecule onto another, or it may be a difference of geometry, in which case one obtains a free-energy map along one or more
741: 567: 393:
Several software packages have been developed to help perform FEP calculations. Below is a short list of some of the most common programs:
366:
used for FEP simulations cannot handle breaking bonds. A hybrid method that has the advantages of both QM and MM calculations is called
778: 608:
Robust prediction of relative binding energies for protein-protein complex mutations using free energy perturbation calculations
509:
Robust prediction of relative binding energies for protein-protein complex mutations using free energy perturbation calculations
783: 385:
method. Adaptations to FEP exist which attempt to apportion free-energy changes to subsections of the chemical structure.
408: 716: 465: 378: 46: 382: 363: 320: 311: 42: 54: 354:
studies and antibody affinity maturation. For the study of reactions it is often necessary to involve a
38: 359: 306: 581: 418: 278: 50: 735: 606: 573: 563: 507: 470: 443: 373: 355: 340: 554:, Methods in Molecular Biology, vol. 2266, New York, NY: Springer US, pp. 203–226, 433: 645: 620: 612: 555: 521: 513: 489: 453: 336: 546:
Jespers, Willem; Åqvist, Johan; Gutiérrez-de-Terán, Hugo (2021), Ballante, Flavio (ed.),
625: 526: 17: 344: 772: 585: 662: 448: 559: 351: 267: 547: 616: 517: 428: 649: 281:, and the angular brackets denote an average over a simulation run for state 331:
FEP calculations have been used for studying host–guest binding energetics,
577: 423: 720: 493: 289:, but each time a new configuration is accepted, the energy for state 413: 680: 403: 367: 339:
on reactions, and enzymatic reactions. Other applications are the
644:
Irwin, B. W. J., J. Chem. Theory Comput. 2018, 14, 6, 3218–3227.
548:"Free Energy Calculations for Protein–Ligand Binding Prediction" 438: 381:. Another alternative, which is probably more efficient, is the 332: 755: 698: 358:(QM) representation of the reaction center because the 301:
may be in the atom types involved, in which case the Δ
285:. In practice, one runs a normal simulation for state 68:
is obtained from the following equation, known as the
81: 488:Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420–1426. 251: 293:is also computed. The difference between states 8: 552:Protein-Ligand Interactions and Drug Design 309:. This free-energy map is also known as a 624: 525: 239: 238: 216: 203: 202: 189: 182: 147: 130: 129: 115: 114: 99: 91: 80: 481: 740:: CS1 maint: archived copy as title ( 733: 699:"The Amber Molecular Dynamics Package" 7: 82: 25: 27:Method in computational chemistry 240: 204: 131: 116: 100: 92: 104: 96: 88: 1: 560:10.1007/978-1-0716-1209-5_12 800: 663:"Flare FEP | Cresset" 681:"FEP+ | Schrödinger" 617:10.1101/2024.04.22.590325 518:10.1101/2024.04.22.590325 466:Thermodynamic integration 379:thermodynamic integration 650:10.1021/acs.jctc.8b00027 383:Bennett acceptance ratio 31:Free-energy perturbation 18:Free energy perturbation 779:Computational chemistry 321:embarrassingly parallel 312:potential of mean force 43:computational chemistry 37:) is a method based on 253: 55:Metropolis Monte Carlo 784:Statistical mechanics 667:www.cresset-group.com 254: 39:statistical mechanics 307:reaction coordinates 79: 685:www.schrodinger.com 360:molecular mechanics 356:quantum-mechanical 279:Boltzmann constant 249: 51:molecular dynamics 760:www.qsimulate.com 569:978-1-0716-1209-5 494:10.1063/1.1740409 471:Umbrella sampling 374:Umbrella sampling 341:virtual screening 226: 219: 192: 150: 49:differences from 16:(Redirected from 791: 764: 763: 752: 746: 745: 739: 731: 729: 728: 719:. Archived from 713: 707: 706: 695: 689: 688: 677: 671: 670: 659: 653: 642: 636: 635: 634: 633: 628: 602: 596: 594: 593: 592: 543: 537: 536: 535: 534: 529: 503: 497: 486: 258: 256: 255: 250: 245: 244: 243: 237: 233: 232: 228: 227: 225: 221: 220: 217: 210: 209: 208: 207: 194: 193: 190: 183: 152: 151: 148: 136: 135: 134: 121: 120: 119: 103: 95: 70:Zwanzig equation 41:that is used in 21: 799: 798: 794: 793: 792: 790: 789: 788: 769: 768: 767: 754: 753: 749: 732: 726: 724: 717:"Archived copy" 715: 714: 710: 697: 696: 692: 679: 678: 674: 661: 660: 656: 643: 639: 631: 629: 604: 603: 599: 590: 588: 570: 545: 544: 540: 532: 530: 505: 504: 500: 487: 483: 479: 462: 391: 337:solvent effects 329: 276: 212: 211: 198: 185: 184: 178: 174: 167: 163: 162: 143: 125: 110: 77: 76: 28: 23: 22: 15: 12: 11: 5: 797: 795: 787: 786: 781: 771: 770: 766: 765: 747: 708: 690: 672: 654: 637: 597: 568: 538: 498: 480: 478: 475: 474: 473: 468: 461: 458: 457: 456: 451: 446: 441: 436: 431: 426: 421: 416: 411: 406: 401: 398: 390: 387: 345:drug discovery 343:of ligands in 328: 325: 274: 260: 259: 248: 242: 236: 231: 224: 215: 206: 201: 197: 188: 181: 177: 173: 170: 166: 161: 158: 155: 146: 142: 139: 133: 128: 124: 118: 113: 109: 106: 102: 98: 94: 90: 87: 84: 45:for computing 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 796: 785: 782: 780: 777: 776: 774: 761: 757: 751: 748: 743: 737: 723:on 2014-12-28 722: 718: 712: 709: 704: 700: 694: 691: 686: 682: 676: 673: 668: 664: 658: 655: 651: 647: 641: 638: 627: 622: 618: 614: 610: 609: 601: 598: 587: 583: 579: 575: 571: 565: 561: 557: 553: 549: 542: 539: 528: 523: 519: 515: 511: 510: 502: 499: 495: 491: 485: 482: 476: 472: 469: 467: 464: 463: 459: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 399: 396: 395: 394: 388: 386: 384: 380: 375: 371: 369: 365: 361: 357: 353: 350: 346: 342: 338: 335:predictions, 334: 326: 324: 322: 316: 314: 313: 308: 304: 300: 296: 292: 288: 284: 280: 273: 269: 265: 246: 234: 229: 222: 213: 199: 195: 186: 179: 175: 171: 168: 164: 159: 156: 153: 144: 140: 137: 126: 122: 111: 107: 85: 75: 74: 73: 71: 67: 63: 58: 57:simulations. 56: 52: 48: 44: 40: 36: 32: 19: 759: 750: 725:. Retrieved 721:the original 711: 702: 693: 684: 675: 666: 657: 640: 630:, retrieved 607: 600: 589:, retrieved 551: 541: 531:, retrieved 508: 501: 484: 392: 372: 364:force fields 348: 330: 317: 310: 302: 298: 294: 290: 286: 282: 271: 263: 261: 69: 65: 61: 59: 34: 30: 29: 756:"QSimulate" 703:ambermd.org 352:mutagenesis 327:Application 268:temperature 47:free-energy 773:Categories 727:2015-01-18 632:2024-05-04 591:2021-03-30 533:2024-05-04 477:References 429:MacroModel 586:226701336 397:Flare FEP 349:in silico 323:" setup. 196:− 180:− 172:⁡ 160:⁡ 141:− 123:− 97:→ 83:Δ 64:to state 736:cite web 626:11071377 578:33759129 527:11071377 460:See also 389:Software 235:⟩ 165:⟨ 434:MOLARIS 424:GROMACS 419:Desmond 315:(PMF). 277:is the 266:is the 623:  584:  576:  566:  524:  444:Tinker 414:CHARMM 262:where 582:S2CID 454:QUELO 404:AMBER 368:QM/MM 362:(MM) 742:link 574:PMID 564:ISBN 439:NAMD 409:BOSS 400:FEP+ 297:and 646:doi 621:PMC 613:doi 556:doi 522:PMC 514:doi 490:doi 333:pKa 169:exp 53:or 35:FEP 775:: 758:. 738:}} 734:{{ 701:. 683:. 665:. 619:, 611:, 580:, 572:, 562:, 550:, 520:, 512:, 370:. 347:, 270:, 157:ln 72:: 762:. 744:) 730:. 705:. 687:. 669:. 652:. 648:: 615:: 595:. 558:: 516:: 496:. 492:: 449:Q 303:F 299:B 295:A 291:B 287:A 283:A 275:B 272:k 264:T 247:, 241:A 230:) 223:T 218:B 214:k 205:A 200:E 191:B 187:E 176:( 154:T 149:B 145:k 138:= 132:A 127:F 117:B 112:F 108:= 105:) 101:B 93:A 89:( 86:F 66:B 62:A 33:( 20:)

Index

Free energy perturbation
statistical mechanics
computational chemistry
free-energy
molecular dynamics
Metropolis Monte Carlo
temperature
Boltzmann constant
reaction coordinates
potential of mean force
embarrassingly parallel
pKa
solvent effects
virtual screening
drug discovery
mutagenesis
quantum-mechanical
molecular mechanics
force fields
QM/MM
Umbrella sampling
thermodynamic integration
Bennett acceptance ratio
AMBER
BOSS
CHARMM
Desmond
GROMACS
MacroModel
MOLARIS

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑