Knowledge (XXG)

Berlekamp switching game

Source đź“ť

184:
first player into another pattern (or, possibly, leaving it unchanged). The goal of the first player is to have as many lights remaining lit at the end of the game as possible, and the goal of the second player is to have as few lights remaining lit as possible. Therefore, the first player should choose a pattern of lights for which the second player cannot turn off many lights.
1953:
that is as far as possible from the linear subspace. The set of bulbs whose state is changed by the second player, with best play, gives the closest point in the linear subspace. The set of bulbs that remain lit after these choices are the ones whose number defines the Hamming distance between these
183:
The game is played in two rounds. In the first round, the first player uses the switches that control individual lights, to set the lights on or off arbitrarily. In the second round, the second player uses the switches that control rows or columns of lights, changing the pattern of lights set by the
179:
switches, one for each row or column of lightbulbs. Whenever any of these switches is flipped, every lightbulb in the row or column that it controls changes from off to on or from on to off, depending on its previous state. When flipping more than one switch, the order in which the switches are
1778:
operation on the sets of lit bulbs). One can define a linear subspace consisting of all patterns that the second player can turn completely off, or equivalently of all patterns that the second player could create starting with a board that is completely off. Although the second player has
152:
switches on one side of the room controls each lightbulb individually. Flipping one of these switches changes its lightbulb from off to on or from on to off, depending on its previous state. On the other side of the room is another bank of
990: 1391: 1205:, but if it is larger the second player can flip all row switches to get a value that is smaller by the same amount. This random strategy for the second player can be made non-random using the 47:
controlled by two banks of switches, with one game player trying to turn many lightbulbs on and the other trying to keep as many as possible off. It can be used to demonstrate the concept of
1087: 2036:. CBMS-NSF Regional Conference Series in Applied Mathematics. Vol. 64 (Second ed.). Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics. pp. 45–50. 1951: 1746: 1619: 1532: 312: 1203: 1123: 476: 1318: 1565: 1292: 1167: 261: 224: 1849: 1772: 1260: 737: 618: 87: 707: 644: 1917: 1810: 1712: 856: 681: 509: 478:. Beyond the question of how to play well in an individual game, a broader question that has been the object of mathematical research is to characterize the value of 2462: 2175: 1881: 1674: 418: 369: 177: 150: 2237: 1642: 1585: 1495: 1471: 1451: 1431: 1018: 760: 589: 569: 549: 529: 389: 340: 127: 107: 180:
flipped does not make a difference to the outcome: the same lightbulbs will be lit at the end of the sequence of flips no matter what order they are flipped.
1774:
array of lightbulbs, with a vector addition operation that combines two patterns by lighting the bulbs that appear in exactly one of the two patterns (the
2354: 2537: 1000:
Because there are exponentially many choices for which switches to flip, an exhaustive search for the optimal choice is not possible for large
2251:. Proceedings of Symposia in Applied Mathematics. Vol. 10. Providence, Rhode Island: American Mathematical Society. pp. 175–178. 1233: 1206: 2414:
Pellegrino, D.; Raposo Jr, A. (2021). "Upper bounds for the constants of Bennett's inequality and the Gale-Berlekamp switching game".
2438: 2129: 2075: 2049: 420:. Therefore, one can describe the largest number of lights that can be achieved by the best play for the first player as a number 2580: 2575:; Schudy, Warren (2009). "Linear time approximation schemes for the Gale–Berlekamp game and related minimization problems". In 2307: 1228:
Finding the optimal choice for the second player in the game, once the first player has chosen which bulbs to light, is an
2244: 929: 2582:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009
1323: 1919:
is the covering radius of this code. The set of lit bulbs chosen by the first player, with best play, gives a point of
2624: 2369:
Pellegrino, D.; Raposo Jr, A. (2022). "Constants of the Kahane–Salem–Zygmund inequality asymptotically bounded by 1".
226:
in the Mathematics Department commons room. David Gale also invented the game independently, some time prior to 1971.
263:
game, how well the second player can do against a first player who plays randomly, and by J. W. Moon and
1026: 2073:
Araújo, Gustavo; Pellegrino, Daniel (2019). "A Gale–Berlekamp permutation-switching problem in higher dimensions".
2492: 63:
The equipment for playing the game consists of a room containing rectangular array of lightbulbs, of dimensions
342:, and the smallest number of lights that can be achieved by the best play for the second player as a number 197: 2349:"Sequence A005311 (Solution to Berlekamp's switching game (or lightbulb game) on an n X n board)" 2619: 1922: 1717: 1590: 1503: 278: 1172: 1092: 2535:
Roth, Ron M.; Viswanathan, Krishnamurthy (2008). "On the hardness of decoding the Gale–Berlekamp code".
275:
choices of the first player, in the limit of large game board sizes, the optimal game value is close to
1297: 423: 1541: 1265: 1128: 2576: 1775: 1567:. The elements of the subspace are called codewords, and the covering radius is the smallest number 923: 1883:, because flipping all of the second player's switches has no effect on the pattern of lit bulbs. 1089:
by playing randomly. Similarly, the second player can obtain a value whose expected distance from
2586: 2517: 2415: 2396: 2378: 2240: 2110: 2084: 1218: 551:, to determine its behavior as a function, or to calculate its value for as many combinations of 240: 203: 1966:, a different puzzle involving turning off lightbulbs using switches that control multiple bulbs 1815: 1751: 1239: 716: 597: 66: 2216: 2045: 1963: 686: 623: 230: 24: 2029: 1889: 1782: 1679: 828: 653: 481: 200:
from 1966 to 1971. While there, he constructed a physical instance of this game for the case
2596: 2546: 2501: 2388: 2316: 2188: 2094: 2037: 2000: 1622: 2558: 2513: 2473: 2444: 2330: 2287: 2256: 2202: 2157: 2106: 2059: 1854: 2572: 2554: 2509: 2469: 2326: 2283: 2252: 2198: 2102: 2055: 1992: 1650: 1474: 1406: 1222: 1214: 1210: 1020:, setting up the question of how well computationally-limited players can play this game. 394: 345: 322:
Mathematically, one can describe the lights turned on by the first player's move as a set
48: 28: 156: 132: 2222: 1627: 1570: 1480: 1456: 1436: 1416: 1003: 745: 574: 554: 534: 514: 374: 325: 112: 92: 2613: 2487: 2400: 1402: 52: 2521: 2114: 2025: 1498: 2466:
Combinatorial theory and its applications, II (Proc. Colloq., BalatonfĂĽred, 1969)
2004: 2344: 1988: 1410: 647: 2321: 2302: 2505: 2392: 2098: 272: 36: 2600: 2550: 2271: 2193: 2153: 2041: 264: 193: 44: 1991:(1987). "Unsolved problems related to the covering radius of codes". In 1229: 1213:
algorithm that obtains the same solution value guarantees. A different
1169:
by playing randomly; this value might either be larger or smaller than
1812:
choices for how to set the second bank of switches, this subspace has
2420: 237:), whose computer experiments can be interpreted as asking, for the 2383: 2089: 1262:
game that can find a choice for the second player that leaves only
2591: 1535: 271:), who address Gleason's question theoretically, showing that for 2275: 2130:"Elwyn Berlekamp, game theorist and coding pioneer, dies at 78" 229:
Early research on related problems included publications by
2348: 1023:
The first player can cause the expected game value to be
1294:
times the minimum possible number of lit bulbs, for any
371:. The best play for the first player is to choose a set 1177: 1097: 1031: 934: 426: 283: 2447: 2225: 2160: 1925: 1892: 1857: 1818: 1785: 1754: 1720: 1682: 1653: 1630: 1593: 1573: 1544: 1506: 1483: 1459: 1439: 1419: 1326: 1300: 1268: 1242: 1175: 1131: 1095: 1029: 1006: 932: 831: 748: 719: 689: 656: 626: 600: 577: 557: 537: 517: 484: 397: 377: 348: 328: 281: 243: 206: 159: 135: 115: 95: 69: 39:, who discovered the same game independently, or the 2303:"The correct solution to Berlekamp's switching game" 1748:
describes all possible patterns of lit bulbs on the
985:{\displaystyle {\tfrac {n^{2}}{2}}-\Theta (n^{3/2})} 2301:Carlson, Jordan; Stolarski, Daniel (October 2004). 2456: 2231: 2169: 1945: 1911: 1875: 1843: 1804: 1766: 1740: 1706: 1668: 1636: 1613: 1579: 1559: 1526: 1489: 1465: 1445: 1425: 1386:{\displaystyle O(n^{2})+2^{O(1/\varepsilon ^{2})}} 1385: 1312: 1286: 1254: 1197: 1161: 1117: 1081: 1012: 984: 850: 754: 731: 701: 675: 638: 612: 583: 563: 543: 523: 503: 470: 412: 383: 363: 334: 306: 255: 218: 171: 144: 121: 101: 81: 2441:; Sulyok, M. (1970). "On the sum of elements of 447: 1714:. For these parameter values, the vector space 1997:Open Problems in Communication and Computation 1082:{\displaystyle {\tfrac {n^{2}}{2}}-O(n^{3/2})} 8: 1401:The Berlekamp switching game can be used in 2152:Brown, Thomas A.; Spencer, Joel H. (1971). 2590: 2446: 2433: 2431: 2419: 2382: 2355:On-Line Encyclopedia of Integer Sequences 2320: 2224: 2192: 2159: 2088: 2020: 2018: 2016: 2014: 1937: 1932: 1928: 1927: 1924: 1897: 1891: 1856: 1823: 1817: 1790: 1784: 1753: 1732: 1727: 1723: 1722: 1719: 1681: 1652: 1629: 1605: 1600: 1596: 1595: 1592: 1572: 1551: 1547: 1546: 1543: 1518: 1513: 1509: 1508: 1505: 1482: 1458: 1438: 1418: 1372: 1363: 1353: 1337: 1325: 1299: 1267: 1241: 1183: 1176: 1174: 1146: 1142: 1130: 1103: 1096: 1094: 1066: 1062: 1037: 1030: 1028: 1005: 969: 965: 940: 933: 931: 836: 830: 747: 718: 688: 661: 655: 625: 599: 576: 556: 536: 516: 489: 483: 450: 431: 425: 396: 376: 347: 327: 298: 282: 280: 268: 242: 205: 158: 134: 114: 94: 68: 2147: 2145: 2143: 2034:Ten Lectures on the Probabilistic Method 1983: 1981: 1979: 711: 2538:IEEE Transactions on Information Theory 1975: 234: 2276:"An extremal problem in matrix theory" 1999:. New York: Springer. pp. 51–56. 2136:. University of California, Berkeley. 7: 2490:(1997). "The fourth moment method". 1946:{\displaystyle \mathbb {F} _{2}^{n}} 1741:{\displaystyle \mathbb {F} _{2}^{n}} 1614:{\displaystyle \mathbb {F} _{2}^{n}} 1527:{\displaystyle \mathbb {F} _{2}^{n}} 1234:polynomial-time approximation scheme 307:{\displaystyle {\tfrac {1}{2}}n^{2}} 1207:method of conditional probabilities 1198:{\displaystyle {\tfrac {n^{2}}{2}}} 1118:{\displaystyle {\tfrac {n^{2}}{2}}} 27:proposed by American mathematician 2128:Sanders, Robert (April 18, 2019). 1132: 955: 471:{\textstyle R_{a,b}=\max _{S}f(S)} 14: 2219:(1960). "A search problem in the 2076:European Journal of Combinatorics 1413:. A binary linear code of length 1313:{\displaystyle \varepsilon >0} 1560:{\displaystyle \mathbb {F} _{2}} 1287:{\displaystyle (1+\varepsilon )} 1162:{\displaystyle \Omega (n^{3/2})} 2371:Journal of Functional Analysis 1851:elements, giving it dimension 1536:finite field with two elements 1378: 1357: 1343: 1330: 1281: 1269: 1156: 1135: 1076: 1055: 979: 958: 465: 459: 407: 401: 358: 352: 31:. It has also been called the 1: 2030:"Lecture 6: Chaos from order" 1232:problem. However, there is a 511:in general, as a function of 33:Gale–Berlekamp switching game 2005:10.1007/978-1-4612-4808-8_11 2177:matrices under line shifts" 1397:Connection to coding theory 256:{\displaystyle 15\times 15} 219:{\displaystyle 10\times 10} 2641: 2345:Sloane, N. J. A. 2322:10.1016/j.disc.2004.06.015 1405:as a demonstration of the 620:array has been solved for 43:. It involves a system of 2585:. ACM. pp. 313–322. 2506:10.1137/S0097539792240005 2493:SIAM Journal on Computing 2393:10.1016/j.jfa.2021.109293 2099:10.1016/j.ejc.2018.10.007 1844:{\displaystyle 2^{a+b-1}} 1767:{\displaystyle a\times b} 1587:such that every point of 1255:{\displaystyle n\times n} 732:{\displaystyle n\times n} 613:{\displaystyle n\times n} 82:{\displaystyle a\times b} 1221:in the complexity class 996:Computational complexity 926:, these numbers grow as 702:{\displaystyle n\leq 20} 639:{\displaystyle n\leq 12} 21:Berlekamp switching game 2601:10.1145/1536414.1536458 2551:10.1109/TIT.2007.915716 2282:. 3(18) (37): 209–211. 2194:10.4064/cm-23-1-165-171 2181:Colloquium Mathematicum 2042:10.1137/1.9781611970074 1995:; Gopinath, B. (eds.). 1912:{\displaystyle R_{a,b}} 1805:{\displaystyle 2^{a+b}} 1707:{\displaystyle d=a+b-1} 851:{\displaystyle R_{n,n}} 676:{\displaystyle R_{n,n}} 504:{\displaystyle R_{a,b}} 198:Murray Hill, New Jersey 41:unbalancing lights game 2458: 2249:Combinatorial Analysis 2233: 2171: 1947: 1913: 1877: 1845: 1806: 1768: 1742: 1708: 1670: 1638: 1615: 1581: 1561: 1528: 1491: 1467: 1447: 1427: 1387: 1314: 1288: 1256: 1199: 1163: 1119: 1083: 1014: 986: 852: 756: 733: 703: 677: 640: 614: 585: 565: 545: 525: 505: 472: 414: 385: 365: 336: 308: 257: 220: 173: 146: 123: 103: 83: 2577:Mitzenmacher, Michael 2459: 2457:{\displaystyle \pm 1} 2234: 2172: 2170:{\displaystyle \pm 1} 1948: 1914: 1878: 1876:{\displaystyle a+b-1} 1846: 1807: 1769: 1743: 1709: 1671: 1639: 1616: 1582: 1562: 1529: 1492: 1468: 1448: 1428: 1388: 1315: 1289: 1257: 1200: 1164: 1120: 1084: 1015: 987: 853: 757: 734: 709:. These numbers are: 704: 678: 641: 615: 594:The case of a square 586: 566: 546: 526: 506: 473: 415: 386: 366: 337: 309: 258: 231:Andrew M. Gleason 221: 174: 147: 124: 104: 84: 2468:. pp. 721–728. 2445: 2308:Discrete Mathematics 2223: 2158: 1923: 1890: 1855: 1816: 1783: 1776:symmetric difference 1752: 1718: 1680: 1669:{\displaystyle n=ab} 1651: 1628: 1591: 1571: 1542: 1504: 1481: 1457: 1437: 1417: 1409:of a certain binary 1324: 1298: 1266: 1240: 1173: 1129: 1093: 1027: 1004: 930: 829: 746: 717: 687: 683:have been found for 654: 624: 598: 575: 555: 535: 515: 482: 424: 413:{\displaystyle f(S)} 395: 375: 364:{\displaystyle f(S)} 346: 326: 279: 241: 204: 192:Berlekamp worked at 157: 133: 113: 93: 67: 1942: 1737: 1610: 1523: 739: 172:{\displaystyle a+b} 2625:Mathematical games 2454: 2358:. OEIS Foundation. 2280:MatematiÄŤki Vesnik 2245:Hall, Marshall Jr. 2229: 2217:Gleason, Andrew M. 2167: 1943: 1926: 1909: 1873: 1841: 1802: 1764: 1738: 1721: 1704: 1666: 1634: 1611: 1594: 1577: 1557: 1524: 1507: 1487: 1463: 1443: 1423: 1383: 1310: 1284: 1252: 1219:parallel algorithm 1195: 1193: 1159: 1115: 1113: 1079: 1047: 1010: 982: 950: 848: 752: 729: 712: 699: 673: 636: 610: 581: 561: 541: 521: 501: 468: 455: 410: 381: 361: 332: 304: 292: 253: 216: 169: 145:{\displaystyle ab} 142: 119: 99: 79: 2232:{\displaystyle n} 2154:"Minimization of 1964:Lights Out (game) 1637:{\displaystyle r} 1580:{\displaystyle r} 1490:{\displaystyle n} 1466:{\displaystyle d} 1446:{\displaystyle d} 1426:{\displaystyle n} 1192: 1112: 1046: 1013:{\displaystyle n} 949: 921: 920: 755:{\displaystyle n} 584:{\displaystyle b} 564:{\displaystyle a} 544:{\displaystyle b} 524:{\displaystyle a} 446: 384:{\displaystyle S} 335:{\displaystyle S} 291: 122:{\displaystyle b} 102:{\displaystyle a} 89:for some numbers 25:mathematical game 16:Mathematical game 2632: 2605: 2604: 2594: 2573:Karpinski, Marek 2569: 2563: 2562: 2545:(3): 1050–1060. 2532: 2526: 2525: 2500:(4): 1188–1207. 2484: 2478: 2477: 2463: 2461: 2460: 2455: 2435: 2426: 2425: 2423: 2411: 2405: 2404: 2386: 2366: 2360: 2359: 2341: 2335: 2334: 2324: 2315:(1–3): 145–150. 2298: 2292: 2291: 2267: 2261: 2260: 2241:Bellman, Richard 2238: 2236: 2235: 2230: 2213: 2207: 2206: 2196: 2187:: 165–171, 177. 2176: 2174: 2173: 2168: 2149: 2138: 2137: 2125: 2119: 2118: 2092: 2070: 2064: 2063: 2022: 2009: 2008: 1993:Cover, Thomas M. 1989:Sloane, N. J. A. 1985: 1952: 1950: 1949: 1944: 1941: 1936: 1931: 1918: 1916: 1915: 1910: 1908: 1907: 1882: 1880: 1879: 1874: 1850: 1848: 1847: 1842: 1840: 1839: 1811: 1809: 1808: 1803: 1801: 1800: 1773: 1771: 1770: 1765: 1747: 1745: 1744: 1739: 1736: 1731: 1726: 1713: 1711: 1710: 1705: 1675: 1673: 1672: 1667: 1643: 1641: 1640: 1635: 1623:Hamming distance 1620: 1618: 1617: 1612: 1609: 1604: 1599: 1586: 1584: 1583: 1578: 1566: 1564: 1563: 1558: 1556: 1555: 1550: 1533: 1531: 1530: 1525: 1522: 1517: 1512: 1496: 1494: 1493: 1488: 1472: 1470: 1469: 1464: 1453:is defined as a 1452: 1450: 1449: 1444: 1432: 1430: 1429: 1424: 1392: 1390: 1389: 1384: 1382: 1381: 1377: 1376: 1367: 1342: 1341: 1319: 1317: 1316: 1311: 1293: 1291: 1290: 1285: 1261: 1259: 1258: 1253: 1204: 1202: 1201: 1196: 1194: 1188: 1187: 1178: 1168: 1166: 1165: 1160: 1155: 1154: 1150: 1124: 1122: 1121: 1116: 1114: 1108: 1107: 1098: 1088: 1086: 1085: 1080: 1075: 1074: 1070: 1048: 1042: 1041: 1032: 1019: 1017: 1016: 1011: 991: 989: 988: 983: 978: 977: 973: 951: 945: 944: 935: 857: 855: 854: 849: 847: 846: 761: 759: 758: 753: 740: 738: 736: 735: 730: 708: 706: 705: 700: 682: 680: 679: 674: 672: 671: 646:. Additionally, 645: 643: 642: 637: 619: 617: 616: 611: 590: 588: 587: 582: 570: 568: 567: 562: 550: 548: 547: 542: 530: 528: 527: 522: 510: 508: 507: 502: 500: 499: 477: 475: 474: 469: 454: 442: 441: 419: 417: 416: 411: 390: 388: 387: 382: 370: 368: 367: 362: 341: 339: 338: 333: 313: 311: 310: 305: 303: 302: 293: 284: 262: 260: 259: 254: 225: 223: 222: 217: 178: 176: 175: 170: 151: 149: 148: 143: 128: 126: 125: 120: 108: 106: 105: 100: 88: 86: 85: 80: 2640: 2639: 2635: 2634: 2633: 2631: 2630: 2629: 2610: 2609: 2608: 2571: 2570: 2566: 2534: 2533: 2529: 2486: 2485: 2481: 2443: 2442: 2437: 2436: 2429: 2413: 2412: 2408: 2368: 2367: 2363: 2343: 2342: 2338: 2300: 2299: 2295: 2269: 2268: 2264: 2221: 2220: 2215: 2214: 2210: 2156: 2155: 2151: 2150: 2141: 2127: 2126: 2122: 2072: 2071: 2067: 2052: 2024: 2023: 2012: 1987: 1986: 1977: 1973: 1960: 1921: 1920: 1893: 1888: 1887: 1853: 1852: 1819: 1814: 1813: 1786: 1781: 1780: 1750: 1749: 1716: 1715: 1678: 1677: 1649: 1648: 1644:of a codeword. 1626: 1625: 1589: 1588: 1569: 1568: 1545: 1540: 1539: 1502: 1501: 1479: 1478: 1475:linear subspace 1455: 1454: 1435: 1434: 1415: 1414: 1407:covering radius 1399: 1368: 1349: 1333: 1322: 1321: 1296: 1295: 1264: 1263: 1238: 1237: 1215:derandomization 1211:polynomial time 1179: 1171: 1170: 1138: 1127: 1126: 1099: 1091: 1090: 1058: 1033: 1025: 1024: 1002: 1001: 998: 961: 936: 928: 927: 832: 827: 826: 744: 743: 715: 714: 685: 684: 657: 652: 651: 622: 621: 596: 595: 573: 572: 553: 552: 533: 532: 513: 512: 485: 480: 479: 427: 422: 421: 393: 392: 391:that maximizes 373: 372: 344: 343: 324: 323: 320: 294: 277: 276: 239: 238: 202: 201: 190: 155: 154: 131: 130: 111: 110: 91: 90: 65: 64: 61: 49:covering radius 29:Elwyn Berlekamp 17: 12: 11: 5: 2638: 2636: 2628: 2627: 2622: 2612: 2611: 2607: 2606: 2564: 2527: 2488:Berger, Bonnie 2479: 2453: 2450: 2427: 2406: 2361: 2336: 2293: 2262: 2228: 2208: 2166: 2163: 2139: 2120: 2065: 2050: 2010: 1974: 1972: 1969: 1968: 1967: 1959: 1956: 1940: 1935: 1930: 1906: 1903: 1900: 1896: 1872: 1869: 1866: 1863: 1860: 1838: 1835: 1832: 1829: 1826: 1822: 1799: 1796: 1793: 1789: 1763: 1760: 1757: 1735: 1730: 1725: 1703: 1700: 1697: 1694: 1691: 1688: 1685: 1665: 1662: 1659: 1656: 1633: 1608: 1603: 1598: 1576: 1554: 1549: 1521: 1516: 1511: 1486: 1462: 1442: 1433:and dimension 1422: 1398: 1395: 1380: 1375: 1371: 1366: 1362: 1359: 1356: 1352: 1348: 1345: 1340: 1336: 1332: 1329: 1309: 1306: 1303: 1283: 1280: 1277: 1274: 1271: 1251: 1248: 1245: 1191: 1186: 1182: 1158: 1153: 1149: 1145: 1141: 1137: 1134: 1111: 1106: 1102: 1078: 1073: 1069: 1065: 1061: 1057: 1054: 1051: 1045: 1040: 1036: 1009: 997: 994: 981: 976: 972: 968: 964: 960: 957: 954: 948: 943: 939: 924:Asymptotically 919: 918: 915: 912: 909: 906: 903: 900: 897: 894: 891: 888: 885: 882: 879: 876: 873: 870: 867: 864: 861: 858: 845: 842: 839: 835: 823: 822: 819: 816: 813: 810: 807: 804: 801: 798: 795: 792: 789: 786: 783: 780: 777: 774: 771: 768: 765: 762: 751: 728: 725: 722: 713:Solutions for 698: 695: 692: 670: 667: 664: 660: 635: 632: 629: 609: 606: 603: 580: 560: 540: 520: 498: 495: 492: 488: 467: 464: 461: 458: 453: 449: 445: 440: 437: 434: 430: 409: 406: 403: 400: 380: 360: 357: 354: 351: 331: 319: 316: 301: 297: 290: 287: 252: 249: 246: 215: 212: 209: 189: 186: 168: 165: 162: 141: 138: 118: 98: 78: 75: 72: 60: 57: 15: 13: 10: 9: 6: 4: 3: 2: 2637: 2626: 2623: 2621: 2620:Coding theory 2618: 2617: 2615: 2602: 2598: 2593: 2588: 2584: 2583: 2578: 2574: 2568: 2565: 2560: 2556: 2552: 2548: 2544: 2540: 2539: 2531: 2528: 2523: 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2494: 2489: 2483: 2480: 2475: 2471: 2467: 2451: 2448: 2440: 2434: 2432: 2428: 2422: 2417: 2410: 2407: 2402: 2398: 2394: 2390: 2385: 2380: 2377:(2): 109293. 2376: 2372: 2365: 2362: 2357: 2356: 2350: 2346: 2340: 2337: 2332: 2328: 2323: 2318: 2314: 2310: 2309: 2304: 2297: 2294: 2289: 2285: 2281: 2277: 2273: 2270:Moon, J. W.; 2266: 2263: 2258: 2254: 2250: 2246: 2242: 2226: 2218: 2212: 2209: 2204: 2200: 2195: 2190: 2186: 2182: 2178: 2164: 2161: 2148: 2146: 2144: 2140: 2135: 2134:Berkeley News 2131: 2124: 2121: 2116: 2112: 2108: 2104: 2100: 2096: 2091: 2086: 2082: 2078: 2077: 2069: 2066: 2061: 2057: 2053: 2051:0-89871-325-0 2047: 2043: 2039: 2035: 2031: 2027: 2026:Spencer, Joel 2021: 2019: 2017: 2015: 2011: 2006: 2002: 1998: 1994: 1990: 1984: 1982: 1980: 1976: 1970: 1965: 1962: 1961: 1957: 1955: 1938: 1933: 1904: 1901: 1898: 1894: 1884: 1870: 1867: 1864: 1861: 1858: 1836: 1833: 1830: 1827: 1824: 1820: 1797: 1794: 1791: 1787: 1777: 1761: 1758: 1755: 1733: 1728: 1701: 1698: 1695: 1692: 1689: 1686: 1683: 1663: 1660: 1657: 1654: 1645: 1631: 1624: 1606: 1601: 1574: 1552: 1537: 1519: 1514: 1500: 1497:-dimensional 1484: 1476: 1473:-dimensional 1460: 1440: 1420: 1412: 1408: 1404: 1403:coding theory 1396: 1394: 1373: 1369: 1364: 1360: 1354: 1350: 1346: 1338: 1334: 1327: 1307: 1304: 1301: 1278: 1275: 1272: 1249: 1246: 1243: 1235: 1231: 1226: 1224: 1220: 1216: 1212: 1208: 1189: 1184: 1180: 1151: 1147: 1143: 1139: 1109: 1104: 1100: 1071: 1067: 1063: 1059: 1052: 1049: 1043: 1038: 1034: 1021: 1007: 995: 993: 974: 970: 966: 962: 952: 946: 941: 937: 925: 916: 913: 910: 907: 904: 901: 898: 895: 892: 889: 886: 883: 880: 877: 874: 871: 868: 865: 862: 859: 843: 840: 837: 833: 825: 824: 820: 817: 814: 811: 808: 805: 802: 799: 796: 793: 790: 787: 784: 781: 778: 775: 772: 769: 766: 763: 749: 742: 741: 726: 723: 720: 710: 696: 693: 690: 668: 665: 662: 658: 649: 633: 630: 627: 607: 604: 601: 592: 591:as possible. 578: 558: 538: 518: 496: 493: 490: 486: 462: 456: 451: 443: 438: 435: 432: 428: 404: 398: 378: 355: 349: 329: 317: 315: 299: 295: 288: 285: 274: 270: 266: 250: 247: 244: 236: 232: 227: 213: 210: 207: 199: 195: 187: 185: 181: 166: 163: 160: 139: 136: 116: 96: 76: 73: 70: 58: 56: 54: 53:coding theory 50: 46: 42: 38: 34: 30: 26: 22: 2581: 2567: 2542: 2536: 2530: 2497: 2491: 2482: 2465: 2421:2111.00445v3 2409: 2374: 2370: 2364: 2352: 2339: 2312: 2306: 2296: 2279: 2265: 2248: 2211: 2184: 2180: 2133: 2123: 2080: 2074: 2068: 2033: 1996: 1954:two points. 1885: 1646: 1499:vector space 1400: 1227: 1022: 999: 922: 648:lower bounds 593: 321: 228: 191: 182: 129:. A bank of 62: 40: 32: 20: 18: 2464:matrices". 2239:-cube". In 1411:linear code 1209:, giving a 2614:Categories 2439:KomlĂłs, J. 2384:2006.12892 2090:1801.09194 1971:References 1621:is within 1320:, in time 273:almost all 45:lightbulbs 37:David Gale 2592:0811.3244 2449:± 2401:231895733 2272:Moser, L. 2162:± 2083:: 17–30. 1868:− 1834:− 1759:× 1699:− 1534:over the 1370:ε 1302:ε 1279:ε 1247:× 1133:Ω 1050:− 956:Θ 953:− 724:× 694:≤ 631:≤ 605:× 265:Leo Moser 248:× 211:× 194:Bell Labs 74:× 2522:14313557 2274:(1966). 2247:(eds.). 2115:57760841 2028:(1994). 1958:See also 1236:for the 1217:gives a 318:Analysis 35:, after 2579:(ed.). 2559:2445050 2514:1460721 2474:0299500 2347:(ed.). 2331:2094708 2288:0207570 2257:0114323 2203:0307944 2107:3872901 2060:1249485 1477:of the 1230:NP-hard 267: ( 233: ( 188:History 2557:  2520:  2512:  2472:  2399:  2329:  2286:  2255:  2201:  2113:  2105:  2058:  2048:  917:≥ 148 2587:arXiv 2518:S2CID 2416:arXiv 2397:S2CID 2379:arXiv 2111:S2CID 2085:arXiv 1886:Then 1676:and 1647:Let 914:≥ 139 911:≥ 122 908:≥ 107 59:Rules 23:is a 2353:The 2046:ISBN 1305:> 905:≥ 96 902:≥ 83 899:≥ 71 896:≥ 60 650:for 571:and 531:and 269:1966 235:1960 109:and 19:The 2597:doi 2547:doi 2502:doi 2389:doi 2375:282 2317:doi 2313:287 2189:doi 2095:doi 2038:doi 2001:doi 1125:is 821:20 448:max 196:in 51:in 2616:: 2595:. 2555:MR 2553:. 2543:54 2541:. 2516:. 2510:MR 2508:. 2498:26 2496:. 2470:MR 2430:^ 2395:. 2387:. 2373:. 2351:. 2327:MR 2325:. 2311:. 2305:. 2284:MR 2278:. 2253:MR 2243:; 2199:MR 2197:. 2185:23 2183:. 2179:. 2142:^ 2132:. 2109:. 2103:MR 2101:. 2093:. 2081:77 2079:. 2056:MR 2054:. 2044:. 2032:. 2013:^ 1978:^ 1538:, 1393:. 1225:. 1223:NC 992:. 893:54 890:43 887:35 884:27 881:22 878:16 875:11 818:19 815:18 812:17 809:16 806:15 803:14 800:13 797:12 794:11 791:10 697:20 634:12 314:. 251:15 245:15 214:10 208:10 55:. 2603:. 2599:: 2589:: 2561:. 2549:: 2524:. 2504:: 2476:. 2452:1 2424:. 2418:: 2403:. 2391:: 2381:: 2333:. 2319:: 2290:. 2259:. 2227:n 2205:. 2191:: 2165:1 2117:. 2097:: 2087:: 2062:. 2040:: 2007:. 2003:: 1939:n 1934:2 1929:F 1905:b 1902:, 1899:a 1895:R 1871:1 1865:b 1862:+ 1859:a 1837:1 1831:b 1828:+ 1825:a 1821:2 1798:b 1795:+ 1792:a 1788:2 1762:b 1756:a 1734:n 1729:2 1724:F 1702:1 1696:b 1693:+ 1690:a 1687:= 1684:d 1664:b 1661:a 1658:= 1655:n 1632:r 1607:n 1602:2 1597:F 1575:r 1553:2 1548:F 1520:n 1515:2 1510:F 1485:n 1461:d 1441:d 1421:n 1379:) 1374:2 1365:/ 1361:1 1358:( 1355:O 1351:2 1347:+ 1344:) 1339:2 1335:n 1331:( 1328:O 1308:0 1282:) 1276:+ 1273:1 1270:( 1250:n 1244:n 1190:2 1185:2 1181:n 1157:) 1152:2 1148:/ 1144:3 1140:n 1136:( 1110:2 1105:2 1101:n 1077:) 1072:2 1068:/ 1064:3 1060:n 1056:( 1053:O 1044:2 1039:2 1035:n 1008:n 980:) 975:2 971:/ 967:3 963:n 959:( 947:2 942:2 938:n 872:7 869:4 866:2 863:1 860:0 844:n 841:, 838:n 834:R 788:9 785:8 782:7 779:6 776:5 773:4 770:3 767:2 764:1 750:n 727:n 721:n 691:n 669:n 666:, 663:n 659:R 628:n 608:n 602:n 579:b 559:a 539:b 519:a 497:b 494:, 491:a 487:R 466:) 463:S 460:( 457:f 452:S 444:= 439:b 436:, 433:a 429:R 408:) 405:S 402:( 399:f 379:S 359:) 356:S 353:( 350:f 330:S 300:2 296:n 289:2 286:1 167:b 164:+ 161:a 140:b 137:a 117:b 97:a 77:b 71:a

Index

mathematical game
Elwyn Berlekamp
David Gale
lightbulbs
covering radius
coding theory
Bell Labs
Murray Hill, New Jersey
Andrew M. Gleason
1960
Leo Moser
1966
almost all
lower bounds
Asymptotically
method of conditional probabilities
polynomial time
derandomization
parallel algorithm
NC
NP-hard
polynomial-time approximation scheme
coding theory
covering radius
linear code
linear subspace
vector space
finite field with two elements
Hamming distance
symmetric difference

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑