Knowledge (XXG)

Biodesulfurization

Source 📝

469: 492:. For that reason, the efficiency of this enzyme is dependent on the activity of DszD and on environmental oxygenation. The reaction catalyzed by DszC involves three phases: 1) molecular oxygen activation leading to the formation of a hydroperoxyflavin-intermediate (C4aOOH); 2) oxidation of DBT to DBTO; and 3) dehydration of FMN. DszC is the second least efficient enzyme in the pathway with a particularly low 510: 258: 949:
Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards
318:
and the remaining of the substrate. Since the end products of the pathway are still water soluble sulfur compounds, the pathway has often been disregarded as an appealing pathway for industrial applications, in particular by the oil industry. The most well-studied sulfur specific pathway is the 4S
592:
for the wild-type 4S pathway enzymes is low when compared to the rate that needs to be achieved for a viable application in the industrial sector. An increase of 500-fold on the overall rate of the pathway is the required improvement for an efficient application of this biodesulfurization method.
529:
At last, the desulfinase (DszB) cleaves the remaining carbon-sulfur bond in 2-hydroxybiphenyl-2-sulfinate converting it into the sulfur-free 2-hydroxybiphenyl in a two step mechanism. In the first, and rate-limiting, step, 2-hydroxybiphenyl-2-sulfinate is protonated by Cys27 in its electrophilic
667:
of HBP to the protein revealed that HBP forms a π-interaction with Trp327, thus inhibiting DszC. The A101K/W327C (AKWC) double mutant revealed to be desensitized to low HBP concentrations and the bacterial strain expressing the AKWC DszC was 14-fold more efficient than the wild-type strain.
166:
per year. Furthermore, these processes usually require large amounts of energy, and are accompanied by massive costs for the industries that employ them. A greener and also complementary alternative process to the conventional desulfurization methods is biodesulfurization.
229:
There are two main pathways through which bacteria remove sulfur from sulfur-containing compounds: ring destructive pathways and sulfur-specific pathways. The ring destructive pathway consists of the selective cleavage of carbon-carbon bonds with release of small
603:
or a combination of both strategies are some of the approaches that have been applied to tackle the lack of catalytic efficiency and stability of the 4S enzymes. The 4S pathway best improvement to date was obtained by a directed evolution approach in which
525:
provided by DszD and molecular oxygen for its catalytic cycle. Nonetheless, the reaction rate of DszA is about seven times faster than DszC. However, like DszC, it suffers feedback inhibition by the final product of the pathway, 2-HBP.
501:
of 1.6 ± 0.3 min. It is also severely affected from feedback inhibition caused mostly by HPBS and 2-HBP, the products of DszA and DszB respectively, For that reason, it has been targeted for optimization through
136:, while the US has made efforts to restrict the sulfur content in diesel and gasoline to a maximum of 15 ppm. The reduction of sulfur compounds in oil fuels can be achieved by a process named 202:. To date, pilot attempts for industrial applications have resorted to the use of whole bacterial systems, because biodesulfurization involves a sequential cascade of reactions by different 724:. The Thr62 mutation by an Asp residue returns the lowest activation energy from all possible mutants at this position due to the stabilization effect induced by Asp negative charge. 705:
DszD has also been targeted for rate enhancing mutation on the Thr62 residue. Mutation of Thr62 by Asn and Ala residues managed to increase its activity 5- and 7-fold, respectively.
2012:
Sousa, Sérgio F.; Sousa, Joana F. M.; Barbosa, Ana C. C.; Ferreira, Cleide E.; Neves, Rui P. P.; Ribeiro, António J. M.; Fernandes, Pedro A.; Ramos, Maria João (July 14, 2016).
124:
The reduction of the concentration of sulfur in crude oil becomes necessary to mitigate one of the leading sources of the harmful health and environmental effects caused by its
879: 2155:"Improved Efficiency of the Desulfurization of Oil Sulfur Compounds in Escherichia coli Using a Combination of Desensitization Engineering and DszC Overexpression" 379: 234:
soluble in the surrounding aqueous environment, whereas the sulfur-specific pathways rely on successive sulfur redox reactions to release sulfur either as
2116:"Enhancement of desulfurization activity by enzymes of the Rhodococcus dsz operon through coexpression of a high sulfur peptide and directed evolution" 699: 679:
of the 4S pathway. A computational rational design approach determined a set of mutations that could accelerate the charge transfer occurring in the
2153:
Li, Lu; Liao, Yibo; Luo, Yifan; Zhang, Guangming; Liao, Xihao; Zhang, Wei; Zheng, Suiping; Han, Shuangyan; Lin, Ying; Liang, Shuli (June 21, 2019).
155:
Despite their efficiency at reducing sulfur content, the conventional desulfurization methods are still accountable for a significant amount of the
2014:"Improving the Biodesulfurization of Crude Oil and Derivatives: A QM/MM Investigation of the Catalytic Mechanism of NADH-FMN Oxidoreductase (DszD)" 198:
Biodesulfurization is an attractive alternative to sulfur removal, particularly in the crude oil fractions where there is an abundance of sulfur
1523: 1446: 925: 2208:
OHSHIRO, Takashi; OHKITA, Ryo; TAKIKAWA, Takeshi; MANABE, Masanori; LEE, Woo Cheol; TANOKURA, Masaru; IZUMI, Yoshikazu (November 23, 2007).
647:
of DszC was also tackled by a combination of directed evolution and rational design approach to desensitize DszC to the 4S pathway product,
58:. Depending on its source, the amount of sulfur present in crude oil can range from 0.05 to 10%. Accordingly, the oil can be classified as 214:
either with the sulfur atom or molecular oxygen. However, they lacked the scalability desired for an industrial setup due to overall low
1748:"Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa" 2210:"Improvement of 2′-Hydroxybiphenyl-2-sulfinate Desulfinase, an Enzyme Involved in the Dibenzothiophene Desulfurization Pathway, from 717: 558: 450: 296: 242:
anions as byproducts. The latter have thus been considered as a very promising pathway to produce sulfur-free compounds with a high
1204:
Miranda-Galindo, Erick Yair; Segovia-Hernández, Juan Gabriel; Hernández, Salvador; Bonilla-Petriciolet, Adrián (October 22, 2014).
2114:
Pan, Jie; Wu, Fan; Wang, Jia; Yu, Linqing; Khayyat, Naghmeh Hassanzadeh; Stark, Benjamin C.; Kilbane, John J. (October 1, 2013).
1248:
Boniek, Douglas; Figueiredo, Débora; dos Santos, Antônio Fernando Batista; de Resende Stoianoff, Maria Aparecida (January 2015).
702:
approach, the Y63F/Q65H double mutant revealed an increase in the enzyme's thermostability without loss of catalytic efficiency.
546:. DszB is the least efficient enzyme on the pathway making it an appealing target for enhancement through protein engineering. 1295:
Gunam, Ida Bagus Wayan; Yaku, Yosuke; Hirano, Makoto; Yamamura, Kenta; Tomita, Fusao; Sone, Teruo; Asano, Kozo (April 2006).
1798:"Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968)" 2271:"Site-directed mutagenesis enhances the activity of NADH-FMN oxidoreductase (DszD) activity of Rhodococcus erythropolis" 573:
moiety of the oxidized FMN forming FMNH. In the second step, a water molecule protonates the N1 atom of FMNH giving FMNH
2369: 1545:
Kodama, Koki; Umehara, Kazuyoshi; Shimizu, Katsumi; Nakatani, Shigeru; Minoda, Yasuji; Yamada, Koichi (January 1973).
721: 1967:"Reaction Mechanism and Determinants for Efficient Catalysis by DszB, a Key Enzyme for Crude Oil Bio-desulfurization" 950:
the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC (Text with EEA relevance)
1796:
Oldfield, Christopher; Pogrebinsky, Olga; Simmonds, Julie; Olson, Edwin S.; Kulpa, Charles F. (September 1, 1997).
468: 114: 972: 1380:"The bacterial 4S pathway – an economical alternative for crude oil desulphurization that r educes CO2 emissions" 709: 614: 476:
DszC is the first enzyme to intervene in the pathway in two sequential steps, catalyzing the double oxidation of
1915:
Barbosa, Ana C. C.; Neves, Rui P. P.; Sousa, Sérgio F.; Ramos, Maria J.; Fernandes, Pedro A. (October 5, 2018).
1965:
Sousa, João P. M.; Neves, Rui P. P.; Sousa, Sérgio F.; Ramos, Maria J.; Fernandes, Pedro A. (August 21, 2020).
1681:
Abin-Fuentes, Andres; Mohamed, Magdy El-Said; Wang, Daniel I. C.; Prather, Kristala L. J. (December 15, 2013).
676: 320: 266: 81:, which are harmful to public health and contribute to serious environmental effects such as air pollution and 1206:"Multiobjective Optimization of a Hydrodesulfurization Process of Diesel Using Distillation with Side Reactor" 1297:"Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b" 485: 207: 2326:"Improving the Catalytic Power of the DszD Enzyme for the Biodesulfurization of Crude Oil and Derivatives" 118: 1746:
Oldfield, Christopher; Wood, Nicola T.; Gilbert, Steven C.; Murray, Frazer D.; Faure, Fabrice R. (1998).
391: 199: 2269:
Kamali, Nasrin; Tavallaie, Mahmood; Bambai, Bijan; Karkhane, Ali Asghar; Miri, Mandana (July 1, 2010).
1030:"Science and technology of novel processes for deep desulfurization of oil refinery streams: a review☆" 999:"Science and technology of novel processes for deep desulfurization of oil refinery streams: a review⋆" 880:"An Introduction to Petroleum Refining and the Production of Ultra Low Sulfur Gasoline and Diesel Fuel" 226:
would be desirable, known implementations are still well below the efficiency met for whole-cell ones.
2115: 2068: 1029: 2025: 1694: 629: 215: 141: 1378:
Sousa, João P. M.; Ferreira, Pedro; Neves, Rui P. P.; Ramos, Maria J.; Fernandes, Pedro A. (2020).
664: 503: 265:
The most studied ring destructive pathway is the Kodama pathway and it was initially identified in
793: 222:
mechanisms and toxicity, or inadequate conditions for long-term bacterial growth. While cell-free
2306: 2251: 2190: 1994: 1944: 1885: 1866: 1775: 1644: 1469: 1426: 1407: 1335: 1296: 1277: 1186: 1139: 998: 905: 849: 821: 759: 684: 596: 398: 243: 133: 94: 86: 1547:"Identification of Microbial Products from Dibenzothiophene and Its Proposed Oxidation Pathway" 521:, converting DBT-sulfone into 2-hydroxybiphenyl-2-sulfinate. Like DszC, DszA also requires FMNH 2345: 2324:
Ferreira, Pedro; Sousa, Sérgio F.; Fernandes, Pedro A.; Ramos, Maria João (December 6, 2017).
2298: 2290: 2243: 2235: 2182: 2174: 2135: 2096: 2088: 2049: 2041: 1986: 1936: 1917:"Mechanistic Studies of a Flavin Monooxygenase: Sulfur Oxidation of Dibenzothiophenes by DszC" 1827: 1819: 1767: 1728: 1710: 1625: 1607: 1566: 1519: 1442: 1399: 1355: 1316: 1269: 1227: 1178: 1131: 1049: 921: 813: 688: 430: 231: 2325: 2337: 2282: 2225: 2166: 2127: 2080: 2033: 1978: 1928: 1897: 1858: 1809: 1759: 1718: 1702: 1656: 1615: 1597: 1558: 1511: 1481: 1434: 1391: 1347: 1336:"Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain" 1308: 1261: 1217: 1170: 1121: 1088: 1080: 1067:
Campos-Martin, J.M.; Capel-Sanchez, M.C.; Perez-Presas, P.; Fierro, J.L.G. (March 9, 2010).
1041: 1010: 913: 861: 805: 771: 633: 610: 517:
DszA is responsible for the third step of the pathway. It catalyzes the first carbon-sulfur
477: 438: 402: 327: 219: 47: 1645:"Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A" 1158: 2374: 1546: 733: 695: 672: 600: 586: 493: 434: 406: 292: 247: 223: 137: 59: 1503: 2029: 1698: 1427:"Chapter 2 Petroleum biorefining: the selective removal of sulfur, nitrogen, and metals" 1250:"Biodesulfurization: a mini review about the immediate search for the future technology" 1068: 906:"Chapter 2 Petroleum biorefining: the selective removal of sulfur, nitrogen, and metals" 1723: 1682: 1620: 1585: 648: 557:
cofactor needed for the reactions catalyzed by DszC and DszA, through the oxidation of
550: 442: 359: 251: 156: 129: 63: 1901: 1485: 1438: 1045: 1014: 917: 775: 195:
and their derivatives, were observed to constitute important substrates for bacteria.
46:
Crude oil contains sulfur in its composition, with the latter being the most abundant
2363: 2194: 2154: 1998: 1948: 1411: 1281: 1249: 1190: 589: 570: 518: 280: 31: 2310: 2255: 2013: 1966: 1916: 1886:"Evaluation of sulfate-reducing bacteria for desulfurizing bitumen or its fractions" 1870: 1779: 1660: 1174: 1143: 825: 1846: 1747: 1562: 1351: 1334:
Davoodi-Dehaghani, Fatemeh; Vosoughi, Manouchehr; Ziaee, Abed Ali (February 2010).
656: 566: 457:
and a fourth to regenerate the FMN-oxide byproduct of DszA) and three molecules of
418: 315: 175:
It has been observed that there are sulfur-dependent bacteria that make use of the
149: 70: 1515: 509: 2084: 1157:
Hosseini, Alireza; Khoshsima, Ali; Sabzi, Mazaher; Rostam, Ata (April 21, 2022).
809: 1814: 1797: 1683:"Exploring the Mechanism of Biocatalyst Inhibition in Microbial Desulfurization" 865: 680: 606: 534:. In the second step, a water molecule is deprotonated by Cys27 followed by the 414: 284: 188: 106: 102: 98: 2131: 947: 530:
carbon leading to the cleavage of the carbon-sulfur bond and displacement of SO
179:
in sulfur-containing compounds in their life cycles (either in their growth or
162:
emissions associated with the crude oil refining process, releasing up to 9000
2286: 2170: 1862: 1763: 1265: 1126: 1109: 462: 383: 311: 180: 125: 78: 2294: 2239: 2178: 2139: 2092: 2045: 2037: 1990: 1982: 1940: 1932: 1823: 1714: 1611: 1570: 1403: 1273: 1231: 1182: 1135: 1053: 817: 708:
A computational study demonstrated that substitutions in position 62 of DszD
2270: 850:"Biodesulfurization of diesel fuels – Past, present and future perspectives" 660: 535: 375: 351: 343: 335: 303: 192: 90: 82: 27: 2349: 2341: 2302: 2247: 2186: 2100: 2053: 1884:
Armstrong, Stephen M.; Sankey, Bruce M.; Voordouw, Gerrit (February 1997).
1771: 1732: 1629: 1359: 1320: 1159:"Toward Application of Ionic Liquids to Desulfurization of Fuels: A Review" 306:
promoting ring cleavage and formation of a pyruvyl branch; concluding with
257: 1831: 1602: 1706: 671:
DszB, the final enzyme in the pathway, is also one of the slowest with a
644: 110: 55: 1312: 1395: 1379: 1093: 713: 618: 562: 446: 410: 367: 363: 339: 239: 235: 2230: 2209: 1510:, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 2129–2141, 1222: 1205: 1084: 101:
catalysts. The levels of sulfur in any oil field are too high for the
85:. In addition, the sulfur content in crude oil is a major problem for 652: 625: 489: 458: 387: 203: 184: 176: 51: 35: 23: 480:
first into DBT-sulfoxide and then into DBT-sulfone. It requires FMNH
390:, DszD, which is responsible for the regeneration and supply of the 467: 211: 163: 145: 132:
has taken steps to decrease the sulfur content in diesel below 10
66:
if the sulfur concentration is below or above 0.5%, respectively.
1590:
International Journal of Environmental Research and Public Health
1643:
Mohebali, G.; Ball, A.S.; Rasekh, B.; Kaytash, A. (March 2007).
561:
to NAD in a two step mechanism. The first step corresponds to a
370:
are required for the process: three of which are encoded in the
794:"API Gravity, Sulfur Content, and Desulfurization of Crude Oil" 792:
Demirbas, A.; Alidrisi, H.; Balubaid, M. A. (January 2, 2015).
691:
for the reaction and potentially increasing its turnover rate.
148:
desulfurization, extractive desulfurization, and extraction by
1847:"Biodegradation of dibenzothiophene by thermophilic bacteria" 1497: 1495: 2069:"Microbial biocatalyst developments to upgrade fossil fuels" 1584:
Seo, Jong-Su; Keum, Young-Soo; Li, Qing (January 13, 2009).
1470:"Whole cell biocatalysis for an oil desulfurization process" 1502:
Borgne, S. Le; Ayala, M. (2010), Timmis, Kenneth N. (ed.),
760:"Biotechnological processes for the refining of petroleum" 401:
can use an alternative sulfur-specific pathway to produce
140:. Methods used for desulfurization include, among others, 1504:"Microorganisms Utilizing Sulfur-Containing Hydrocarbons" 1468:
Setti, L.; Lanzarini, G.; Pifferi, P.G. (November 1997).
753: 751: 749: 287:
of the carbons in one of the aromatic rings, followed by
1069:"Oxidative processes of desulfurization of liquid fuels" 1845:
Bahrami, A.; Shojaosadati, S.A.; Mohebali, G. (2001).
712:
have a major impact in the activation energy for the
2075:. Environmental biotechnology/Energy biotechnology. 1243: 1241: 854:
International Biodeterioration & Biodegradation
1073:Journal of Chemical Technology & Biotechnology 628:(which encodes for DszA, DszB and DszC). After 40 453:molecules (three required by DszD to generate FMNH 848:Mohebali, Ghasemali; Ball, Andrew S. (May 2016). 787: 785: 758:Borgne, Sylvie Le; Quintero, Rodolfo (May 2003). 651:. The bacterial strain expressing the DszC A101K 1373: 1371: 1369: 183:), producing molecules with lower/no content in 1960: 1958: 1210:Industrial & Engineering Chemistry Research 843: 841: 839: 837: 835: 1508:Handbook of Hydrocarbon and Lipid Microbiology 1108:Javadli, Rashad; de Klerk, Arno (March 2012). 569:moiety of NADH to the central nitrogen in the 171:Biodesulfurization implementation and pathways 1586:"Bacterial Degradation of Aromatic Compounds" 1028:Babich, I. V; Moulijn, J. A (April 1, 2003). 884:International Council on Clean Transportation 8: 472:General chemical equation of the 4S pathway. 2218:Bioscience, Biotechnology, and Biochemistry 1433:, vol. 151, Elsevier, pp. 29–65, 1254:Clean Technologies and Environmental Policy 912:, vol. 151, Elsevier, pp. 29–65, 488:, which is supplied by DszD, and molecular 326:, which was observed to remove sulfur from 319:pathway, first discovered in the bacterium 16:Biotechnique to clean sulfur from crude oil 350:a carbon-sulfur bond cleavage by a second 2229: 1813: 1722: 1619: 1601: 1221: 1125: 1092: 640:strains presented a 35-fold improvement. 636:was the sole sulfur source, the modified 275:. The pathway comprises four main steps: 261:The Kodama and the 4S bacterial pathways. 1431:Studies in Surface Science and Catalysis 1301:Journal of Bioscience and Bioengineering 910:Studies in Surface Science and Catalysis 508: 256: 973:"Diesel Fuel Standards and Rulemakings" 745: 1687:Applied and Environmental Microbiology 314:of the pyruvyl substituent to release 2214:KA2-5-1 by Site-Directed Mutagenesis" 1791: 1789: 1676: 1674: 1672: 1670: 1551:Agricultural and Biological Chemistry 1425:Kilbane, J.J.; Le Borgne, S. (2004), 904:Kilbane, J.J.; Le Borgne, S. (2004), 358:desulfination reaction through which 334:a double oxidation of the sulfur (to 69:The combustion of crude oil releases 7: 429:The 4S pathway is a sulfur-specific 397:It has also been observed that some 2018:The Journal of Physical Chemistry A 675:of 1.7 ± 0.2 min, becoming a major 250:of sulfur heterocycles abundant in 105:derived from it (such as gasoline, 461:, thus producing NAD and water as 14: 581:Engineering of 4S pathway enzymes 513:General scheme of the 4S pathway. 2073:Current Opinion in Biotechnology 2067:Kilbane, John J (June 1, 2006). 798:Petroleum Science and Technology 694:DszB's catalytic efficiency and 330:and derivatives in three steps: 117:without pre-treatment to remove 1661:10.1016/j.enzmictec.2006.05.012 1649:Enzyme and Microbial Technology 1175:10.1021/acs.energyfuels.1c03974 405:instead. However, to date, the 2330:Chemistry – A European Journal 1563:10.1080/00021369.1973.10860640 1352:10.1016/j.biortech.2009.08.058 1114:Applied Petrochemical Research 1110:"Desulfurization of heavy oil" 971:US EPA, OAR (April 10, 2015). 953:, vol. OJ L, June 5, 2009 392:flavin mononucleotide cofactor 376:flavin-dependent monoxygenases 1: 1902:10.1016/S0016-2361(96)00226-8 1516:10.1007/978-3-540-77587-4_154 1486:10.1016/S0378-3820(97)00023-4 1439:10.1016/s0167-2991(04)80143-5 1046:10.1016/S0016-2361(02)00324-1 1015:10.1016/S0016-2361(02)00324-1 918:10.1016/s0167-2991(04)80143-5 776:10.1016/S0378-3820(03)00007-9 366:are produced. In total, four 352:flavin-dependent monoxygenase 344:flavin-dependent monoxygenase 2085:10.1016/j.copbio.2006.04.005 810:10.1080/10916466.2014.950383 632:events in a medium in which 394:required for DszA and DszC. 1815:10.1099/00221287-143-9-2961 866:10.1016/j.ibiod.2016.03.011 553:(DszD) regenerates the FMNH 285:NADH-dependent dioxygenases 22:is the process of removing 2391: 2132:10.1016/j.fuel.2013.04.065 1474:Fuel Processing Technology 764:Fuel Processing Technology 449:. It uses a total of four 421:oil has not been observed 2287:10.1007/s10529-010-0254-4 2171:10.1021/acssynbio.9b00126 1266:10.1007/s10098-014-0812-x 1127:10.1007/s13203-012-0006-6 698:was also addressed in an 93:of the equipment and the 2212:Rhodococcus erythropolis 2038:10.1021/acs.jpca.6b01536 1983:10.1021/acscatal.0c03122 1933:10.1021/acscatal.8b01877 997:Babich, I (April 2003). 700:experimental mutagenesis 322:Rhodococcus erythropolis 1863:10.1023/A:1010592615572 1764:10.1023/A:1001724516342 1752:Antonie van Leeuwenhoek 716:transfer reaction from 378:DszA and DszC, and the 268:Pseudomonas abikonensis 246:, in particular in the 2342:10.1002/chem.201704057 1340:Bioresource Technology 514: 473: 425:The aerobic 4S pathway 262: 206:and a large amount of 119:organosulfur compounds 2275:Biotechnology Letters 2159:ACS Synthetic Biology 1851:Biotechnology Letters 1603:10.3390/ijerph6010278 663:strain. Additionally 512: 471: 409:of fractions such as 260: 128:. In this sense, the 89:, as it promotes the 1707:10.1128/AEM.02696-13 621:encoding a modified 346:, followed by  142:hydrodesulfurization 2336:(68): 17231–17241. 2030:2016JPCA..120.5300S 1699:2013ApEnM..79.7807A 1313:10.1263/jbb.101.322 1216:(42): 16425–16435. 645:feedback inhibition 224:recombinant enzymes 220:feedback inhibition 181:metabolic processes 30:through the use of 2370:Chemical processes 1396:10.1039/D0GC02055A 1163:Energy & Fuels 685:reaction mechanism 597:Directed evolution 565:transfer from the 515: 504:enzyme engineering 474: 399:anaerobic bacteria 273:Pseudomonas jijani 263: 191:compounds, namely 115:combustion engines 20:Biodesulfurization 2231:10.1271/bbb.70436 2224:(11): 2815–2821. 2024:(27): 5300–5306. 1977:(16): 9545–9554. 1927:(10): 9298–9311. 1693:(24): 7807–7817. 1525:978-3-540-77584-3 1448:978-0-444-51699-2 1390:(22): 7604–7621. 1223:10.1021/ie501940v 1085:10.1002/jctb.2371 927:978-0-444-51699-2 689:activation energy 443:2-hydroxybiphenyl 431:metabolic pathway 382:DszB) and fourth 360:2-hydroxybiphenyl 342:) performed by a 328:dibenzothiophenes 295:of the ring by a 244:calorific content 216:enzyme efficiency 210:participating in 187:. In particular, 2382: 2354: 2353: 2321: 2315: 2314: 2266: 2260: 2259: 2233: 2205: 2199: 2198: 2165:(6): 1441–1451. 2150: 2144: 2143: 2111: 2105: 2104: 2064: 2058: 2057: 2009: 2003: 2002: 1962: 1953: 1952: 1912: 1906: 1905: 1881: 1875: 1874: 1842: 1836: 1835: 1817: 1808:(9): 2961–2973. 1793: 1784: 1783: 1758:(1/3): 119–132. 1743: 1737: 1736: 1726: 1678: 1665: 1664: 1640: 1634: 1633: 1623: 1605: 1581: 1575: 1574: 1542: 1536: 1535: 1534: 1532: 1499: 1490: 1489: 1480:(1–3): 145–153. 1465: 1459: 1458: 1457: 1455: 1422: 1416: 1415: 1375: 1364: 1363: 1346:(3): 1102–1105. 1331: 1325: 1324: 1292: 1286: 1285: 1245: 1236: 1235: 1225: 1201: 1195: 1194: 1169:(8): 4119–4152. 1154: 1148: 1147: 1129: 1105: 1099: 1098: 1096: 1064: 1058: 1057: 1025: 1019: 1018: 994: 988: 987: 985: 983: 968: 962: 961: 960: 958: 944: 938: 937: 936: 934: 901: 895: 894: 892: 890: 876: 870: 869: 845: 830: 829: 789: 780: 779: 755: 659:relative to the 439:dibenzothiophene 403:hydrogen sulfide 232:organic sulfides 113:) to be used in 2390: 2389: 2385: 2384: 2383: 2381: 2380: 2379: 2360: 2359: 2358: 2357: 2323: 2322: 2318: 2268: 2267: 2263: 2207: 2206: 2202: 2152: 2151: 2147: 2113: 2112: 2108: 2066: 2065: 2061: 2011: 2010: 2006: 1964: 1963: 1956: 1914: 1913: 1909: 1883: 1882: 1878: 1857:(11): 899–901. 1844: 1843: 1839: 1795: 1794: 1787: 1745: 1744: 1740: 1680: 1679: 1668: 1642: 1641: 1637: 1583: 1582: 1578: 1544: 1543: 1539: 1530: 1528: 1526: 1501: 1500: 1493: 1467: 1466: 1462: 1453: 1451: 1449: 1424: 1423: 1419: 1384:Green Chemistry 1377: 1376: 1367: 1333: 1332: 1328: 1294: 1293: 1289: 1247: 1246: 1239: 1203: 1202: 1198: 1156: 1155: 1151: 1107: 1106: 1102: 1066: 1065: 1061: 1027: 1026: 1022: 996: 995: 991: 981: 979: 970: 969: 965: 956: 954: 946: 945: 941: 932: 930: 928: 903: 902: 898: 888: 886: 878: 877: 873: 847: 846: 833: 791: 790: 783: 757: 756: 747: 742: 734:Desulfurization 730: 696:thermostability 687:, reducing the 601:rational design 587:desulfurization 583: 576: 556: 545: 541: 533: 524: 498: 483: 456: 435:desulfurization 427: 407:desulfurization 293:dehydrogenation 279:the successive 248:desulfurization 212:redox reactions 173: 160: 138:desulfurization 76: 44: 17: 12: 11: 5: 2388: 2386: 2378: 2377: 2372: 2362: 2361: 2356: 2355: 2316: 2281:(7): 921–927. 2261: 2200: 2145: 2106: 2079:(3): 305–314. 2059: 2004: 1954: 1907: 1896:(3): 223–227. 1876: 1837: 1785: 1738: 1666: 1655:(4): 578–584. 1635: 1596:(1): 278–309. 1576: 1537: 1524: 1491: 1460: 1447: 1417: 1365: 1326: 1307:(4): 322–327. 1287: 1237: 1196: 1149: 1100: 1079:(7): 879–890. 1059: 1040:(6): 607–631. 1020: 1009:(6): 607–631. 989: 963: 939: 926: 896: 871: 831: 781: 770:(2): 155–169. 744: 743: 741: 738: 737: 736: 729: 726: 655:showed higher 582: 579: 574: 554: 551:oxidoreductase 543: 539: 531: 522: 496: 481: 454: 437:that converts 426: 423: 415:vacuum gas oil 324:(strain IGTS8) 252:sour crude oil 189:heteroaromatic 172: 169: 158: 130:European Union 74: 43: 40: 32:microorganisms 15: 13: 10: 9: 6: 4: 3: 2: 2387: 2376: 2373: 2371: 2368: 2367: 2365: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2320: 2317: 2312: 2308: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2272: 2265: 2262: 2257: 2253: 2249: 2245: 2241: 2237: 2232: 2227: 2223: 2219: 2215: 2213: 2204: 2201: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2149: 2146: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2110: 2107: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2063: 2060: 2055: 2051: 2047: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2015: 2008: 2005: 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1971:ACS Catalysis 1968: 1961: 1959: 1955: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1921:ACS Catalysis 1918: 1911: 1908: 1903: 1899: 1895: 1891: 1887: 1880: 1877: 1872: 1868: 1864: 1860: 1856: 1852: 1848: 1841: 1838: 1833: 1829: 1825: 1821: 1816: 1811: 1807: 1803: 1799: 1792: 1790: 1786: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1742: 1739: 1734: 1730: 1725: 1720: 1716: 1712: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1677: 1675: 1673: 1671: 1667: 1662: 1658: 1654: 1650: 1646: 1639: 1636: 1631: 1627: 1622: 1617: 1613: 1609: 1604: 1599: 1595: 1591: 1587: 1580: 1577: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1541: 1538: 1527: 1521: 1517: 1513: 1509: 1505: 1498: 1496: 1492: 1487: 1483: 1479: 1475: 1471: 1464: 1461: 1450: 1444: 1440: 1436: 1432: 1428: 1421: 1418: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1374: 1372: 1370: 1366: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1330: 1327: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1291: 1288: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1242: 1238: 1233: 1229: 1224: 1219: 1215: 1211: 1207: 1200: 1197: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1153: 1150: 1145: 1141: 1137: 1133: 1128: 1123: 1120:(1–4): 3–19. 1119: 1115: 1111: 1104: 1101: 1095: 1090: 1086: 1082: 1078: 1074: 1070: 1063: 1060: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1024: 1021: 1016: 1012: 1008: 1004: 1000: 993: 990: 978: 974: 967: 964: 952: 951: 943: 940: 929: 923: 919: 915: 911: 907: 900: 897: 885: 881: 875: 872: 867: 863: 859: 855: 851: 844: 842: 840: 838: 836: 832: 827: 823: 819: 815: 811: 807: 804:(1): 93–101. 803: 799: 795: 788: 786: 782: 777: 773: 769: 765: 761: 754: 752: 750: 746: 739: 735: 732: 731: 727: 725: 723: 719: 715: 711: 706: 703: 701: 697: 692: 690: 686: 682: 678: 674: 673:turnover rate 669: 666: 662: 658: 654: 650: 646: 641: 639: 635: 631: 627: 624: 620: 616: 612: 609: 608: 602: 598: 594: 591: 588: 580: 578: 572: 571:isoalloxazine 568: 564: 560: 552: 549:The NADH-FMN 547: 537: 527: 520: 519:bond cleavage 511: 507: 505: 500: 499: 491: 487: 479: 470: 466: 464: 460: 452: 448: 444: 440: 436: 433:of oxidative 432: 424: 422: 420: 416: 412: 408: 404: 400: 395: 393: 389: 385: 381: 377: 373: 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 325: 323: 317: 313: 309: 305: 302: 298: 294: 290: 286: 282: 281:hydroxylation 278: 274: 270: 269: 259: 255: 253: 249: 245: 241: 237: 233: 227: 225: 221: 217: 213: 209: 205: 201: 196: 194: 190: 186: 182: 178: 170: 168: 165: 161: 153: 151: 150:ionic liquids 147: 143: 139: 135: 131: 127: 122: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 72: 71:sulfur oxides 67: 65: 61: 57: 53: 49: 41: 39: 37: 33: 29: 25: 21: 2333: 2329: 2319: 2278: 2274: 2264: 2221: 2217: 2211: 2203: 2162: 2158: 2148: 2123: 2119: 2109: 2076: 2072: 2062: 2021: 2017: 2007: 1974: 1970: 1924: 1920: 1910: 1893: 1889: 1879: 1854: 1850: 1840: 1805: 1802:Microbiology 1801: 1755: 1751: 1741: 1690: 1686: 1652: 1648: 1638: 1593: 1589: 1579: 1557:(1): 45–50. 1554: 1550: 1540: 1529:, retrieved 1507: 1477: 1473: 1463: 1452:, retrieved 1430: 1420: 1387: 1383: 1343: 1339: 1329: 1304: 1300: 1290: 1260:(1): 29–37. 1257: 1253: 1213: 1209: 1199: 1166: 1162: 1152: 1117: 1113: 1103: 1076: 1072: 1062: 1037: 1033: 1023: 1006: 1002: 992: 980:. Retrieved 976: 966: 955:, retrieved 948: 942: 931:, retrieved 909: 899: 887:. Retrieved 883: 874: 857: 853: 801: 797: 767: 763: 707: 704: 693: 683:during DszB 670: 642: 637: 630:subculturing 622: 605: 595: 584: 567:nicotinamide 548: 538:attack to SO 528: 516: 494: 475: 428: 396: 371: 355: 347: 331: 321: 307: 300: 299:and further 297:NAD cofactor 288: 276: 272: 267: 264: 228: 200:heterocycles 197: 174: 154: 123: 103:fossil fuels 68: 45: 19: 18: 2126:: 385–390. 1531:December 8, 1454:December 8, 1094:10261/21476 982:December 7, 977:www.epa.gov 957:December 7, 933:December 7, 889:December 7, 860:: 163–180. 681:active site 643:The strong 638:Rhodococcus 615:transformed 607:Rhodococcus 542:forming HSO 441:(DBT) into 419:deasphalted 380:desulfinase 374:genes (the 304:oxygenation 254:fractions. 164:metric tons 99:noble metal 2364:Categories 740:References 677:bottleneck 463:byproducts 384:chromosome 312:hydrolysis 218:, product 193:thiophenes 126:combustion 87:refineries 83:acid rains 79:atmosphere 42:Background 2295:1573-6776 2240:0916-8451 2195:167219836 2179:2161-5063 2140:0016-2361 2093:0958-1669 2046:1089-5639 1999:225512533 1991:2155-5435 1949:105202414 1941:2155-5435 1824:1350-0872 1715:0099-2240 1612:1660-4601 1571:0002-1369 1412:229112004 1404:1463-9262 1282:110105610 1274:1618-954X 1232:0888-5885 1191:247972735 1183:0887-0624 1136:2190-5525 1054:0016-2361 818:1091-6466 661:wild-type 536:hydroxide 336:sulfoxide 208:cofactors 146:oxidative 95:poisoning 91:corrosion 77:) to the 34:or their 28:crude oil 2350:28976031 2311:44991374 2303:20349330 2256:12721389 2248:17986771 2187:31132321 2101:16678400 2054:27128525 1871:10630342 1780:23160813 1772:10068795 1733:24096431 1630:19440284 1360:19819129 1321:16716940 1144:94952018 826:96330432 728:See also 710:sequence 657:activity 486:cofactor 386:encoded 316:pyruvate 111:jet fuel 56:hydrogen 2026:Bibcode 1832:9308179 1724:3837836 1695:Bibcode 1621:2672333 714:hydride 665:docking 619:plasmid 617:with a 611:strains 563:hydride 447:sulfite 411:bitumen 368:enzymes 364:sulfite 340:sulfone 240:sulfite 236:sulfide 204:enzymes 97:of the 48:element 36:enzymes 2375:Sulfur 2348:  2309:  2301:  2293:  2254:  2246:  2238:  2193:  2185:  2177:  2138:  2099:  2091:  2052:  2044:  1997:  1989:  1947:  1939:  1869:  1830:  1822:  1778:  1770:  1731:  1721:  1713:  1628:  1618:  1610:  1569:  1522:  1445:  1410:  1402:  1358:  1319:  1280:  1272:  1230:  1189:  1181:  1142:  1134:  1052:  924:  824:  816:  653:mutant 626:operon 490:oxygen 459:oxygen 388:enzyme 372:dszABC 354:and a 185:sulfur 177:sulfur 107:diesel 52:carbon 50:after 24:sulfur 2307:S2CID 2252:S2CID 2191:S2CID 1995:S2CID 1945:S2CID 1867:S2CID 1776:S2CID 1408:S2CID 1278:S2CID 1187:S2CID 1140:S2CID 822:S2CID 613:were 417:, or 109:, or 60:sweet 26:from 2346:PMID 2299:PMID 2291:ISSN 2244:PMID 2236:ISSN 2183:PMID 2175:ISSN 2136:ISSN 2120:Fuel 2097:PMID 2089:ISSN 2050:PMID 2042:ISSN 1987:ISSN 1937:ISSN 1890:Fuel 1828:PMID 1820:ISSN 1768:PMID 1729:PMID 1711:ISSN 1626:PMID 1608:ISSN 1567:ISSN 1533:2022 1520:ISBN 1456:2022 1443:ISBN 1400:ISSN 1356:PMID 1317:PMID 1270:ISSN 1228:ISSN 1179:ISSN 1132:ISSN 1050:ISSN 1034:Fuel 1003:Fuel 984:2022 959:2022 935:2022 922:ISBN 891:2022 814:ISSN 718:NADH 590:rate 585:The 559:NADH 451:NADH 445:and 362:and 356:iii) 338:and 310:the 301:iii) 291:the 271:and 64:sour 54:and 2338:doi 2283:doi 2226:doi 2167:doi 2128:doi 2124:112 2081:doi 2034:doi 2022:120 1979:doi 1929:doi 1898:doi 1859:doi 1810:doi 1806:143 1760:doi 1719:PMC 1703:doi 1657:doi 1616:PMC 1598:doi 1559:doi 1512:doi 1482:doi 1435:doi 1392:doi 1348:doi 1344:101 1309:doi 1305:101 1262:doi 1218:doi 1171:doi 1122:doi 1089:hdl 1081:doi 1042:doi 1011:doi 914:doi 862:doi 858:110 806:doi 772:doi 722:FAD 720:to 649:HBP 634:DBT 623:dsz 497:cat 484:as 478:DBT 348:ii) 308:iv) 289:ii) 283:by 238:or 134:ppm 73:(SO 62:or 2366:: 2344:. 2334:23 2332:. 2328:. 2305:. 2297:. 2289:. 2279:32 2277:. 2273:. 2250:. 2242:. 2234:. 2222:71 2220:. 2216:. 2189:. 2181:. 2173:. 2161:. 2157:. 2134:. 2122:. 2118:. 2095:. 2087:. 2077:17 2071:. 2048:. 2040:. 2032:. 2020:. 2016:. 1993:. 1985:. 1975:10 1973:. 1969:. 1957:^ 1943:. 1935:. 1923:. 1919:. 1894:76 1892:. 1888:. 1865:. 1855:23 1853:. 1849:. 1826:. 1818:. 1804:. 1800:. 1788:^ 1774:. 1766:. 1756:74 1754:. 1750:. 1727:. 1717:. 1709:. 1701:. 1691:79 1689:. 1685:. 1669:^ 1653:40 1651:. 1647:. 1624:. 1614:. 1606:. 1592:. 1588:. 1565:. 1555:37 1553:. 1549:. 1518:, 1506:, 1494:^ 1478:52 1476:. 1472:. 1441:, 1429:, 1406:. 1398:. 1388:22 1386:. 1382:. 1368:^ 1354:. 1342:. 1338:. 1315:. 1303:. 1299:. 1276:. 1268:. 1258:17 1256:. 1252:. 1240:^ 1226:. 1214:53 1212:. 1208:. 1185:. 1177:. 1167:36 1165:. 1161:. 1138:. 1130:. 1116:. 1112:. 1087:. 1077:85 1075:. 1071:. 1048:. 1038:82 1036:. 1032:. 1007:82 1005:. 1001:. 975:. 920:, 908:, 882:. 856:. 852:. 834:^ 820:. 812:. 802:33 800:. 796:. 784:^ 768:81 766:. 762:. 748:^ 599:, 577:. 506:. 465:. 413:, 332:i) 277:i) 157:CO 152:. 144:, 121:. 38:. 2352:. 2340:: 2313:. 2285:: 2258:. 2228:: 2197:. 2169:: 2163:8 2142:. 2130:: 2103:. 2083:: 2056:. 2036:: 2028:: 2001:. 1981:: 1951:. 1931:: 1925:8 1904:. 1900:: 1873:. 1861:: 1834:. 1812:: 1782:. 1762:: 1735:. 1705:: 1697:: 1663:. 1659:: 1632:. 1600:: 1594:6 1573:. 1561:: 1514:: 1488:. 1484:: 1437:: 1414:. 1394:: 1362:. 1350:: 1323:. 1311:: 1284:. 1264:: 1234:. 1220:: 1193:. 1173:: 1146:. 1124:: 1118:1 1097:. 1091:: 1083:: 1056:. 1044:: 1017:. 1013:: 986:. 916:: 893:. 868:. 864:: 828:. 808:: 778:. 774:: 575:2 555:2 544:3 540:2 532:2 523:2 495:k 482:2 455:2 159:2 75:x

Index

sulfur
crude oil
microorganisms
enzymes
element
carbon
hydrogen
sweet
sour
sulfur oxides
atmosphere
acid rains
refineries
corrosion
poisoning
noble metal
fossil fuels
diesel
jet fuel
combustion engines
organosulfur compounds
combustion
European Union
ppm
desulfurization
hydrodesulfurization
oxidative
ionic liquids
CO2
metric tons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.