Knowledge (XXG)

Bioretention

Source πŸ“

20: 204:, respectively from water with metal concentrations typical of stormwater runoff. While this is a great benefit for water quality improvement, bioretention systems have a finite capacity for heavy metal removal. This will ultimately control the lifetime of bioretention systems, especially in areas with high heavy metal loads. 199:
from impervious surfaces (e.g. roadways and sidewalks). Treatment systems such as rain gardens and stormwater planters utilize a bioretention layer to remove heavy metals in stormwater runoff. Dissolved forms of heavy metals may bind to sediment particles in the roadway that are then captured by the
170:
sand soils are especially appropriate for bioretention because the excavated soil can be backfilled and used as the planting soil, thus eliminating the cost of importing planting soil. An unstable surrounding soil stratum and soils with a clay content greater than 25 percent may preclude the use of
69:
etc have been proposed over the years. These materials were reported to have enhanced performance in terms of pollutant removal. Runoff passes first over or through a sand bed, which slows the runoff's velocity, distributes it evenly along the length of the ponding area, which consists of a surface
64:
Stormwater is firstly directed into the designed treatment area, which conventionally consists of a sand bed (which serves as a transition to the actual soil), a filter media layer (which consists of layered materials of various composition), and plants atop the filter media. Various soil amendment
207:
Metal removal by bioretention cells in cold climates was similar or slightly lower than that in warmer environments. Plants are less active in colder seasons, suggesting that most of the heavy metals remain in the bioretention media rather than being taken up by plant roots. Therefore, removal and
165:
and other pollutants. Stormwater storage is also provided by the voids in the planting soil. The stored water and nutrients in the water and soil are then available to the plants for uptake. The layout of the bioretention area is determined after site constraints such as location of utilities,
141:
reduces the potential for erosion as well, slightly more effectively than mulch. The maximum sheet flow velocity prior to erosive conditions is 0.3 meters per second (1 foot per second) for planted groundcover and 0.9 meters per second (3 feet per second) for mulch.
200:
bioretention system. Additionally, heavy metals may adsorb to soil particles in the bioretention media as the runoff filters through. In laboratory experiments, bioretention cells removed 94%, 88%, 95%, and >95% of zinc, copper, lead, and
790: 441: 94:
and drainage of the planting soil are provided by the 0.5 m (20 in) deep sand bed. The ponding area provides a temporary storage location for runoff prior to its
710: 208:
replacement of the bioretention layer will become necessary in areas with heavy metal pollutants in stormwater runoff to extend the life of the treatment system.
376:
Lim, Fang Yee; Neo, Teck Heng; Guo, Huiling; Goh, Sin Zhi; Ong, Say Leong; Hu, Jiangyong; Lee, Brandon Chuan Yee; Ong, Geok Suat; Liou, Cui Xian (January 2021).
86:
Each of the components of the bioretention area is designed to perform a specific function. The grass buffer strip reduces incoming runoff velocity and filters
664: 172: 78:
and the underlying planting soil. Stored water in the bioretention area planting soil exfiltrates over a period of days into the underlying soils.
233: 448: 171:
bioretention, as would a site with slopes greater than 20 percent or a site with mature trees that would be removed during construction of the
902: 90:
from the runoff. The sand bed also reduces the velocity, filters particulates, and spreads flow over the length of the bioretention area.
315:"Conventional and amended bioretention soil media for targeted pollutant treatment: A critical review to guide the state of the practice" 897: 703: 378:"Pilot and Field Studies of Modular Bioretention Tree System with Talipariti tiliaceum and Engineered Soil Filter Media in the Tropics" 892: 877: 907: 56:. The main objective of the bioretention cell is to attenuate peak runoff as well as to remove stormwater runoff pollutants. 917: 912: 696: 447:(Report). Largo, MD: Prince George's County Department of Environmental Resources. 2009. pp. 6, 42. Archived from 313:
Tirpak, R. Andrew; Afrooz, ARM Nabiul; Winston, Ryan J.; Valenca, Renan; Schiff, Ken; Mohanty, Sanjay K. (2021-02-01).
922: 887: 680: 769: 102:. Some particulates not filtered out by the grass filter strip or the sand bed settle within the ponding area. 99: 19: 882: 509: 158: 805: 800: 314: 415:(Report). Washington, D.C.: U.S. Environmental Protection Agency (EPA). September 1999. EPA-832-F-99-012. 275: 795: 774: 571: 524: 474: 326: 223: 739: 846: 841: 759: 587: 358: 228: 856: 672: 540: 490: 350: 342: 295: 196: 851: 649: 639: 614: 579: 532: 482: 389: 334: 287: 238: 291: 764: 744: 465:
Li, H.; Davis, A.P. (2008). "Heavy metal capture and accumulation in bioretention media".
427: 412: 248: 114: 575: 528: 478: 330: 126: 106: 71: 53: 35: 628:"Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater" 536: 871: 362: 118: 46: 28: 591: 754: 688: 253: 130: 16:
Process in which contaminants and sedimentation are removed from stormwater runoff
428:
Stormwater Best Management Practice Design Guide, Volume 2: Vegetative Biofilters
338: 810: 243: 154: 138: 95: 87: 75: 24: 166:
underlying soils, existing vegetation, and drainage are considered. Sites with
749: 719: 583: 559: 276:"Review of Bioretention System Research and Design: Past, Present, and Future" 150: 50: 32: 676: 346: 299: 734: 605:
Davis, Allen P. (2007). "Field Performance of Bioretention: Water Quality".
122: 544: 494: 354: 618: 836: 831: 218: 162: 91: 654: 558:
Muthanna, T.M.; Viklander, M.; Gjesdahl, N.; Thorolfsson, S.T. (2007).
201: 134: 66: 665:"Bioretention and Bioinfiltration BMPs: Three researchers' experience" 486: 394: 377: 663:
Traver, Robert G.; Davis, Allen P.; Hunt, William F. (October 2007).
644: 627: 192: 274:
Roy-Poirier, Audrey; Champagne, Pascale; Filion, Yves (2010-09-01).
110: 18: 626:
Liu, Jia; Sample, David J.; Bell, Cameron; Guan, Yuntao (2014).
188: 184: 167: 146: 692: 38:
from an adjacent parking lot. Plants are in winter dormancy.
117:
and provides an environment conducive to the growth of
510:"Heavy metal fates in laboratory bioretention systems" 65:
such as water treatment residue (WTR), Coconut husk,
819: 783: 727: 426:Clar, M.L.; Barfield, B.J.; O’Connor, T.P. (2004). 560:"Heavy metal removal in cold climate bioretention" 129:material. This layer acts in a similar way to the 430:(Report). Cincinnati, OH: EPA. EPA-600/R-04/121A. 413:Storm Water Technology Fact Sheet: Bioretention 704: 8: 791:Continuous monitoring and adaptive control 711: 697: 689: 407: 405: 653: 643: 393: 45:is the process in which contaminants and 234:Organisms involved in water purification 137:and drying of underlying soils. Planted 266: 467:Environmental Science & Technology 671:. Santa Barbara, CA: Forester Media. 7: 280:Journal of Environmental Engineering 60:Construction of a bioretention area 31:. It is designed to treat polluted 23:A bioretention cell, also called a 292:10.1061/(ASCE)EE.1943-7870.0000227 14: 607:Environmental Engineering Science 537:10.1016/j.chemosphere.2006.08.013 183:Contaminant trace metals such as 564:Water, Air, and Soil Pollution 149:in the planting soil provides 1: 508:Sun, X.; Davis, A.P. (2007). 133:in a forest and prevents the 903:Hydrology and urban planning 339:10.1016/j.watres.2020.116648 939: 898:Environmental soil science 770:Stormwater detention vault 125:-based products and other 893:Environmental engineering 584:10.1007/s11270-007-9387-z 173:best management practices 878:Phytoremediation plants 728:Treatment / Containment 179:Heavy metal remediation 908:Landscape architecture 806:Hydrodynamic separator 801:Flow control structure 39: 918:Stormwater management 913:Sustainable gardening 796:Flood control channel 775:Stormwater harvesting 722:management structures 619:10.1089/ees.2006.0190 22: 224:Groundwater recharge 740:Constructed wetland 576:2007WASP..183..391M 529:2007Chmsp..66.1601S 479:2008EnST...42.5247L 442:Bioretention Manual 331:2021WatRe.18916648T 113:layer also filters 923:Water conservation 888:Sustainable design 847:Percolation trench 842:Infiltration basin 760:Oil-grit separator 229:Infiltration basin 40: 865: 864: 857:Semicircular bund 487:10.1021/es702681j 395:10.3390/w13131817 197:stormwater runoff 49:are removed from 930: 852:Permeable paving 713: 706: 699: 690: 684: 679:. Archived from 659: 657: 647: 645:10.3390/w6041069 622: 596: 595: 570:(1–4): 391–402. 555: 549: 548: 514: 505: 499: 498: 462: 456: 455: 453: 446: 438: 432: 431: 423: 417: 416: 409: 400: 399: 397: 373: 367: 366: 310: 304: 303: 271: 239:Phytoremediation 121:, which degrade 938: 937: 933: 932: 931: 929: 928: 927: 868: 867: 866: 861: 815: 779: 765:Retention basin 745:Detention basin 723: 717: 687: 662: 625: 604: 600: 599: 557: 556: 552: 512: 507: 506: 502: 473:(14): 5247–53. 464: 463: 459: 451: 444: 440: 439: 435: 425: 424: 420: 411: 410: 403: 375: 374: 370: 312: 311: 307: 273: 272: 268: 263: 258: 249:Tree box filter 214: 181: 84: 62: 17: 12: 11: 5: 936: 934: 926: 925: 920: 915: 910: 905: 900: 895: 890: 885: 883:Bioremediation 880: 870: 869: 863: 862: 860: 859: 854: 849: 844: 839: 834: 829: 823: 821: 817: 816: 814: 813: 808: 803: 798: 793: 787: 785: 781: 780: 778: 777: 772: 767: 762: 757: 752: 747: 742: 737: 731: 729: 725: 724: 718: 716: 715: 708: 701: 693: 686: 685: 683:on 2015-04-02. 660: 638:(4): 1069–99. 623: 613:(8): 1048–64. 601: 598: 597: 550: 500: 457: 454:on 2011-01-08. 433: 418: 401: 368: 319:Water Research 305: 286:(9): 878–889. 265: 264: 262: 259: 257: 256: 251: 246: 241: 236: 231: 226: 221: 215: 213: 210: 180: 177: 119:microorganisms 83: 80: 61: 58: 15: 13: 10: 9: 6: 4: 3: 2: 935: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 875: 873: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 824: 822: 818: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 788: 786: 782: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 732: 730: 726: 721: 714: 709: 707: 702: 700: 695: 694: 691: 682: 678: 674: 670: 666: 661: 656: 651: 646: 641: 637: 633: 629: 624: 620: 616: 612: 608: 603: 602: 593: 589: 585: 581: 577: 573: 569: 565: 561: 554: 551: 546: 542: 538: 534: 530: 526: 523:(9): 1601–9. 522: 518: 511: 504: 501: 496: 492: 488: 484: 480: 476: 472: 468: 461: 458: 450: 443: 437: 434: 429: 422: 419: 414: 408: 406: 402: 396: 391: 387: 383: 379: 372: 369: 364: 360: 356: 352: 348: 344: 340: 336: 332: 328: 324: 320: 316: 309: 306: 301: 297: 293: 289: 285: 281: 277: 270: 267: 260: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 216: 211: 209: 205: 203: 198: 195:are found in 194: 190: 186: 178: 176: 174: 169: 164: 160: 156: 152: 148: 143: 140: 136: 132: 128: 124: 120: 116: 112: 108: 103: 101: 97: 93: 89: 81: 79: 77: 74:layer and/or 73: 68: 59: 57: 55: 52: 48: 47:sedimentation 44: 37: 34: 30: 29:United States 26: 21: 827:Bioretention 826: 820:Infiltration 784:Flow control 755:Media filter 681:the original 668: 635: 631: 610: 606: 567: 563: 553: 520: 516: 503: 470: 466: 460: 449:the original 436: 421: 388:(13): 1817. 385: 381: 371: 322: 318: 308: 283: 279: 269: 254:Urban runoff 206: 182: 159:heavy metals 155:hydrocarbons 144: 104: 100:infiltration 88:particulates 85: 63: 43:Bioretention 42: 41: 811:Storm drain 655:10919/79208 517:Chemosphere 244:Rain garden 139:groundcover 131:leaf litter 96:evaporation 76:groundcover 25:rain garden 872:Categories 750:Green roof 720:Stormwater 669:Stormwater 325:: 116648. 261:References 153:sites for 151:adsorption 115:pollutants 82:Filtration 51:stormwater 33:stormwater 735:Biofilter 677:1531-0574 363:227159287 347:0043-1354 300:0733-9372 163:nutrients 123:petroleum 27:, in the 837:Dry well 832:Bioswale 592:16370412 545:17005239 495:18754376 355:33227609 219:Bioswale 212:See also 92:Aeration 572:Bibcode 525:Bibcode 475:Bibcode 327:Bibcode 202:cadmium 135:erosion 127:organic 107:organic 72:organic 67:biochar 675:  590:  543:  493:  361:  353:  345:  298:  193:copper 191:, and 54:runoff 36:runoff 632:Water 588:S2CID 513:(PDF) 452:(PDF) 445:(PDF) 382:Water 359:S2CID 168:loamy 111:mulch 673:ISSN 541:PMID 491:PMID 351:PMID 343:ISSN 296:ISSN 189:lead 185:zinc 147:clay 145:The 105:The 650:hdl 640:doi 615:doi 580:doi 568:183 533:doi 483:doi 390:doi 335:doi 323:189 288:doi 284:136 109:or 98:or 874:: 667:. 648:. 634:. 630:. 611:24 609:. 586:. 578:. 566:. 562:. 539:. 531:. 521:66 519:. 515:. 489:. 481:. 471:42 469:. 404:^ 386:13 384:. 380:. 357:. 349:. 341:. 333:. 321:. 317:. 294:. 282:. 278:. 187:, 175:. 161:, 157:, 712:e 705:t 698:v 658:. 652:: 642:: 636:6 621:. 617:: 594:. 582:: 574:: 547:. 535:: 527:: 497:. 485:: 477:: 398:. 392:: 365:. 337:: 329:: 302:. 290::

Index


rain garden
United States
stormwater
runoff
sedimentation
stormwater
runoff
biochar
organic
groundcover
particulates
Aeration
evaporation
infiltration
organic
mulch
pollutants
microorganisms
petroleum
organic
leaf litter
erosion
groundcover
clay
adsorption
hydrocarbons
heavy metals
nutrients
loamy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑