Knowledge (XXG)

Bing–Borsuk conjecture

Source 📝

493: 581: 613: 426: 259: 119: 546: 773: 452: 197: 170: 633: 364: 331: 679: 711: 513: 387: 302: 279: 223: 143: 42: 715:
is a topological manifold. It is a special case of the Bing–Borsuk conjecture. The Busemann conjecture is known to be true for dimensions 1 to 4.
905: 684:
Włodzimierz Jakobsche showed in 1978 that, if the Bing–Borsuk conjecture is true in dimension 3, then the Poincaré conjecture must also be true.
55:. The conjecture has been proved for dimensions 1 and 2, and it is known that the 3-dimensional version of the conjecture implies the 842: 457: 226: 48: 551: 56: 688: 586: 767: 636: 396: 334: 232: 78: 900: 52: 518: 910: 745: 282: 895: 871: 838: 832: 813: 755: 68: 45: 431: 803: 692: 175: 148: 787: 618: 340: 307: 658: 696: 498: 372: 287: 264: 208: 128: 27: 889: 122: 652: 203: 791: 17: 648: 875: 817: 808: 759: 390: 369:
There is an alternate statement of the Bing–Borsuk conjecture: suppose
860:"The Bing–Borsuk conjecture is stronger than the Poincaré conjecture" 750: 859: 733: 732:
M., Halverson, Denise; Dušan, Repovš (23 December 2008).
454:
and this embedding can be extended to an embedding of
699: 661: 621: 589: 554: 521: 501: 460: 434: 399: 375: 343: 310: 290: 267: 235: 211: 178: 151: 131: 81: 30: 488:{\displaystyle M\times (-\varepsilon ,\varepsilon )} 705: 673: 627: 607: 575: 540: 507: 487: 446: 420: 381: 358: 325: 296: 273: 253: 217: 191: 164: 137: 113: 36: 576:{\displaystyle \varphi :\partial N\rightarrow M} 734:"The Bing–Borsuk and the Busemann conjectures" 8: 772:: CS1 maint: multiple names: authors list ( 647:The conjecture was first made in a paper by 792:"Decompositions and approximate fibrations" 837:. American Mathematical Soc. p. 167. 807: 749: 698: 660: 620: 588: 553: 532: 520: 500: 459: 433: 406: 402: 401: 398: 374: 342: 309: 289: 266: 234: 210: 183: 177: 156: 150: 130: 99: 86: 80: 29: 831:Bing, R. H.; Armentrout, Steve (1998). 724: 765: 515:has a mapping cylinder neighbourhood 229:(ANR) if, for every closed embedding 7: 281:is a metric space), there exists an 608:{\displaystyle \pi :N\rightarrow M} 834:The Collected Papers of R. H. Bing 561: 421:{\displaystyle \mathbb {R} ^{m+n}} 14: 796:The Michigan Mathematical Journal 583:with mapping cylinder projection 906:Unsolved problems in mathematics 254:{\displaystyle f:M\rightarrow N} 114:{\displaystyle m_{1},m_{2}\in M} 599: 567: 541:{\displaystyle N=C_{\varphi }} 482: 467: 353: 347: 320: 314: 245: 1: 227:absolute neighborhood retract 49:absolute neighborhood retract 738:Mathematical Communications 655:in 1965, who proved it for 927: 864:Fundamenta Mathematicae 790:; Husch, L. S. (1984). 447:{\displaystyle m\geq 3} 75:if, for any two points 809:10.1307/mmj/1029003024 707: 675: 629: 609: 577: 542: 509: 489: 448: 422: 383: 360: 327: 298: 275: 255: 219: 193: 166: 139: 115: 38: 22:Bing–Borsuk conjecture 708: 676: 637:approximate fibration 630: 610: 578: 543: 510: 490: 449: 423: 384: 361: 328: 299: 276: 256: 220: 194: 192:{\displaystyle m_{2}} 167: 165:{\displaystyle m_{1}} 140: 116: 39: 697: 659: 628:{\displaystyle \pi } 619: 587: 552: 519: 499: 458: 432: 397: 373: 359:{\displaystyle f(M)} 341: 326:{\displaystyle f(M)} 308: 288: 265: 233: 209: 176: 149: 129: 79: 53:topological manifold 28: 689:Busemann conjecture 674:{\displaystyle n=1} 57:Poincaré conjecture 703: 691:states that every 671: 625: 605: 573: 538: 505: 485: 444: 418: 379: 356: 323: 294: 283:open neighbourhood 271: 251: 215: 189: 162: 135: 111: 34: 24:states that every 706:{\displaystyle G} 508:{\displaystyle M} 382:{\displaystyle M} 297:{\displaystyle U} 274:{\displaystyle N} 218:{\displaystyle M} 138:{\displaystyle M} 69:topological space 37:{\displaystyle n} 918: 880: 879: 855: 849: 848: 828: 822: 821: 811: 784: 778: 777: 771: 763: 753: 729: 712: 710: 709: 704: 680: 678: 677: 672: 634: 632: 631: 626: 614: 612: 611: 606: 582: 580: 579: 574: 547: 545: 544: 539: 537: 536: 514: 512: 511: 506: 494: 492: 491: 486: 453: 451: 450: 445: 427: 425: 424: 419: 417: 416: 405: 388: 386: 385: 380: 365: 363: 362: 357: 332: 330: 329: 324: 303: 301: 300: 295: 280: 278: 277: 272: 260: 258: 257: 252: 224: 222: 221: 216: 198: 196: 195: 190: 188: 187: 171: 169: 168: 163: 161: 160: 144: 142: 141: 136: 120: 118: 117: 112: 104: 103: 91: 90: 43: 41: 40: 35: 926: 925: 921: 920: 919: 917: 916: 915: 886: 885: 884: 883: 857: 856: 852: 845: 830: 829: 825: 788:Daverman, R. J. 786: 785: 781: 764: 731: 730: 726: 721: 695: 694: 657: 656: 645: 617: 616: 585: 584: 550: 549: 528: 517: 516: 497: 496: 456: 455: 430: 429: 400: 395: 394: 371: 370: 339: 338: 306: 305: 286: 285: 263: 262: 231: 230: 207: 206: 179: 174: 173: 152: 147: 146: 127: 126: 95: 82: 77: 76: 65: 26: 25: 12: 11: 5: 924: 922: 914: 913: 908: 903: 898: 888: 887: 882: 881: 858:Jakobsche, W. 850: 843: 823: 802:(2): 197–214. 779: 723: 722: 720: 717: 702: 670: 667: 664: 644: 641: 624: 604: 601: 598: 595: 592: 572: 569: 566: 563: 560: 557: 535: 531: 527: 524: 504: 484: 481: 478: 475: 472: 469: 466: 463: 443: 440: 437: 415: 412: 409: 404: 378: 355: 352: 349: 346: 322: 319: 316: 313: 293: 270: 250: 247: 244: 241: 238: 214: 186: 182: 159: 155: 134: 110: 107: 102: 98: 94: 89: 85: 64: 61: 33: 13: 10: 9: 6: 4: 3: 2: 923: 912: 909: 907: 904: 902: 899: 897: 894: 893: 891: 877: 873: 869: 865: 861: 854: 851: 846: 844:9780821810477 840: 836: 835: 827: 824: 819: 815: 810: 805: 801: 797: 793: 789: 783: 780: 775: 769: 761: 757: 752: 747: 743: 739: 735: 728: 725: 718: 716: 714: 700: 690: 685: 682: 668: 665: 662: 654: 650: 642: 640: 638: 622: 602: 596: 593: 590: 570: 564: 558: 555: 533: 529: 525: 522: 502: 479: 476: 473: 470: 464: 461: 441: 438: 435: 413: 410: 407: 392: 376: 367: 350: 344: 336: 317: 311: 304:of the image 291: 284: 268: 248: 242: 239: 236: 228: 212: 205: 200: 184: 180: 157: 153: 132: 124: 123:homeomorphism 121:, there is a 108: 105: 100: 96: 92: 87: 83: 74: 70: 62: 60: 58: 54: 50: 47: 44:-dimensional 31: 23: 19: 867: 863: 853: 833: 826: 799: 795: 782: 768:cite journal 741: 737: 727: 686: 683: 653:Karol Borsuk 646: 548:of some map 368: 204:metric space 201: 145:which takes 72: 66: 21: 15: 901:Conjectures 73:homogeneous 63:Definitions 51:space is a 46:homogeneous 18:mathematics 890:Categories 719:References 649:R. H. Bing 911:Manifolds 876:0016-2736 818:0026-2285 760:1331-0623 751:0811.0886 693:Busemann 623:π 600:→ 591:π 568:→ 562:∂ 556:φ 534:φ 480:ε 474:ε 471:− 465:× 439:≥ 428:for some 246:→ 106:∈ 896:Topology 391:embedded 335:retracts 681:and 2. 643:History 615:, then 261:(where 874:  841:  816:  758:  713:-space 635:is an 333:which 225:is an 20:, the 870:(2). 746:arXiv 744:(2). 495:. If 872:ISSN 839:ISBN 814:ISSN 774:link 756:ISSN 687:The 651:and 868:106 804:doi 393:in 389:is 337:to 172:to 125:of 71:is 16:In 892:: 866:. 862:. 812:. 800:31 798:. 794:. 770:}} 766:{{ 754:. 742:13 740:. 736:. 639:. 366:. 202:A 199:. 67:A 59:. 878:. 847:. 820:. 806:: 776:) 762:. 748:: 701:G 669:1 666:= 663:n 603:M 597:N 594:: 571:M 565:N 559:: 530:C 526:= 523:N 503:M 483:) 477:, 468:( 462:M 442:3 436:m 414:n 411:+ 408:m 403:R 377:M 354:) 351:M 348:( 345:f 321:) 318:M 315:( 312:f 292:U 269:N 249:N 243:M 240:: 237:f 213:M 185:2 181:m 158:1 154:m 133:M 109:M 101:2 97:m 93:, 88:1 84:m 32:n

Index

mathematics
homogeneous
absolute neighborhood retract
topological manifold
Poincaré conjecture
topological space
homeomorphism
metric space
absolute neighborhood retract
open neighbourhood
retracts
embedded
approximate fibration
R. H. Bing
Karol Borsuk
Busemann conjecture
Busemann G {\displaystyle G} -space
"The Bing–Borsuk and the Busemann conjectures"
arXiv
0811.0886
ISSN
1331-0623
cite journal
link
Daverman, R. J.
"Decompositions and approximate fibrations"
doi
10.1307/mmj/1029003024
ISSN
0026-2285

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.