Knowledge (XXG)

Birational geometry

Source 📝

31: 2170:, says that any birational map between two smooth complex projective varieties can be decomposed into finitely many blow-ups or blow-downs of smooth subvarieties. This is important to know, but it can still be very hard to determine whether two smooth projective varieties are birational. 2255:
Minimal models are not unique in dimensions at least 3, but any two minimal varieties which are birational are very close. For example, they are isomorphic outside subsets of codimension at least 2, and more precisely they are related by a sequence of
2286:
if it is covered by rational curves. A uniruled variety does not have a minimal model, but there is a good substitute: Birkar, Cascini, Hacon, and McKernan showed that every uniruled variety over a field of characteristic zero is birational to a
2263:
The conjecture was proved in dimension 3 by Mori. There has been great progress in higher dimensions, although the general problem remains open. In particular, Birkar, Cascini, Hacon, and McKernan (2010) proved that every variety of
2620:
showed that the birational automorphism group of a smooth quartic 3-fold is equal to its automorphism group, which is finite. In this sense, quartic 3-folds are far from being rational, since the birational automorphism group of a
2659:, in the development of explicit invariants of Fano varieties to test K-stability by computing on birational models, and in the construction of moduli spaces of Fano varieties. Important results in birational geometry such as 651: 1241: 953: 2025: 1481: 1949:. This is a measure of the complexity of a variety, with projective space having Kodaira dimension −∞. The most complicated varieties are those with Kodaira dimension equal to their dimension 870: 1682:
At first, it is not clear how to show that there are any algebraic varieties which are not rational. In order to prove this, some birational invariants of algebraic varieties are needed. A
2128: 2210:
of dimension 2, it is enough to consider smooth varieties in this definition. In dimensions at least 3, minimal varieties must be allowed to have certain mild singularities, for which
2358:. Nonetheless, the problem of determining exactly which Fano varieties are rational is far from solved. For example, it is not known whether there is any smooth cubic hypersurface in 1642: 753: 1408: 2514: 2565: 2391: 2597: 2439: 1510: 1437: 1132: 1023: 691: 525: 491: 1345: 183: 2333: 834: 985: 2777:, Corollary 1.3.3), implies that every uniruled variety in characteristic zero is birational to a Fano fiber space, using the easier result that a uniruled variety 1550:
construction. By blowing up, every smooth projective variety of dimension at least 2 is birational to infinitely many "bigger" varieties, for example with bigger
1044: 890: 795: 439: 247: 227: 203: 141: 121: 2412:
is extremely rigid, in the sense that its birational automorphism group is finite. At the other extreme, the birational automorphism group of projective space
2346:) over an algebraically closed field is rational. A major discovery in the 1970s was that starting in dimension 3, there are many Fano varieties which are not 3212: 2868: 2809: 1528:). So, for the purposes of birational classification, it is enough to work only with projective varieties, and this is usually the most convenient setting. 538: 1187: 1540: 348: 3190: 3065: 3035: 3001: 1598: 249:, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. 1602: 1546:
In dimension 1, if two smooth projective curves are birational, then they are isomorphic. But that fails in dimension at least 2, by the
379:
is defined everywhere, but its inverse may not be. Typically, this happens because a birational morphism contracts some subvarieties of
2633:
Birational geometry has found applications in other areas of geometry, but especially in traditional problems in algebraic geometry.
3102: 2807:
Abramovich, Dan; Karu, Kalle; Matsuki, Kenji; Włodarczyk, Jarosław (2002), "Torification and factorization of birational maps",
895: 1971: 1561:: is there a unique simplest variety in each birational equivalence class? The modern definition is that a projective variety 2291:. This leads to the problem of the birational classification of Fano fiber spaces and (as the most interesting special case) 1442: 2260:. So the minimal model conjecture would give strong information about the birational classification of algebraic varieties. 2656: 2652: 1597:
This notion works perfectly for algebraic surfaces (varieties of dimension 2). In modern terms, one central result of the
3311: 1055: 1686:
is any kind of number, ring, etc which is the same, or isomorphic, for all varieties that are birationally equivalent.
1536: 839: 3174: 3023: 1883:; then the plurigenera are birational invariants for smooth projective varieties. In particular, if any plurigenus 1543:
projective variety. Given that, it is enough to classify smooth projective varieties up to birational equivalence.
2625:
is enormous. This phenomenon of "birational rigidity" has since been discovered in many other Fano fiber spaces.
2065: 2645: 1067: 43: 1612: 699: 1154:. This is a birational equivalence but not an isomorphism of varieties, because it fails to be defined where 413:
minus some lower-dimensional subset can be identified with affine space minus some lower-dimensional subset.
3126: 2218: 1353: 2940: 2478: 2527: 2931: 2361: 2288: 2225: 2179: 1661: 1558: 100: 2570: 2339:. Fano varieties can be considered the algebraic varieties which are most similar to projective space. 2415: 1486: 1413: 1108: 999: 667: 501: 3135: 2887: 2672: 1677: 444: 2945: 2663:
proof of boundedness of Fano varieties have been used to prove existence results for moduli spaces.
2408:
Algebraic varieties differ widely in how many birational automorphisms they have. Every variety of
1539:: over a field of characteristic 0 (such as the complex numbers), every variety is birational to a 63: 1249: 3289: 3269: 3237: 3088: 2966: 2911: 2877: 2844: 2818: 2257: 1521: 771: 156: 75: 59: 3162: 2641: 162: 2306: 800: 3229: 3186: 3098: 3061: 3031: 3019: 2997: 2958: 2926: 2859: 2604: 2409: 2343: 2336: 2265: 2150: 1954: 1918: 1912: 1695: 958: 71: 3279: 3221: 3178: 3143: 3108: 3053: 2950: 2895: 2828: 2622: 2347: 2193: 1737: 1699: 1570: 1532: 406: 401: 206: 96: 3249: 3200: 3155: 3075: 3045: 3011: 2978: 2907: 2840: 3245: 3196: 3151: 3112: 3071: 3041: 3007: 2993: 2985: 2974: 2922: 2903: 2836: 2203: 1591: 1181: 767: 1525: 17: 3139: 2891: 3207: 3166: 2863: 2855: 2660: 2233: 1733: 1083: 1029: 875: 780: 424: 232: 212: 188: 126: 106: 2166:
The "Weak factorization theorem", proved by Abramovich, Karu, Matsuki, and Włodarczyk
3305: 3293: 2446: 2277: 3147: 2848: 2915: 2637: 2292: 2057: 1551: 646:{\displaystyle f(t)=\left({\frac {2t}{1+t^{2}}},{\frac {1-t^{2}}{1+t^{2}}}\right),} 2899: 2832: 3124:(1971), "Three-dimensional quartics and counterexamples to the Lüroth problem", 2600: 1711: 79: 51: 3121: 2651:
Birational geometry has recently found important applications in the study of
2056:
is a birational invariant for smooth projective varieties. In particular, the
1547: 67: 3233: 3182: 2962: 39: 30: 1934:
goes to infinity. The Kodaira dimension divides all varieties of dimension
1236:{\displaystyle \mathbb {P} ^{1}\times \mathbb {P} ^{1}\to \mathbb {P} ^{3}} 409:) of some dimension. Rationality is a very natural property: it means that 82:; the map may fail to be defined where the rational functions have poles. 2866:(2010), "Existence of minimal models for varieties of log general type", 493:
in the affine plane is a rational curve, because there is a rational map
297:. A birational map induces an isomorphism from a nonempty open subset of 3210:(1988), "Flip theorem and the existence of minimal models for 3-folds", 2882: 1439:. That gives another proof that this quadric surface is rational, since 3241: 2970: 3284: 3257: 2823: 2163:) is a birational invariant for smooth complex projective varieties. 35: 3225: 2954: 3274: 3093: 1093:
is algebraically closed.) To define stereographic projection, let
305:, and vice versa: an isomorphism between nonempty open subsets of 29: 1594:. It is easy to check that blown-up varieties are never minimal. 2614:
is very much a mystery: no explicit set of generators is known.
1164:(and the inverse map fails to be defined at those lines through 3258:"K-stability of Fano varieties: An algebro-geometric approach" 3083:
Kollár, János (2013). "Moduli of varieties of general type".
2929:(1972), "The intermediate Jacobian of the cubic threefold", 70:
outside lower-dimensional subsets. This amounts to studying
1800:
between smooth projective varieties induces an isomorphism
1483:
is obviously rational, having an open subset isomorphic to
2774: 2727: 2350:. In particular, smooth cubic 3-folds are not rational by 948:{\displaystyle U=\mathbb {A} _{\mathbb {C} }^{1}-\{i,-i\}} 2636:
Famously the minimal model program was used to construct
2268:
over a field of characteristic zero has a minimal model.
2020:{\displaystyle E(\Omega ^{1})=\bigotimes ^{k}\Omega ^{1}} 405:
if it is birational to affine space (or equivalently, to
2788:
has negative degree. A reference for the latter fact is
2141:
are not birational invariants, as shown by blowing up.)
1476:{\displaystyle \mathbb {P} ^{1}\times \mathbb {P} ^{1}} 2573: 2530: 2481: 2418: 2364: 2309: 2068: 1974: 1615: 1489: 1445: 1416: 1356: 1252: 1190: 1111: 1032: 1002: 961: 898: 878: 842: 803: 783: 702: 670: 541: 504: 447: 427: 235: 215: 191: 165: 129: 109: 2461:), is large (in a sense, infinite-dimensional) for 375:, meaning a morphism which is birational. That is, 209:used in algebraic geometry, a nonempty open subset 2591: 2559: 2508: 2433: 2385: 2327: 2122: 2019: 1786:has the remarkable property that a birational map 1636: 1504: 1475: 1431: 1402: 1339: 1235: 1126: 1038: 1017: 979: 947: 884: 864: 828: 789: 747: 685: 645: 519: 485: 433: 241: 221: 197: 177: 135: 115: 2354:, and smooth quartic 3-folds are not rational by 343:. In algebraic terms, two varieties over a field 2351: 2145:Fundamental group of smooth projective varieties 1945:types, with Kodaira dimension −∞, 0, 1, ..., or 1694:One useful set of birational invariants are the 2607:. By contrast, the Cremona group in dimensions 2516:is generated by the "quadratic transformation" 2342:In dimension 2, every Fano variety (known as a 2034:th tensor power of the cotangent bundle Ω with 1921:, which measures the growth of the plurigenera 1050:Birational equivalence of smooth quadrics and P 865:{\displaystyle \mathbb {A} _{\mathbb {C} }^{1}} 2617: 2355: 1516:Minimal models and resolution of singularities 8: 3213:Journal of the American Mathematical Society 2869:Journal of the American Mathematical Society 2810:Journal of the American Mathematical Society 2123:{\displaystyle h^{p,0}=H^{0}(X,\Omega ^{p})} 1652:. The two cases are mutually exclusive, and 942: 927: 1520:Every algebraic variety is birational to a 62:in which the goal is to determine when two 3171:Birational Geometry of Algebraic Varieties 2781:is covered by a family of curves on which 2703: 2691: 1917:A fundamental birational invariant is the 3283: 3273: 3092: 2944: 2881: 2822: 2580: 2576: 2575: 2572: 2550: 2549: 2529: 2499: 2498: 2489: 2480: 2425: 2421: 2420: 2417: 2371: 2367: 2366: 2363: 2319: 2314: 2308: 2111: 2092: 2073: 2067: 2011: 2001: 1985: 1973: 1622: 1618: 1617: 1614: 1579:has nonnegative degree on every curve in 1496: 1492: 1491: 1488: 1467: 1463: 1462: 1452: 1448: 1447: 1444: 1423: 1419: 1418: 1415: 1394: 1384: 1371: 1361: 1355: 1251: 1227: 1223: 1222: 1212: 1208: 1207: 1197: 1193: 1192: 1189: 1176:Birational equivalence of quadric surface 1118: 1114: 1113: 1110: 1031: 1009: 1005: 1004: 1001: 960: 918: 913: 912: 911: 907: 906: 897: 877: 856: 851: 850: 849: 845: 844: 841: 814: 802: 782: 724: 701: 677: 673: 672: 669: 626: 608: 595: 583: 562: 540: 511: 507: 506: 503: 465: 452: 446: 426: 234: 214: 190: 164: 128: 108: 2217:is still well-behaved; these are called 1965:More generally, for any natural summand 1637:{\displaystyle \mathbb {P} ^{1}\times C} 748:{\displaystyle g(x,y)={\frac {1-y}{x}}.} 2789: 2767: 2684: 417:Birational equivalence of a plane conic 2739: 2655:through general existence results for 2295:. By definition, a projective variety 2041:, the vector space of global sections 1766:, the vector space of global sections 1026:is not defined at the point (0,−1) in 391:Birational equivalence and rationality 351:are isomorphic as extension fields of 2990:Higher-Dimensional Algebraic Geometry 2792:, Corollary 4.11) and Example 4.7(1). 1961:Summands of ⊗Ω and some Hodge numbers 1863:as the dimension of the vector space 1403:{\displaystyle x_{0}x_{3}=x_{1}x_{2}} 313:by definition gives a birational map 42:. One birational map between them is 7: 3262:EMS Surveys in Mathematical Sciences 2715: 2509:{\displaystyle Cr_{2}(\mathbb {C} )} 1599:Italian school of algebraic geometry 347:are birational if and only if their 2560:{\displaystyle PGL(3,\mathbb {C} )} 2236:or birational to a minimal variety 2174:Minimal models in higher dimensions 770:gives a systematic construction of 99:from one variety (understood to be 2751: 2648:, now known as KSB moduli spaces. 2386:{\displaystyle \mathbb {P} ^{n+1}} 2108: 2008: 1982: 1609:is birational either to a product 797:is not defined on the locus where 283:such that there is a rational map 38:is birationally equivalent to the 25: 3087:. Vol. 2. pp. 131–157. 2592:{\displaystyle \mathbb {P} ^{2},} 1350:The image is the quadric surface 892:is a morphism on the open subset 836:. So, on the complex affine line 3028:Principles of Algebraic Geometry 2640:of varieties of general type by 2434:{\displaystyle \mathbb {P} ^{n}} 1505:{\displaystyle \mathbb {A} ^{2}} 1432:{\displaystyle \mathbb {P} ^{3}} 1127:{\displaystyle \mathbb {P} ^{n}} 1018:{\displaystyle \mathbb {A} ^{1}} 686:{\displaystyle \mathbb {A} ^{1}} 520:{\displaystyle \mathbb {A} ^{1}} 3148:10.1070/SM1971v015n01ABEH001536 2228:would imply that every variety 486:{\displaystyle x^{2}+y^{2}-1=0} 2554: 2540: 2503: 2495: 2404:Birational automorphism groups 2117: 2098: 1991: 1978: 1331: 1295: 1292: 1289: 1286: 1274: 1268: 1256: 1253: 1218: 971: 718: 706: 551: 545: 1: 2900:10.1090/S0894-0347-09-00649-3 2833:10.1090/S0894-0347-02-00396-X 2653:K-stability of Fano varieties 2133:are birational invariants of 1656:is unique if it exists. When 1101:. Then a birational map from 987:. Likewise, the rational map 656:which has a rational inverse 301:to a nonempty open subset of 2475:, the complex Cremona group 2303:if the anticanonical bundle 2167: 2137:. (Most other Hodge numbers 1759:is again a line bundle. For 1601:from 1890–1910, part of the 1340:{\displaystyle (,)\mapsto .} 1138:is given by sending a point 159:from a nonempty open subset 143:, written as a dashed arrow 1537:resolution of singularities 27:Field of algebraic geometry 3328: 3175:Cambridge University Press 2275: 2177: 1910: 1675: 1603:classification of surfaces 1557:This leads to the idea of 1082:must be assumed to have a 178:{\displaystyle U\subset X} 3030:. John Wiley & Sons. 2328:{\displaystyle K_{X}^{*}} 1660:exists, it is called the 1054:More generally, a smooth 829:{\displaystyle 1+t^{2}=0} 18:Birational classification 3183:10.1017/CBO9780511662560 2646:Nicholas Shepherd-Barron 2524:together with the group 2352:Clemens–Griffiths (1972) 2226:minimal model conjecture 1648:or to a minimal surface 1605:, is that every surface 1105:to the projective space 1068:stereographic projection 1058:(degree 2) hypersurface 980:{\displaystyle f:U\to X} 421:For example, the circle 44:stereographic projection 3127:Matematicheskii Sbornik 2657:Kähler–Einstein metrics 2618:Iskovskikh–Manin (1971) 2400:which is not rational. 2356:Iskovskikh–Manin (1971) 1168:which are contained in 1089:; this is automatic if 1074:a quadric over a field 341:birationally equivalent 205:. By definition of the 2692:Kollár & Mori 1998 2593: 2561: 2510: 2435: 2387: 2329: 2219:terminal singularities 2124: 2021: 1953:, called varieties of 1638: 1506: 1477: 1433: 1404: 1341: 1237: 1128: 1040: 1019: 981: 949: 886: 866: 830: 791: 749: 687: 647: 521: 487: 435: 243: 223: 199: 179: 137: 117: 47: 3256:Xu, Chenyang (2021). 2932:Annals of Mathematics 2927:Griffiths, Phillip A. 2860:Hacon, Christopher D. 2594: 2562: 2511: 2436: 2388: 2330: 2232:is either covered by 2224:That being said, the 2184:A projective variety 2180:Minimal model program 2125: 2022: 1672:Birational invariants 1639: 1571:canonical line bundle 1507: 1478: 1434: 1405: 1342: 1238: 1129: 1041: 1020: 982: 950: 887: 867: 831: 792: 750: 688: 648: 522: 488: 436: 244: 224: 200: 180: 138: 118: 33: 2673:Abundance conjecture 2571: 2567:of automorphisms of 2528: 2479: 2416: 2362: 2307: 2282:A variety is called 2066: 1972: 1702:of a smooth variety 1684:birational invariant 1678:Birational invariant 1613: 1487: 1443: 1414: 1354: 1250: 1188: 1146:to the line through 1109: 1030: 1000: 959: 896: 876: 840: 801: 781: 700: 668: 539: 502: 445: 425: 358:A special case is a 233: 213: 189: 163: 127: 107: 3312:Birational geometry 3140:1971SbMat..15..141I 3060:. Springer-Verlag. 2923:Clemens, C. Herbert 2892:2010JAMS...23..405B 2775:Birkar et al. (2010 2706:, Exercise II.8.8.. 2324: 1752:th tensor power of 1535:'s 1964 theorem on 1184:gives an embedding 923: 861: 772:Pythagorean triples 360:birational morphism 229:is always dense in 123:to another variety 64:algebraic varieties 56:birational geometry 3120:Iskovskih, V. A.; 3085:Handbook of moduli 3058:Algebraic Geometry 3020:Griffiths, Phillip 2858:; Cascini, Paolo; 2728:Birkar et al. 2010 2589: 2557: 2506: 2431: 2383: 2325: 2310: 2272:Uniruled varieties 2240:. When it exists, 2120: 2017: 1899:is not zero, then 1634: 1583:; in other words, 1522:projective variety 1502: 1473: 1429: 1400: 1337: 1233: 1124: 1036: 1015: 977: 945: 905: 882: 862: 843: 826: 787: 745: 683: 643: 517: 483: 431: 269:is a rational map 239: 219: 195: 175: 155:, is defined as a 133: 113: 76:rational functions 74:that are given by 60:algebraic geometry 48: 3192:978-0-521-63277-5 3130:, Novaya Seriya, 3067:978-0-387-90244-9 3054:Hartshorne, Robin 3037:978-0-471-32792-9 3003:978-0-387-95227-7 2935:, Second Series, 2344:Del Pezzo surface 2151:fundamental group 2006: 1919:Kodaira dimension 1913:Kodaira dimension 1907:Kodaira dimension 1903:is not rational. 1744:. For an integer 1134:of lines through 1062:of any dimension 1039:{\displaystyle X} 885:{\displaystyle f} 790:{\displaystyle f} 777:The rational map 758:Applying the map 740: 633: 590: 434:{\displaystyle X} 242:{\displaystyle X} 222:{\displaystyle U} 198:{\displaystyle Y} 136:{\displaystyle Y} 116:{\displaystyle X} 16:(Redirected from 3319: 3297: 3287: 3277: 3252: 3203: 3158: 3116: 3096: 3079: 3049: 3015: 2986:Debarre, Olivier 2981: 2948: 2918: 2885: 2851: 2826: 2793: 2772: 2755: 2749: 2743: 2737: 2731: 2725: 2719: 2713: 2707: 2701: 2695: 2694:, Theorem 1.29.. 2689: 2623:rational variety 2613: 2598: 2596: 2595: 2590: 2585: 2584: 2579: 2566: 2564: 2563: 2558: 2553: 2515: 2513: 2512: 2507: 2502: 2494: 2493: 2474: 2467: 2440: 2438: 2437: 2432: 2430: 2429: 2424: 2399: 2392: 2390: 2389: 2384: 2382: 2381: 2370: 2334: 2332: 2331: 2326: 2323: 2318: 2289:Fano fiber space 2194:canonical bundle 2129: 2127: 2126: 2121: 2116: 2115: 2097: 2096: 2084: 2083: 2055: 2040: 2026: 2024: 2023: 2018: 2016: 2015: 2005: 1997: 1990: 1989: 1944: 1898: 1882: 1846: 1836: 1799: 1785: 1765: 1738:cotangent bundle 1727: 1700:canonical bundle 1643: 1641: 1640: 1635: 1627: 1626: 1621: 1511: 1509: 1508: 1503: 1501: 1500: 1495: 1482: 1480: 1479: 1474: 1472: 1471: 1466: 1457: 1456: 1451: 1438: 1436: 1435: 1430: 1428: 1427: 1422: 1409: 1407: 1406: 1401: 1399: 1398: 1389: 1388: 1376: 1375: 1366: 1365: 1346: 1344: 1343: 1338: 1242: 1240: 1239: 1234: 1232: 1231: 1226: 1217: 1216: 1211: 1202: 1201: 1196: 1163: 1133: 1131: 1130: 1125: 1123: 1122: 1117: 1066:is rational, by 1045: 1043: 1042: 1037: 1025: 1024: 1022: 1021: 1016: 1014: 1013: 1008: 986: 984: 983: 978: 954: 952: 951: 946: 922: 917: 916: 910: 891: 889: 888: 883: 871: 869: 868: 863: 860: 855: 854: 848: 835: 833: 832: 827: 819: 818: 796: 794: 793: 788: 754: 752: 751: 746: 741: 736: 725: 692: 690: 689: 684: 682: 681: 676: 652: 650: 649: 644: 639: 635: 634: 632: 631: 630: 614: 613: 612: 596: 591: 589: 588: 587: 571: 563: 531: 526: 524: 523: 518: 516: 515: 510: 492: 490: 489: 484: 470: 469: 457: 456: 440: 438: 437: 432: 407:projective space 374: 327:. In this case, 326: 292: 282: 248: 246: 245: 240: 228: 226: 225: 220: 207:Zariski topology 204: 202: 201: 196: 184: 182: 181: 176: 154: 150: 142: 140: 139: 134: 122: 120: 119: 114: 46:, pictured here. 21: 3327: 3326: 3322: 3321: 3320: 3318: 3317: 3316: 3302: 3301: 3300: 3285:10.4171/EMSS/51 3255: 3226:10.2307/1990969 3208:Mori, Shigefumi 3206: 3193: 3167:Mori, Shigefumi 3161: 3119: 3105: 3082: 3068: 3052: 3038: 3018: 3004: 2994:Springer-Verlag 2984: 2955:10.2307/1970801 2946:10.1.1.401.4550 2921: 2883:math.AG/0610203 2864:McKernan, James 2856:Birkar, Caucher 2854: 2806: 2802: 2797: 2796: 2786: 2773: 2769: 2764: 2759: 2758: 2750: 2746: 2738: 2734: 2726: 2722: 2714: 2710: 2704:Hartshorne 1977 2702: 2698: 2690: 2686: 2681: 2669: 2631: 2608: 2574: 2569: 2568: 2526: 2525: 2485: 2477: 2476: 2469: 2462: 2456: 2445:, known as the 2419: 2414: 2413: 2406: 2394: 2365: 2360: 2359: 2305: 2304: 2280: 2274: 2234:rational curves 2215: 2200: 2182: 2176: 2158: 2147: 2107: 2088: 2069: 2064: 2063: 2042: 2035: 2007: 1981: 1970: 1969: 1963: 1939: 1929: 1915: 1909: 1893: 1891: 1880: 1864: 1862: 1841: 1834: 1817: 1801: 1787: 1783: 1767: 1760: 1757: 1728:, which is the 1724: 1719: 1692: 1680: 1674: 1644:for some curve 1616: 1611: 1610: 1588: 1577: 1531:Much deeper is 1518: 1490: 1485: 1484: 1461: 1446: 1441: 1440: 1417: 1412: 1411: 1390: 1380: 1367: 1357: 1352: 1351: 1248: 1247: 1221: 1206: 1191: 1186: 1185: 1182:Segre embedding 1178: 1155: 1112: 1107: 1106: 1087:-rational point 1052: 1028: 1027: 1003: 998: 997: 988: 957: 956: 894: 893: 874: 873: 838: 837: 810: 799: 798: 779: 778: 768:rational number 726: 698: 697: 671: 666: 665: 622: 615: 604: 597: 579: 572: 564: 561: 557: 537: 536: 505: 500: 499: 494: 461: 448: 443: 442: 423: 422: 419: 393: 362: 349:function fields 335:are said to be 314: 284: 270: 255: 253:Birational maps 231: 230: 211: 210: 187: 186: 161: 160: 148: 144: 125: 124: 105: 104: 93: 88: 86:Birational maps 28: 23: 22: 15: 12: 11: 5: 3325: 3323: 3315: 3314: 3304: 3303: 3299: 3298: 3253: 3220:(1): 117–253, 3204: 3191: 3159: 3134:(1): 140–166, 3117: 3103: 3080: 3066: 3050: 3036: 3024:Harris, Joseph 3016: 3002: 2982: 2939:(2): 281–356, 2919: 2876:(2): 405–468, 2852: 2817:(3): 531–572, 2803: 2801: 2798: 2795: 2794: 2784: 2766: 2765: 2763: 2760: 2757: 2756: 2744: 2732: 2720: 2708: 2696: 2683: 2682: 2680: 2677: 2676: 2675: 2668: 2665: 2630: 2627: 2588: 2583: 2578: 2556: 2552: 2548: 2545: 2542: 2539: 2536: 2533: 2522: 2521: 2505: 2501: 2497: 2492: 2488: 2484: 2452: 2428: 2423: 2405: 2402: 2380: 2377: 2374: 2369: 2322: 2317: 2313: 2293:Fano varieties 2276:Main article: 2273: 2270: 2213: 2198: 2178:Main article: 2175: 2172: 2156: 2146: 2143: 2131: 2130: 2119: 2114: 2110: 2106: 2103: 2100: 2095: 2091: 2087: 2082: 2079: 2076: 2072: 2028: 2027: 2014: 2010: 2004: 2000: 1996: 1993: 1988: 1984: 1980: 1977: 1962: 1959: 1925: 1911:Main article: 1908: 1905: 1887: 1876: 1858: 1830: 1813: 1779: 1755: 1734:exterior power 1722: 1691: 1688: 1676:Main article: 1673: 1670: 1633: 1630: 1625: 1620: 1586: 1575: 1559:minimal models 1517: 1514: 1499: 1494: 1470: 1465: 1460: 1455: 1450: 1426: 1421: 1397: 1393: 1387: 1383: 1379: 1374: 1370: 1364: 1360: 1348: 1347: 1336: 1333: 1330: 1327: 1324: 1321: 1318: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1261: 1258: 1255: 1230: 1225: 1220: 1215: 1210: 1205: 1200: 1195: 1177: 1174: 1121: 1116: 1097:be a point in 1051: 1048: 1035: 1012: 1007: 976: 973: 970: 967: 964: 944: 941: 938: 935: 932: 929: 926: 921: 915: 909: 904: 901: 881: 859: 853: 847: 825: 822: 817: 813: 809: 806: 786: 756: 755: 744: 739: 735: 732: 729: 723: 720: 717: 714: 711: 708: 705: 680: 675: 654: 653: 642: 638: 629: 625: 621: 618: 611: 607: 603: 600: 594: 586: 582: 578: 575: 570: 567: 560: 556: 553: 550: 547: 544: 514: 509: 482: 479: 476: 473: 468: 464: 460: 455: 451: 441:with equation 430: 418: 415: 399:is said to be 392: 389: 259:birational map 254: 251: 238: 218: 194: 174: 171: 168: 132: 112: 92: 89: 87: 84: 58:is a field of 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3324: 3313: 3310: 3309: 3307: 3295: 3291: 3286: 3281: 3276: 3271: 3267: 3263: 3259: 3254: 3251: 3247: 3243: 3239: 3235: 3231: 3227: 3223: 3219: 3215: 3214: 3209: 3205: 3202: 3198: 3194: 3188: 3184: 3180: 3176: 3172: 3168: 3164: 3163:Kollár, János 3160: 3157: 3153: 3149: 3145: 3141: 3137: 3133: 3129: 3128: 3123: 3122:Manin, Ju. I. 3118: 3114: 3110: 3106: 3104:9781571462589 3100: 3095: 3090: 3086: 3081: 3077: 3073: 3069: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3033: 3029: 3025: 3021: 3017: 3013: 3009: 3005: 2999: 2995: 2991: 2987: 2983: 2980: 2976: 2972: 2968: 2964: 2960: 2956: 2952: 2947: 2942: 2938: 2934: 2933: 2928: 2924: 2920: 2917: 2913: 2909: 2905: 2901: 2897: 2893: 2889: 2884: 2879: 2875: 2871: 2870: 2865: 2861: 2857: 2853: 2850: 2846: 2842: 2838: 2834: 2830: 2825: 2820: 2816: 2812: 2811: 2805: 2804: 2799: 2791: 2790:Debarre (2001 2787: 2780: 2776: 2771: 2768: 2761: 2753: 2748: 2745: 2741: 2736: 2733: 2729: 2724: 2721: 2717: 2712: 2709: 2705: 2700: 2697: 2693: 2688: 2685: 2678: 2674: 2671: 2670: 2666: 2664: 2662: 2658: 2654: 2649: 2647: 2643: 2639: 2638:moduli spaces 2634: 2628: 2626: 2624: 2619: 2615: 2611: 2606: 2602: 2586: 2581: 2546: 2543: 2537: 2534: 2531: 2519: 2518: 2517: 2490: 2486: 2482: 2472: 2465: 2460: 2455: 2451: 2448: 2447:Cremona group 2444: 2441:over a field 2426: 2411: 2403: 2401: 2397: 2378: 2375: 2372: 2357: 2353: 2349: 2345: 2340: 2338: 2320: 2315: 2311: 2302: 2298: 2294: 2290: 2285: 2279: 2278:Ruled variety 2271: 2269: 2267: 2261: 2259: 2253: 2251: 2247: 2246:minimal model 2243: 2239: 2235: 2231: 2227: 2222: 2220: 2216: 2209: 2205: 2201: 2195: 2191: 2187: 2181: 2173: 2171: 2169: 2164: 2162: 2155: 2152: 2144: 2142: 2140: 2136: 2112: 2104: 2101: 2093: 2089: 2085: 2080: 2077: 2074: 2070: 2062: 2061: 2060: 2059: 2058:Hodge numbers 2053: 2049: 2045: 2038: 2033: 2012: 2002: 1998: 1994: 1986: 1975: 1968: 1967: 1966: 1960: 1958: 1956: 1952: 1948: 1942: 1937: 1933: 1928: 1924: 1920: 1914: 1906: 1904: 1902: 1896: 1890: 1886: 1879: 1875: 1871: 1867: 1861: 1857: 1854: 1850: 1847:, define the 1844: 1838: 1833: 1829: 1825: 1821: 1816: 1812: 1808: 1804: 1798: 1794: 1790: 1782: 1778: 1774: 1770: 1763: 1758: 1751: 1747: 1743: 1739: 1735: 1731: 1725: 1717: 1713: 1709: 1706:of dimension 1705: 1701: 1697: 1689: 1687: 1685: 1679: 1671: 1669: 1667: 1663: 1662:minimal model 1659: 1655: 1651: 1647: 1631: 1628: 1623: 1608: 1604: 1600: 1595: 1593: 1589: 1582: 1578: 1572: 1568: 1564: 1560: 1555: 1553: 1552:Betti numbers 1549: 1544: 1542: 1538: 1534: 1529: 1527: 1523: 1515: 1513: 1497: 1468: 1458: 1453: 1424: 1395: 1391: 1385: 1381: 1377: 1372: 1368: 1362: 1358: 1334: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1298: 1283: 1280: 1277: 1271: 1265: 1262: 1259: 1246: 1245: 1244: 1228: 1213: 1203: 1198: 1183: 1175: 1173: 1171: 1167: 1162: 1158: 1153: 1149: 1145: 1141: 1137: 1119: 1104: 1100: 1096: 1092: 1088: 1086: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1049: 1047: 1033: 1010: 995: 991: 974: 968: 965: 962: 939: 936: 933: 930: 924: 919: 902: 899: 879: 857: 823: 820: 815: 811: 807: 804: 784: 775: 773: 769: 765: 761: 742: 737: 733: 730: 727: 721: 715: 712: 709: 703: 696: 695: 694: 678: 663: 659: 640: 636: 627: 623: 619: 616: 609: 605: 601: 598: 592: 584: 580: 576: 573: 568: 565: 558: 554: 548: 542: 535: 534: 533: 530: 512: 497: 480: 477: 474: 471: 466: 462: 458: 453: 449: 428: 416: 414: 412: 408: 404: 403: 398: 390: 388: 386: 383:to points in 382: 378: 373: 369: 365: 361: 356: 354: 350: 346: 342: 338: 334: 330: 325: 321: 317: 312: 308: 304: 300: 296: 291: 287: 281: 277: 273: 268: 264: 260: 252: 250: 236: 216: 208: 192: 172: 169: 166: 158: 153: 147: 130: 110: 102: 98: 91:Rational maps 90: 85: 83: 81: 77: 73: 69: 65: 61: 57: 53: 45: 41: 37: 32: 19: 3265: 3261: 3217: 3211: 3170: 3131: 3125: 3084: 3057: 3027: 2989: 2936: 2930: 2873: 2867: 2824:math/9904135 2814: 2808: 2782: 2778: 2770: 2747: 2735: 2723: 2711: 2699: 2687: 2650: 2642:János Kollár 2635: 2632: 2629:Applications 2616: 2609: 2523: 2470: 2463: 2458: 2453: 2449: 2442: 2410:general type 2407: 2395: 2341: 2300: 2296: 2283: 2281: 2266:general type 2262: 2254: 2249: 2245: 2244:is called a 2241: 2237: 2229: 2223: 2211: 2207: 2196: 2189: 2185: 2183: 2165: 2160: 2153: 2148: 2138: 2134: 2132: 2051: 2047: 2043: 2036: 2031: 2029: 1964: 1955:general type 1950: 1946: 1940: 1935: 1931: 1926: 1922: 1916: 1900: 1894: 1888: 1884: 1877: 1873: 1869: 1865: 1859: 1855: 1852: 1848: 1842: 1839: 1831: 1827: 1823: 1819: 1814: 1810: 1806: 1802: 1796: 1792: 1788: 1780: 1776: 1772: 1768: 1761: 1753: 1749: 1745: 1741: 1729: 1720: 1715: 1707: 1703: 1693: 1683: 1681: 1665: 1657: 1653: 1649: 1645: 1606: 1596: 1584: 1580: 1573: 1566: 1562: 1556: 1545: 1530: 1526:Chow's lemma 1519: 1349: 1179: 1169: 1165: 1160: 1156: 1151: 1147: 1143: 1139: 1135: 1102: 1098: 1094: 1090: 1084: 1079: 1075: 1071: 1063: 1059: 1053: 993: 989: 776: 763: 759: 757: 661: 657: 655: 528: 495: 420: 410: 400: 396: 394: 384: 380: 376: 371: 367: 363: 359: 357: 352: 344: 340: 336: 332: 328: 323: 319: 315: 310: 306: 302: 298: 294: 289: 285: 279: 275: 271: 266: 262: 258: 256: 151: 145: 97:rational map 94: 78:rather than 55: 49: 3268:: 265–354. 2740:Kollár 2013 2605:Castelnuovo 2601:Max Noether 1712:line bundle 1696:plurigenera 1690:Plurigenera 293:inverse to 101:irreducible 80:polynomials 52:mathematics 3275:2011.10477 3113:1322.14006 2800:References 2188:is called 1853:plurigenus 1710:means the 1548:blowing up 395:A variety 337:birational 68:isomorphic 3294:204829174 3234:0894-0347 3094:1008.0621 2963:0003-486X 2941:CiteSeerX 2716:Mori 1988 2679:Citations 2321:∗ 2109:Ω 2009:Ω 1999:⨂ 1983:Ω 1629:× 1459:× 1293:↦ 1243:given by 1219:→ 1204:× 972:→ 937:− 925:− 731:− 693:given by 602:− 532:given by 472:− 170:⊂ 3306:Category 3169:(1998), 3056:(1977). 3026:(1978). 2988:(2001). 2849:18211120 2667:See also 2661:Birkar's 2348:rational 2284:uniruled 1791: : 1664:of  1533:Hironaka 992: : 498: : 402:rational 366: : 318: : 274: : 157:morphism 72:mappings 3250:0924704 3242:1990969 3201:1658959 3156:0291172 3136:Bibcode 3076:0463157 3046:0507725 3012:1841091 2979:0302652 2971:1970801 2916:3342362 2908:2601039 2888:Bibcode 2841:1896232 2752:Xu 2021 2192:if the 2190:minimal 2030:of the 1736:of the 1718:-forms 1569:if the 1567:minimal 1070:. (For 1056:quadric 3292:  3248:  3240:  3232:  3199:  3189:  3154:  3111:  3101:  3074:  3064:  3044:  3034:  3010:  3000:  2977:  2969:  2961:  2943:  2914:  2906:  2847:  2839:  2468:. For 2206:. For 2168:(2002) 1897:> 0 1748:, the 1698:. The 1541:smooth 36:circle 3290:S2CID 3270:arXiv 3238:JSTOR 3089:arXiv 2967:JSTOR 2912:S2CID 2878:arXiv 2845:S2CID 2819:arXiv 2762:Notes 2393:with 2337:ample 2258:flops 1938:into 1892:with 762:with 339:, or 261:from 3230:ISSN 3187:ISBN 3099:ISBN 3062:ISBN 3032:ISBN 2998:ISBN 2959:ISSN 2644:and 2603:and 2301:Fano 2149:The 2054:(Ω)) 1840:For 1818:) ≅ 1180:The 1150:and 331:and 66:are 40:line 34:The 3280:doi 3222:doi 3179:doi 3144:doi 3109:Zbl 2951:doi 2896:doi 2829:doi 2612:≥ 3 2599:by 2473:= 2 2466:≥ 2 2398:≥ 4 2335:is 2299:is 2248:of 2204:nef 2202:is 2039:≥ 0 1943:+ 2 1930:as 1851:th 1845:≥ 0 1764:≥ 0 1740:of 1732:th 1726:= Ω 1714:of 1592:nef 1590:is 1565:is 1410:in 1172:). 1142:in 265:to 185:to 50:In 3308:: 3288:. 3278:. 3264:. 3260:. 3246:MR 3244:, 3236:, 3228:, 3216:, 3197:MR 3195:, 3185:, 3177:, 3173:, 3165:; 3152:MR 3150:, 3142:, 3132:86 3107:. 3097:. 3072:MR 3070:. 3042:MR 3040:. 3022:; 3008:MR 3006:. 2996:. 2992:. 2975:MR 2973:, 2965:, 2957:, 2949:, 2937:95 2925:; 2910:, 2904:MR 2902:, 2894:, 2886:, 2874:23 2872:, 2862:; 2843:, 2837:MR 2835:, 2827:, 2815:15 2813:, 2520:↦ 2450:Cr 2252:. 2221:. 2050:, 2032:r- 1957:. 1872:, 1837:. 1826:, 1809:, 1795:⇢ 1775:, 1668:. 1554:. 1512:. 1159:= 1078:, 1046:. 996:⇢ 955:, 872:, 774:. 766:a 664:⇢ 660:: 527:⇢ 387:. 370:→ 355:. 322:⇢ 309:, 288:⇢ 278:⇢ 257:A 103:) 95:A 54:, 3296:. 3282:: 3272:: 3266:8 3224:: 3218:1 3181:: 3146:: 3138:: 3115:. 3091:: 3078:. 3048:. 3014:. 2953:: 2898:: 2890:: 2880:: 2831:: 2821:: 2785:X 2783:K 2779:X 2754:. 2742:. 2730:. 2718:. 2610:n 2587:, 2582:2 2577:P 2555:) 2551:C 2547:, 2544:3 2541:( 2538:L 2535:G 2532:P 2504:) 2500:C 2496:( 2491:2 2487:r 2483:C 2471:n 2464:n 2459:k 2457:( 2454:n 2443:k 2427:n 2422:P 2396:n 2379:1 2376:+ 2373:n 2368:P 2316:X 2312:K 2297:X 2250:X 2242:Y 2238:Y 2230:X 2214:X 2212:K 2208:X 2199:X 2197:K 2186:X 2161:X 2159:( 2157:1 2154:π 2139:h 2135:X 2118:) 2113:p 2105:, 2102:X 2099:( 2094:0 2090:H 2086:= 2081:0 2078:, 2075:p 2071:h 2052:E 2048:X 2046:( 2044:H 2037:r 2013:1 2003:k 1995:= 1992:) 1987:1 1979:( 1976:E 1951:n 1947:n 1941:n 1936:n 1932:d 1927:d 1923:P 1901:X 1895:d 1889:d 1885:P 1881:) 1878:X 1874:K 1870:X 1868:( 1866:H 1860:d 1856:P 1849:d 1843:d 1835:) 1832:Y 1828:K 1824:Y 1822:( 1820:H 1815:X 1811:K 1807:X 1805:( 1803:H 1797:Y 1793:X 1789:f 1784:) 1781:X 1777:K 1773:X 1771:( 1769:H 1762:d 1756:X 1754:K 1750:d 1746:d 1742:X 1730:n 1723:X 1721:K 1716:n 1708:n 1704:X 1666:X 1658:Y 1654:Y 1650:Y 1646:C 1632:C 1624:1 1619:P 1607:X 1587:X 1585:K 1581:X 1576:X 1574:K 1563:X 1524:( 1498:2 1493:A 1469:1 1464:P 1454:1 1449:P 1425:3 1420:P 1396:2 1392:x 1386:1 1382:x 1378:= 1373:3 1369:x 1363:0 1359:x 1335:. 1332:] 1329:w 1326:y 1323:, 1320:z 1317:y 1314:, 1311:w 1308:x 1305:, 1302:z 1299:x 1296:[ 1290:) 1287:] 1284:w 1281:, 1278:z 1275:[ 1272:, 1269:] 1266:y 1263:, 1260:x 1257:[ 1254:( 1229:3 1224:P 1214:1 1209:P 1199:1 1194:P 1170:X 1166:p 1161:p 1157:q 1152:q 1148:p 1144:X 1140:q 1136:p 1120:n 1115:P 1103:X 1099:X 1095:p 1091:k 1085:k 1080:X 1076:k 1072:X 1064:n 1060:X 1034:X 1011:1 1006:A 994:X 990:g 975:X 969:U 966:: 963:f 943:} 940:i 934:, 931:i 928:{ 920:1 914:C 908:A 903:= 900:U 880:f 858:1 852:C 846:A 824:0 821:= 816:2 812:t 808:+ 805:1 785:f 764:t 760:f 743:. 738:x 734:y 728:1 722:= 719:) 716:y 713:, 710:x 707:( 704:g 679:1 674:A 662:X 658:g 641:, 637:) 628:2 624:t 620:+ 617:1 610:2 606:t 599:1 593:, 585:2 581:t 577:+ 574:1 569:t 566:2 559:( 555:= 552:) 549:t 546:( 543:f 529:X 513:1 508:A 496:f 481:0 478:= 475:1 467:2 463:y 459:+ 454:2 450:x 429:X 411:X 397:X 385:Y 381:X 377:f 372:Y 368:X 364:f 353:k 345:k 333:Y 329:X 324:Y 320:X 316:f 311:Y 307:X 303:Y 299:X 295:f 290:X 286:Y 280:Y 276:X 272:f 267:Y 263:X 237:X 217:U 193:Y 173:X 167:U 152:Y 149:⇢ 146:X 131:Y 111:X 20:)

Index

Birational classification

circle
line
stereographic projection
mathematics
algebraic geometry
algebraic varieties
isomorphic
mappings
rational functions
polynomials
rational map
irreducible
morphism
Zariski topology
function fields
rational
projective space
rational number
Pythagorean triples
quadric
stereographic projection
k-rational point
Segre embedding
projective variety
Chow's lemma
Hironaka
resolution of singularities
smooth

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.