Knowledge (XXG)

Bit slicing

Source 📝

58: 816: 158: 644:-bit) CPU, while 3-bit, or any CPU with higher odd number of bits, hasn't been manufactured and sold in volume). Four 4-bit ALU chips could be used to build a 16-bit ALU. It would take eight chips to build a 32-bit word ALU. The designer could add as many slices as required to manipulate longer word lengths. 956:
Combining components to produce bit-slice products allowed engineers and students to create more powerful and complex computers at a more reasonable cost, using off-the-shelf components that could be custom-configured. The complexities of creating a new computer architecture were greatly reduced when
926:
Prior to the mid-1970s and late 1980s there was some debate over how much bus width was necessary in a given computer system to make it function. Silicon chip technology and parts were much more expensive than today. Using multiple simpler, and thus less expensive, ALUs was seen as a way to increase
1614:
voltage of 2.5 mV Another 8-bit parallel ALU has been designed and fabricated with target processing frequency of 30 GHz To achieve comparable performance to CMOS parallel microprocessors operating at 2–3 GHz, 4-bit bit-slice processing should be performed with a clock frequency of
98:, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Knowledge (XXG). 70: 1605:
4-bit bit-slice arithmetic logic unit (ALU) for 32-bit rapid single-flux-quantum microprocessors was demonstrated. The proposed ALU covers all of the ALU operations for the MIPS32 instruction set. It consists of 3481
639:
For example, two 4-bit ALU chips could be arranged side by side, with control lines between them, to form an 8-bit ALU (result need not be power of two, e.g. three 1-bit units can make a 3-bit ALU, thus 3-bit (or
1569:
Tang, Guang-Ming; Takata, Kensuke; Tanaka, Masamitsu; Fujimaki, Akira; Takagi, Kazuyoshi; Takagi, Naofumi (January 2016) . "4-bit Bit-Slice Arithmetic Logic Unit for 32-bit RSFQ Microprocessors".
723:, a 16-bit processor based on the IMP chipset, e.g. four RALU chips with one each IMP16A/521D and IMP16A/522D CROM chips (additional optional CROM chips could provide instruction set additionis) 530: 1701: 1001:
In more recent times, the term bit slicing was reused by Matthew Kwan to refer to the technique of using a general-purpose CPU to implement multiple parallel simple
1610:
with an area of 3.09 × 1.66 mm. It achieved the target frequency of 50 GHz and a latency of 524 ps for a 32-bit operation, at the designed
920: 1571: 523: 695:
IMP family, consisting primarily of the IMP-00A/520 RALU (also known as MM5750) and various masked ROM microcode and control chips (CROMs, also known as MM5751)
1445: 1475: 516: 463: 1662: 1107: 101:
Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
1615:
several tens of gigahertz. Several bit-serial arithmetic circuits have been successfully demonstrated with high-speed clocks of above 50 GHz
773: 769: 763: 759: 469: 109: 452: 441: 430: 1326: 1645: 1415: 241: 179: 172: 1696: 1234: 503: 843: 550:
from modules of processors of smaller bit width, for the purpose of increasing the word length; in theory to make an arbitrary
498: 493: 1632: 122:
Content in this edit is translated from the existing Russian Knowledge (XXG) article at ]; see its history for attribution.
1385: 222: 1691: 912: 567: 483: 420: 262: 194: 1156: 965: 833: 1048:"4-bit bit-slice arithmetic logic unit (ALU) for 32-bit rapid single-flux-quantum microprocessors was demonstrated". 1437: 1226: 201: 1496: 168: 1672: 977: 752: 746: 417: 1706: 1025: 655:
would be used to execute logic to provide data and control signals to regulate function of the component ALUs.
117: 1545: 1086: 806:
RP-16, a 16-bit processor consisting of seven integrated circuits, using four RALU chips and three CROM chips.
138: 976:
transistors. This allowed much higher clock rates, where speed was needed – for example, for
208: 1467: 1057: 908: 779: 633: 555: 38: 1666: 1010: 707: 692: 480: 1115: 981: 621: 578: 547: 190: 1580: 1041: 382: 1299: 838: 829:
AL1 (1969, considered to be the first microprocessor used in a commercial product, now discontinued)
789: 785: 964:
The main advantage was that bit slicing made it economically possible in smaller processors to use
737: 629: 883: 1607: 1596: 826: 741: 652: 625: 458: 447: 1671: – a bitslicing primer presenting a pedagogical bitsliced implementation of the 1641: 1230: 1225:]. Sammlung Göschen (in German). Vol. 2050 (4th reworked ed.). Berlin, Germany: 1045: 566:. The grouped processing components would then have the capability to process the chosen full 367: 362: 357: 113: 1588: 1037: 988:, the combination of flexibility and speed, before discrete CPUs were able to deliver that. 943: 874: 798: 618: 582: 407: 402: 397: 352: 347: 342: 337: 332: 327: 322: 312: 307: 302: 297: 292: 287: 131: 949:
At the time 16-bit processors were common but expensive, and 8-bit processors, such as the
946:
4-bit ALU chips to implement the needed word width while using modern integrated circuits.
846: 815: 713: 703: 699: 1002: 886: 681: 614: 610: 606: 602: 392: 282: 277: 272: 1407: 215: 1584: 1184: 648: 574: 1685: 907:
Bit slicing, although not called that at the time, was also used in computers before
716:, an 8-bit processor based on the IMP chipset, using two RALU chips and one CROM chip 1600: 668:
family (1974, now discontinued), e.g. Intel 3002 with Intel 3001, second-sourced by
1676: 1275: 891: 879: 586: 17: 935: 157: 31: 1377: 1219:
Digitale Rechenautomaten – Eine Einführung in die Struktur von Computerhardware
1592: 1005:
using general logic instructions to perform single-instruction multiple-data (
985: 969: 915:, or very-large-scale integration circuits). The first bit-sliced machine was 665: 317: 1217:
Klar, Rainer (1989) . "5.2 Der Mikroprozessor, ein Universal-Rechenautomat".
938:
series mainframes (one of the oldest series, originating in the 1950s) has a
1163: 1017: 678: 669: 559: 436: 46: 1223:
Digital Computers – An Introduction into the structure of computer hardware
931:
microprocessors were being discussed at the time, few were in production.
1502:. Delran, NJ, USA: Datapro Research Corporation. January 1983. 70C-877-12 1077:
Benadjila, Ryad; Guo, Jian; Lomné, Victor; Peyrin, Thomas (2014-03-21) .
871: 803: 794: 673: 1349: 1611: 1520: 916: 865: 563: 120:
to the source of your translation. A model attribution edit summary is
939: 928: 731: 720: 1251: 1132: 740:
5700/6700 family (1974) e.g. MMI 5701 / MMI 6701, second-sourced by
1078: 851: 1036:
To simplify the circuit structure and reduce the hardware cost of
958: 814: 1406:
Kurth, Rüdiger; Groß, Martin; Hunger, Henry, eds. (2021-09-27) .
1006: 973: 95: 1120:
Here's how you would put three 1-bit ALU to create a 3-bit ALU
950: 728: 590: 151: 51: 1079:"Implementing Lightweight Block Ciphers on x86 Architectures" 632:
signals that are internal to the processor in non-bitsliced
942:
architecture, and the 1100/60 introduced in 1979 used nine
573:
Bit slicing more or less died out due to the advent of the
1327:"5701/6701 4-Bit Expandable Bipolar Microcontroller Aug74" 953:, were widely used in the nascent home-computer market. 1024:, which achieved significant gains in performance of 558:(CPU). Each of these component modules processes one 91: 45:
used in computer graphics and image processing, see
957:the details of the ALU were already specified (and 927:computing power in a cost-effective manner. While 1470:[Applications of the U830C and chipset]. 1157:"Technology Leadership - Bipolar Microprocessor" 921:University of Cambridge Mathematical Laboratory 1572:IEEE Transactions on Applied Superconductivity 1009:) operations. This technique is also known as 116:accompanying your translation by providing an 82:Click for important translation instructions. 69:expand this article with text translated from 524: 8: 749:(1975) and SBP0401, cascadable up to 16 bits 601:Bit-slice processors (BSPs) usually include 1702:University of Cambridge Computer Laboratory 1546:"A Fast New DES Implementation in Software" 1300:"File:MMI 5701-6701 MCU (August, 1974).pdf" 1212: 1210: 1208: 1206: 1204: 734:family (1975), e.g. AM2901, AM2901A, AM2903 41:construction technique. For bit slicing as 27:Method of constructing a computer processor 1371: 1369: 531: 517: 253: 128:{{Translated|ru|Микропроцессорная секция}} 1022:A Fast New DES Implementation in Software 242:Learn how and when to remove this message 1497:"Computers Sperry Univac 1100/60 System" 1468:"Einsatzgebiete des U830C und Chipsatz" 1069: 479: 416: 381: 261: 256: 997:Software use on non-bit-slice hardware 585:and as a software technique, e.g. for 178:Please improve this article by adding 7: 856:(1978/1981), cascadable up to 32 bit 1016:This was initially in reference to 624:(ALU) and control lines (including 546:is a technique for constructing a 25: 1631:Mick, John; Brick, James (1980). 1276:"5700/6700 - Monolithic Memories" 984: – or, as in the 911:(LSI, the predecessor to today's 658:Known bit-slice microprocessors: 1663:"Untwisted: Bit-sliced TEA time" 1185:"IMP-4 - National Semiconductor" 968:, which switch much faster than 257:Computer architecture bit widths 156: 56: 1634:Bit-Slice Microprocessor Design 1478:from the original on 2019-11-10 1448:from the original on 2016-08-09 1418:from the original on 2021-12-03 1410:[Integrated Circuits]. 1388:from the original on 2018-07-18 1089:from the original on 2017-08-17 909:large-scale integrated circuits 684:family (1977, now discontinued) 577:. Recently it has been used in 126:You may also add the template 1: 1466:Salomon, Peter (2007-06-25). 1252:"6701 - The CPU Shack Museum" 1133:"3002 - The CPU Shack Museum" 180:secondary or tertiary sources 1032:Bit-sliced quantum computers 570:of a given software design. 1227:Walter de Gruyter & Co. 1108:"How to Create a 1-bit ALU" 797:M10800 family (1979), e.g. 139:Knowledge (XXG):Translation 1723: 1408:"Integrierte Schaltkreise" 706:(1973), second-sourced by 90:Machine translation, like 37:This article is about the 36: 29: 1673:Tiny Encryption Algorithm 1593:10.1109/TASC.2015.2507125 753:Texas Instruments SN74181 747:Texas Instruments SBP0400 71:the corresponding article 1376:Mueller, Dieter (2012). 30:Not to be confused with 1697:Central processing unit 1058:Bit-serial architecture 896:(1979/1982), unreleased 556:central processing unit 137:For more guidance, see 1444:. Nuremberg, Germany. 1438:"Eastern Bloc DEC PDP" 1042:MIPS32 instruction set 1028:by using this method. 1011:SIMD within a register 820: 579:arithmetic logic units 481:Decimal floating-point 167:relies excessively on 1472:Robotrontechnik-Forum 1436:Oppelt, Dirk (2016). 1040:(proposed to run the 982:matrix transformation 834:SN54AS888 / SN74AS888 818: 622:arithmetic logic unit 418:Binary floating-point 110:copyright attribution 1354:The CPU Shack Museum 903:Historical necessity 43:bit plane separation 1692:Digital electronics 1608:Josephson junctions 1585:2016ITAS...2607125T 1544:Biham, Eli (1997). 1085:. Report 2013/445. 966:bipolar transistors 738:Monolithic Memories 597:Operational details 18:Bit-slice processor 1412:robotrontechnik.de 1083:Cryptology Archive 832:Texas Instruments 827:Four-Phase Systems 821: 768:Texas Instruments 758:Texas Instruments 742:ITT Semiconductors 118:interlanguage link 1550:cs.technion.ac.il 1442:cpu-collection.de 1038:quantum computers 583:quantum computers 562:or "slice" of an 541: 540: 252: 251: 244: 226: 150: 149: 83: 79: 16:(Redirected from 1714: 1670: 1665:. Archived from 1651: 1639: 1618: 1617: 1566: 1560: 1559: 1557: 1556: 1541: 1535: 1534: 1532: 1531: 1517: 1511: 1510: 1508: 1507: 1501: 1493: 1487: 1486: 1484: 1483: 1463: 1457: 1456: 1454: 1453: 1433: 1427: 1426: 1424: 1423: 1403: 1397: 1396: 1394: 1393: 1373: 1364: 1363: 1361: 1360: 1346: 1340: 1339: 1337: 1336: 1331: 1323: 1317: 1316: 1314: 1313: 1304: 1296: 1290: 1289: 1287: 1286: 1272: 1266: 1265: 1263: 1262: 1248: 1242: 1240: 1214: 1199: 1198: 1196: 1195: 1181: 1175: 1174: 1172: 1171: 1161: 1153: 1147: 1146: 1144: 1143: 1129: 1123: 1122: 1114:. Archived from 1104: 1098: 1097: 1095: 1094: 1074: 1044:) a 50 GHz 1020:'s 1997 article 1003:virtual machines 944:Motorola MC10800 895: 855: 533: 526: 519: 254: 247: 240: 236: 233: 227: 225: 184: 160: 152: 129: 123: 96:Google Translate 81: 77: 60: 59: 52: 21: 1722: 1721: 1717: 1716: 1715: 1713: 1712: 1711: 1707:Bit-slice chips 1682: 1681: 1661: 1658: 1648: 1640:. McGraw-Hill. 1637: 1630: 1627: 1625:Further reading 1622: 1621: 1568: 1567: 1563: 1554: 1552: 1543: 1542: 1538: 1529: 1527: 1525:darkside.com.au 1519: 1518: 1514: 1505: 1503: 1499: 1495: 1494: 1490: 1481: 1479: 1465: 1464: 1460: 1451: 1449: 1435: 1434: 1430: 1421: 1419: 1405: 1404: 1400: 1391: 1389: 1375: 1374: 1367: 1358: 1356: 1348: 1347: 1343: 1334: 1332: 1329: 1325: 1324: 1320: 1311: 1309: 1307:en.wikichip.org 1302: 1298: 1297: 1293: 1284: 1282: 1280:en.wikichip.org 1274: 1273: 1269: 1260: 1258: 1250: 1249: 1245: 1237: 1216: 1215: 1202: 1193: 1191: 1189:en.wikichip.org 1183: 1182: 1178: 1169: 1167: 1159: 1155: 1154: 1150: 1141: 1139: 1131: 1130: 1126: 1118:on 2017-05-08. 1106: 1105: 1101: 1092: 1090: 1076: 1075: 1071: 1066: 1054: 1046:superconducting 1034: 999: 994: 919:, built at the 905: 889: 849: 599: 537: 508: 475: 412: 377: 248: 237: 231: 228: 185: 183: 177: 173:primary sources 161: 146: 145: 144: 127: 121: 84: 61: 57: 50: 35: 28: 23: 22: 15: 12: 11: 5: 1720: 1718: 1710: 1709: 1704: 1699: 1694: 1684: 1683: 1680: 1679: 1669:on 2013-10-21. 1657: 1656:External links 1654: 1653: 1652: 1646: 1626: 1623: 1620: 1619: 1579:(1): 2507125. 1561: 1536: 1521:"Bitslice DES" 1512: 1488: 1458: 1428: 1398: 1365: 1341: 1318: 1291: 1267: 1243: 1235: 1200: 1176: 1148: 1124: 1112:www.cs.umd.edu 1099: 1068: 1067: 1065: 1062: 1061: 1060: 1053: 1050: 1033: 1030: 998: 995: 993: 990: 923:in 1956–1958. 904: 901: 900: 899: 898: 897: 877: 869: 861:16-bit slice: 859: 858: 857: 841: 839:Fairchild 100K 836: 830: 813: 812: 809: 808: 807: 801: 792: 788:(MACROLOGIC), 786:Fairchild 9400 783: 777: 766: 756: 750: 744: 735: 726: 725: 724: 717: 710: 687: 686: 685: 676: 649:microsequencer 598: 595: 575:microprocessor 539: 538: 536: 535: 528: 521: 513: 510: 509: 507: 506: 501: 496: 490: 487: 486: 477: 476: 474: 473: 467: 461: 456: 450: 445: 439: 434: 427: 424: 423: 414: 413: 411: 410: 405: 400: 395: 389: 386: 385: 379: 378: 376: 375: 370: 365: 360: 355: 350: 345: 340: 335: 330: 325: 320: 315: 310: 305: 300: 295: 290: 285: 280: 275: 269: 266: 265: 259: 258: 250: 249: 164: 162: 155: 148: 147: 143: 142: 135: 124: 102: 99: 88: 85: 66: 65: 64: 62: 55: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1719: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1689: 1687: 1678: 1674: 1668: 1664: 1660: 1659: 1655: 1649: 1647:0-07-041781-4 1643: 1636: 1635: 1629: 1628: 1624: 1616: 1613: 1609: 1602: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1573: 1565: 1562: 1551: 1547: 1540: 1537: 1526: 1522: 1516: 1513: 1498: 1492: 1489: 1477: 1474:(in German). 1473: 1469: 1462: 1459: 1447: 1443: 1439: 1432: 1429: 1417: 1414:(in German). 1413: 1409: 1402: 1399: 1387: 1383: 1379: 1378:"The MC10800" 1372: 1370: 1366: 1355: 1351: 1345: 1342: 1328: 1322: 1319: 1308: 1301: 1295: 1292: 1281: 1277: 1271: 1268: 1257: 1253: 1247: 1244: 1238: 1232: 1229:p. 198. 1228: 1224: 1220: 1213: 1211: 1209: 1207: 1205: 1201: 1190: 1186: 1180: 1177: 1165: 1158: 1152: 1149: 1138: 1134: 1128: 1125: 1121: 1117: 1113: 1109: 1103: 1100: 1088: 1084: 1080: 1073: 1070: 1063: 1059: 1056: 1055: 1051: 1049: 1047: 1043: 1039: 1031: 1029: 1027: 1023: 1019: 1014: 1012: 1008: 1004: 996: 991: 989: 987: 983: 980:functions or 979: 975: 971: 967: 962: 960: 954: 952: 947: 945: 941: 937: 932: 930: 924: 922: 918: 914: 910: 902: 893: 888: 885: 881: 878: 876: 873: 870: 867: 863: 862: 860: 853: 848: 845: 842: 840: 837: 835: 831: 828: 825: 824: 823: 822: 817: 810: 805: 802: 800: 796: 793: 791: 787: 784: 781: 778: 775: 771: 767: 765: 761: 757: 754: 751: 748: 745: 743: 739: 736: 733: 730: 727: 722: 718: 715: 711: 709: 705: 701: 697: 696: 694: 691: 690: 689:4-bit slice: 688: 683: 680: 677: 675: 671: 667: 664: 663: 662:2-bit slice: 661: 660: 659: 656: 654: 650: 645: 643: 637: 635: 631: 627: 623: 620: 616: 612: 608: 604: 596: 594: 592: 588: 584: 580: 576: 571: 569: 565: 561: 557: 553: 549: 545: 534: 529: 527: 522: 520: 515: 514: 512: 511: 505: 502: 500: 497: 495: 492: 491: 489: 488: 485: 482: 478: 471: 468: 465: 462: 460: 457: 454: 451: 449: 446: 443: 440: 438: 435: 432: 429: 428: 426: 425: 422: 419: 415: 409: 406: 404: 401: 399: 396: 394: 391: 390: 388: 387: 384: 380: 374: 371: 369: 366: 364: 361: 359: 356: 354: 351: 349: 346: 344: 341: 339: 336: 334: 331: 329: 326: 324: 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 296: 294: 291: 289: 286: 284: 281: 279: 276: 274: 271: 270: 268: 267: 264: 260: 255: 246: 243: 235: 224: 221: 217: 214: 210: 207: 203: 200: 196: 193: –  192: 191:"Bit slicing" 188: 187:Find sources: 181: 175: 174: 170: 165:This article 163: 159: 154: 153: 140: 136: 133: 125: 119: 115: 111: 107: 103: 100: 97: 93: 89: 87: 86: 80: 74: 72: 67:You can help 63: 54: 53: 48: 44: 40: 33: 19: 1677:block cipher 1667:the original 1633: 1604: 1576: 1570: 1564: 1553:. Retrieved 1549: 1539: 1528:. Retrieved 1524: 1515: 1504:. Retrieved 1491: 1480:. Retrieved 1471: 1461: 1450:. Retrieved 1441: 1431: 1420:. Retrieved 1411: 1401: 1390:. Retrieved 1381: 1357:. Retrieved 1353: 1344: 1333:. Retrieved 1321: 1310:. Retrieved 1306: 1294: 1283:. Retrieved 1279: 1270: 1259:. Retrieved 1256:cpushack.com 1255: 1246: 1236:3-11011700-2 1222: 1218: 1192:. Retrieved 1188: 1179: 1168:. Retrieved 1151: 1140:. Retrieved 1137:cpushack.com 1136: 1127: 1119: 1116:the original 1111: 1102: 1091:. Retrieved 1082: 1072: 1035: 1021: 1015: 1000: 963: 955: 948: 933: 925: 906: 884:ZFTM Dresden 880:ZFT Robotron 811:8-bit slice: 657: 646: 641: 638: 600: 587:cryptography 572: 551: 543: 542: 372: 238: 232:January 2014 229: 219: 212: 205: 198: 186: 166: 114:edit summary 105: 76: 68: 42: 1603:. 1300106. 1241:(320 pages) 936:UNIVAC 1100 890: [ 850: [ 653:control ROM 581:(ALUs) for 568:word-length 544:Bit slicing 383:Application 373:bit slicing 32:Bit-banding 1686:Categories 1555:2017-11-05 1530:2017-11-05 1506:2021-10-11 1482:2021-12-07 1452:2021-12-07 1422:2021-12-07 1392:2017-11-05 1359:2017-11-05 1350:"SN74S481" 1335:2021-05-24 1312:2017-11-05 1285:2017-11-05 1261:2017-11-05 1194:2017-11-05 1170:2021-10-11 1142:2017-11-05 1093:2019-12-28 1064:References 992:Modern use 986:Xerox Alto 666:Intel 3000 636:designs). 202:newspapers 169:references 78:(May 2017) 73:in Russian 1675:(TEA), a 1164:Signetics 1018:Eli Biham 780:Fairchild 719:National 712:National 698:National 679:Signetics 670:Signetics 560:bit field 548:processor 484:precision 421:precision 132:talk page 47:Bit plane 39:processor 1601:25478156 1476:Archived 1446:Archived 1416:Archived 1386:Archived 1382:6502.org 1087:Archived 1052:See also 1013:(SWAR). 959:debugged 872:Synopsys 804:Raytheon 795:Motorola 774:SN74S482 770:SN74S481 764:SN74S282 760:SN74S281 708:Rockwell 693:National 674:Intersil 630:overflow 108:provide 1612:DC bias 1581:Bibcode 1166:. S2.95 917:EDSAC 2 866:Am29100 799:MC10800 564:operand 216:scholar 130:to the 112:in the 75:. 1644:  1599:  1233:  940:36-bit 929:32-bit 875:49C402 868:family 776:(1976) 755:(1970) 732:Am2900 721:IMP-16 619:16-bit 593:CPUs. 218:  211:  204:  197:  189:  1638:(PDF) 1597:S2CID 1500:(PDF) 1330:(PDF) 1303:(PDF) 1221:[ 1160:(PDF) 894:] 854:] 847:U830C 819:U830C 782:33705 772:with 762:with 714:IMP-8 704:IMP-4 700:GPC/P 626:carry 554:-bit 223:JSTOR 209:books 92:DeepL 1642:ISBN 1231:ISBN 1007:SIMD 974:CMOS 970:NMOS 934:The 913:VLSI 887:U840 864:AMD 790:4700 682:8X02 672:and 472:(×8) 466:(×4) 455:(×2) 444:(×1) 433:(×½) 195:news 106:must 104:You 1589:doi 1026:DES 978:DSP 972:or 961:). 951:Z80 844:ZMD 729:AMD 651:or 634:CPU 628:or 617:or 591:x86 589:in 504:128 470:256 464:128 368:512 363:256 358:128 263:Bit 171:to 94:or 1688:: 1595:. 1587:. 1577:26 1575:. 1548:. 1523:. 1440:. 1384:. 1380:. 1368:^ 1352:. 1305:. 1278:. 1254:. 1203:^ 1187:. 1162:. 1135:. 1110:. 1081:. 892:de 852:de 702:/ 647:A 615:8- 613:, 611:4- 609:, 607:2- 605:, 603:1- 499:64 494:32 459:80 453:64 448:40 442:32 437:24 431:16 408:64 403:32 398:16 353:64 348:60 343:48 338:45 333:36 328:32 323:31 318:30 313:28 308:26 303:24 298:18 293:16 288:12 182:. 1650:. 1591:: 1583:: 1558:. 1533:. 1509:. 1485:. 1455:. 1425:. 1395:. 1362:. 1338:. 1315:. 1288:. 1264:. 1239:. 1197:. 1173:. 1145:. 1096:. 882:/ 642:n 552:n 532:e 525:t 518:v 393:8 283:8 278:4 273:1 245:) 239:( 234:) 230:( 220:· 213:· 206:· 199:· 176:. 141:. 134:. 49:. 34:. 20:)

Index

Bit-slice processor
Bit-banding
processor
Bit plane
the corresponding article
DeepL
Google Translate
copyright attribution
edit summary
interlanguage link
talk page
Knowledge (XXG):Translation

references
primary sources
secondary or tertiary sources
"Bit slicing"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Bit
1
4
8
12
16
18

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.