Knowledge

Model lipid bilayer

Source 📝

346:
reason vesicles have been used so frequently is that they are relatively easy to make. If a sample of dehydrated lipid is exposed to water it will spontaneously form vesicles. These initial vesicles are typically multilamellar (many-walled) and are of a wide range of sizes from tens of nanometers to several micrometres. Methods such as sonication or extrusion through a membrane are needed to break these initial vesicles into smaller, single-walled vesicles of uniform diameter known as small unilamellar vesicles (SUVs). SUVs typically have diameters between 50 and 200 nm. Alternatively, rather than synthesizing vesicles it is possible to simply isolate them from cell cultures or tissue samples. Vesicles are used to transport lipids, proteins and many other molecules within the cell as well as into or out of the cell. These naturally isolated vesicles are composed of a complex mixture of different lipids and proteins so, although they offer greater realism for studying specific biological phenomena, simple artificial vesicles are preferred for studies of fundamental lipid properties.
222:(iSCAT). When the bilayer is supported on top of a reflective surface, variations in intensity due to destructive interference from this interface can be used to calculate with angstrom accuracy the position of fluorophores within the bilayer. Both evanescent and interference techniques offer sub-wavelength resolution in only one dimension (z, or vertical). In many cases, this resolution is all that is needed. After all, bilayers are very small only in one dimension. Laterally, a bilayer can extend for many micrometres or even millimeters. But certain phenomena like dynamic phase rearrangement do occur in bilayers on a lateral sub-micrometre length scale. A promising approach to studying these structures is 175:
the study of lipid bilayers. One of the greatest advantages of the supported bilayer is its stability. SLBs will remain largely intact even when subject to high flow rates or vibration and, unlike black lipid membranes, the presence of holes will not destroy the entire bilayer. Because of this stability, experiments lasting weeks and even months are possible with supported bilayers while BLM experiments are usually limited to hours. Another advantage of the supported bilayer is that, because it is on a flat hard surface, it is amenable to a number of characterization tools which would be impossible or would offer lower resolution if performed on a freely floating sample.
260:, the most common experimental system. Because this layer is so thin there is extensive hydrodynamic coupling between the bilayer and the substrate, resulting in a lower diffusion coefficient in supported bilayers than for free bilayers of the same composition. A certain percentage of the supported bilayer will also be completely immobile, although the exact nature of and reason for these “pinned” sites is still uncertain. For high quality liquid phase supported bilayers the immobile fraction is typically around 1-5%. To quantify the diffusion coefficient and mobile fraction, researchers studying supported bilayers will often report 120:
aqueous phases on either side of the lipid/solvent droplet. Because the walls of the aperture are hydrophobic the lipid/solvent solution wets this interface, thinning the droplet in the center. Once the two sides of the droplet come close enough together, the lipid monolayers fuse, rapidly excluding the small remaining volume of solution. At this point a bilayer is formed in the center of the aperture, but a significant annulus of solvent remains at the perimeter. This annulus is required to maintain stability by acting as a bridge between the ~5 nm bilayer and the tens of micrometers thick sheet in which the aperture is made.
374:
used to study membrane-remodeling and other protein-membrane interactions in vitro. A variety of methods exist to encapsulate proteins or other biological reactants within such vesicles, making GUVs an ideal system for the in vitro recreation (and investigation) of cell functions in cell-like model membrane environments. These methods include microfluidic methods, which allow for a high-yield production of vesicles with consistent sizes.
128:
allowing simple placement of large electrodes. For this reason, electrical characterization is one of the most important methods used in conjunction with painted lipid bilayers. Simple measurements indicate when a bilayer forms and when it breaks, as an intact bilayer has a large resistance (>GΩ) and a large capacitance (~2 μF/cm). More advanced electrical characterization has been particularly important in the study of
87: 218:(SPR) can offer extremely sensitive measurement of analyte binding and bilayer optical properties but can only function when the sample is supported on specialized optically functional materials. Another class of methods applicable only to supported bilayers is those based on optical interference such as fluorescence interference contrast microscopy (FLIC) and reflection interference contrast microscopy (RICM) or 167: 230: 338: 290: 383:
interfaces. DIBs can be formed to create tissue-like material with the ability to form asymmetric bilayers, reconstitute proteins and protein channels or made for use in studying electrophysiology. Extended DIB networks can be formed either by employing droplet microfluidic devices or using droplet printers.
409:
Bicelles are a related class of model membrane, typically made of two lipids, one of which forms a lipid bilayer while the other forms an amphipathic, micelle-like assembly shielding the bilayer center from surrounding solvent molecules. Bicelles can be thought of as a segment of bilayer encapsulated
243:
to demonstrate that stable composition gradients could be formed in bilayers, potentially allowing massively parallel studies of phase segregation, molecular binding and cellular response to artificial lipid membranes. Creative utilization of the corral concept has also allowed studies of the dynamic
140:
and added to the aqueous solution after the bilayer is formed. The detergent coating allows these proteins to spontaneously insert into the bilayer over a period of minutes. Additionally, initial experiments have been performed which combine electrophysiological and structural investigations of black
90:
Schematic of a painted bilayer experiment. A sheet of plastic with a small hole in the center separates the two sides of the chamber. The bilayer is formed across this hole, separating the two chambers. The electrical properties of the bilayer can be measured by putting an electrode into each side of
382:
Droplet Interface Bilayers (DIBs) are phospholipid-encased droplets that form bilayers when they are put into contact. The droplets are surrounded by oil and phospholipids are dispersed in either the water or oil. As a result, the phospholipids spontaneously form a monolayer at each of the oil-water
368:
In spite of the fluorescent labeling, it is often difficult to perform detailed imaging on SUVs simply because they are so small. To combat this problem, researchers use giant unilamellar vesicles (GUVs). GUVs are large enough (1 - 200 μm) to be studied using traditional fluorescence microscopy
148:
The main problems associated with painted bilayers are residual solvent and limited lifetime. Some researchers believe that pockets of solvent trapped between the two bilayer leaflets can disrupt normal protein function. To overcome this limitation, Montal and Mueller developed a modified deposition
190:
of single bilayers and to perform force spectroscopy on individual membrane proteins. These studies would be difficult or impossible without the use of supported bilayers since the surface of a cell or vesicle is relatively soft and would drift and fluctuate over time. Another example of a physical
174:
Unlike a vesicle or a cell membrane in which the lipid bilayer is rolled into an enclosed shell, a supported bilayer is a planar structure sitting on a solid support. Because of this, only the upper face of the bilayer is exposed to free solution. This layout has advantages and drawbacks related to
119:
After allowing the aperture to dry, salt solution (aqueous phase) is added to both sides of the chamber. The aperture is then "painted" with a lipid solution (generally the same solution that was used for pre-painting). A lipid monolayer spontaneously forms at the interface between the organic and
373:
in artificial lipid systems have been performed with GUVs for this reason. Compared to supported bilayers, GUVs present a more “natural” environment since there is no rigid surface that might induce defects, affect the properties of the membrane or denature proteins. Therefore, GUVs are frequently
345:
A vesicle is a lipid bilayer rolled up into a spherical shell, enclosing a small amount of water and separating it from the water outside the vesicle. Because of this fundamental similarity to the cell membrane, vesicles have been used extensively to study the properties of lipid bilayers. Another
251:
One of the primary limitations of supported bilayers is the possibility of unwanted interactions with the substrate. Although supported bilayers generally do not directly touch the substrate surface, they are separated by only a very thin water gap. The size and nature of this gap depends on the
153:
and waiting for the solvent to evaporate. The aperture is then lowered through the air-water interface and the two monolayers from the separate chambers are folded down against each other, forming a bilayer across the aperture. The stability issue has proven more difficult to solve. Typically, a
127:
with light reflecting off the front face. Indeed, this was one of the first clues that this technique produced a membrane of molecular-scale thickness. Black lipid membranes are also well suited to electrical characterization because the two chambers separated by the bilayer are both accessible,
69:
There are many different types of model bilayers, each having experimental advantages and disadvantages. The first system developed was the black lipid membrane or “painted” bilayer, which allows simple electrical characterization of bilayers but is short-lived and can be difficult to work with.
318:
The advantage of this approach is that because of the hydrophilic space of around 4 nm, the interaction with the substrate is minimal and the extra space allows the introduction of protein ion channels into the bilayer. Additionally the spacer layer creates an ionic reservoir that readily
238:
Another important capability of supported bilayers is the ability to pattern the surface to produce multiple isolated regions on the same substrate. This phenomenon was first demonstrated using scratches or metallic “corrals” to prevent mixing between adjacent regions while still allowing free
233:
Fluorescence micrograph of a supported bilayer on a substrate that has been patterned with a corral. This substrate was then sequentially exposed to two different populations of lipids (dyed red and green). Although the populations were kept largely separated there was some intermixing at the
420:
consist of a segment of bilayer encapsulated by an amphipathic protein coat, rather than a lipid or detergent layer. Nanodiscs are more stable than bicelles and micelles at low concentrations, and are very well-defined in size (depending on the type of protein coat, between 10 and 20
314:
The limitation of the intra-membrane mobility of supported lipid bilayers can be overcome by introducing half-membrane spanning tether lipids with benzyl disulphide (DPL) and synthetic archaea analogue full membrane spanning lipids with phytanoly chains to stabilize the structure and
149:
technique that eliminates the use of a heavy non-volatile solvent. In this method, the aperture starts out above the water surface, completely separating the two fluid chambers. On the surface of each chamber, a monolayer is formed by applying lipids in a volatile solvent such as
267:
Unwanted substrate interactions are a much greater problem when incorporating integral membrane proteins, particularly those with large domains sticking out beyond the core of the bilayer. Because the gap between bilayer and substrate is so thin these proteins will often become
158:. This lifetime can be extended by precisely structuring the supporting aperture, chemically crosslinking the lipids or gelling the surrounding solution to mechanically support the bilayer. Work is ongoing in this area and lifetimes of several hours will become feasible. 95:
The earliest model bilayer system developed was the “painted” bilayer, also known as a “black lipid membrane.” The term “painted” refers to the process by which these bilayers are made. First, a small aperture is created in a thin layer of a hydrophobic material such as
277:
which acts as a spacer and theoretically prevents denaturing substrate interactions. In practice, some percentage of the proteins will still lose mobility and functionality, probably due to interactions with the polymer/lipid anchors. Research in this area is ongoing.
141:
lipid membranes. In another variation of the BLM technique, termed the bilayer punch, a glass pipet (inner diameter ~10-40 μm) is used as the electrode on one side of the bilayer in order to isolate a small patch of membrane. This modification of the
226:(NSOM). Like AFM, NSOM relies on the scanning of a micromachined tip to give a highly localized signal. But unlike AFM, NSOM uses an optical rather than physical interaction with the sample, potentially perturbing delicate structures to a lesser extent. 298:
Gold can be used as a substrate because of its inert chemistry and thiolipids for covalent binding to the gold. Thiolipids are composed of lipid derivatives, extended at their polar head-groups by hydrophilic spacers which terminate in a
3898: 405:
molecules with their hydrophilic heads exposed to solvent and their hydrophobic tails in the center. Micelles can solubilize membrane proteins by partially encapsulating them and shielding their hydrophobic surfaces from solvent.
272:
on the substrate surface and therefore lose all functionality. One approach to circumvent this problem is the use of polymer tethered bilayers. In these systems the bilayer is supported on a loose network of hydrated polymers or
1215:
Mashaghi A, Swann M, Popplewell J, Textor M, Reimhult E (May 2008). "Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics".
186:, formation of transmembrane nanopores followed by single protein molecule adsorption, and protein assembly with sub-nm accuracy without the need for a labeling dye. More recently, AFM has also been used to directly probe the 1600:
König BW, Krueger S, Orts WJ, Majkrzak CF, Berk NF, Silverton JV, Gawrisch K (1996). "Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon single crystal".
917:
Purrucker O, Hillebrandt H, Adlkofer K, Tanaka M (2001). "Deposition of highly resistive lipid bilayer on silicon-silicon dioxide electrode and incorporation of gramicidin studied by ac impedance spectroscopy".
100:. Typically the diameter of this hole is a few tens of micrometers up to hundreds of micrometers. To form a BLM, the area around the aperture is first "pre-painted" with a solution of lipids dissolved in a 3891: 357:
can measure unilamelar and multilamelar structures and insertion into and disruption of the vesicles in a label free assay format. Vesicles can also be labeled with fluorescent dyes to allow sensitive
123:
The term “black” bilayer refers to the fact that they are dark in reflected light because the thickness of the membrane is only a few nanometers, so light reflecting off the back face destructively
3068: 3008:
Roos C, Kai L, Proverbio D, Ghoshdastider U, Filipek S, Dötsch V, Bernhard F (February 2013). "Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers".
315:
polyethyleneglycol units as a hydrophilic spacer. Bilayer formation is achieved by exposure of the lipid coated gold substrate to outer layer lipids either in an ethanol solution or in liposomes.
136:
typically cannot be incorporated directly into the painted bilayer during formation because immersion in an organic solvent would denature the protein. Instead, the protein is solubilized with a
3884: 369:
and are within the same size range as most biological cells. Thus, they are used as mimicries of cell membranes for in vitro studies in molecular and cell biology. Many of the studies of
66:. The simplest model systems contain only a single pure synthetic lipid. More physiologically relevant model bilayers can be made with mixtures of several synthetic or natural lipids. 847:
Beerlink A, Wilbrandt PJ, Ziegler E, Carbone D, Metzger TH, Salditt T (May 2008). "X-ray structure analysis of free-standing lipid membranes facilitated by micromachined apertures".
2082:
F Szoka and D Papahadjopoulos."Comparative Properties and Methods of Preparation of Lipid Vesicles (Liposomes)." Annual Review of Biophysics and Bioengineering. 9. (1980) 467-508.
1999:
Bangham AD, Horne RW (January 1964). "Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope".
3061: 211: 2916:
Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009). "Reconstitution of Membrane Proteins in Phospholipid Bilayer Nanodiscs".
286:
The use of a tethered bilayer lipid membrane (t-BLM) further increases the stability of supported membranes by chemically anchoring the lipids to the solid substrate.
2514:
Funakoshi K, Suzuki H, Takeuchi S (December 2006). "Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis".
3054: 2584:
Leptihn S, Thompson JR, Ellory JC, Tucker SJ, Wallace MI (June 2011). "In vitro reconstitution of eukaryotic ion channels using droplet interface bilayers".
2967:
Roos C, Kai L, Haberstock S, Proverbio D, Ghoshdastider U, Ma Y, et al. (2014). "High-Level Cell-Free Production of Membrane Proteins with Nanodiscs".
490:
Mueller P, Rudin DO, Tien HT, Wescott WC (June 1962). "Reconstitution of cell membrane structure in vitro and its transformation into an excitable system".
54:. They are used to study the fundamental properties of biological membranes in a simplified and well-controlled environment, and increasingly in bottom-up 4454: 1349:
Crane JM, Kiessling V, Tamm LK (February 2005). "Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy".
261: 178:
One of the clearest examples of this advantage is the use of mechanical probing techniques which require a direct physical interaction with the sample.
1859:
Naumann R, Jonczyk A, Kopp R, van Esch J, Ringsdorf H, Knoll W, Gräber P (1995). "Incorporation of Membrane Proteins in Solid-Supported Lipid Layers".
1386:"Submicron structure in L-alpha-dipalmitoylphosphatidylcholine monolayers and bilayers probed with confocal, atomic force, and near-field microscopy" 1964:
Cornell BA, Krishna G, Osman PD, Pace RD, Wieczorek L (August 2001). "Tethered-bilayer lipid membranes as a support for membrane-active peptides".
2676:
Gross LC, Heron AJ, Baca SC, Wallace MI (December 2011). "Determining membrane capacitance by dynamic control of droplet interface bilayer area".
1484:
Groves JT, Ulman N, Cremer PS, Boxer SG (1998). "Substrate−Membrane Interactions: Mechanisms for Imposing Patterns on a Fluid Bilayer Membrane".
1511:
Kam L, Boxer SG (2003). "Spatially Selective Manipulation of Supported Lipid Bilayers by Laminar Flow: Steps Toward Biomembrane Microfluidics".
1188:
Ebara Y, Okahata (December 1994). "A kinetic study of concanavalin A binding to glycolipid monolayers by using a quartz-crystal microbalance".
223: 1886:
Cornell BA, Braach-Maksvytis VL, King LG, Osman PD, Raguse B, Wieczorek L, Pace RJ (June 1997). "A biosensor that uses ion-channel switches".
2984: 219: 2186:
Träuble H, Haynes DH (December 1971). "The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition".
882:
Malmstadt N, Jeon TJ, Schmidt JJ (January 2008). "Long-Lived Planar Lipid Bilayer Membranes Anchored to an In Situ Polymerized Hydrogel".
358: 2151:
Papahadjopoulos D, Miller N (September 1967). "Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals".
1145:
Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Müller DJ (April 2000). "Unfolding pathways of individual bacteriorhodopsins".
4387: 1002:
Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S (March 2008). "Interaction of nanoparticles with lipid membrane".
4444: 2933: 4449: 354: 196: 104:
by applying this solution across the aperture with a brush, syringe, or glass applicator. The solvent used must have a very high
425:). Membrane proteins incorporated into and solubilized by Nanodiscs can be studied by a wide variety of biophysical techniques. 124: 145:
technique enables low noise recording, even at high potentials (up to 600 mV), at the expense of additional preparation time.
4372: 3722: 3317: 71: 4360: 3858: 3506: 183: 2873:, Wright PE (April 1999). "Improved low pH bicelle system for orienting macromolecules over a wide temperature range". 1538:
Parthasarathy R, Jackson BL, Lowery TJ, Wong AP (2004). "Nonequilibrium Adhesion Patterns at Lipid Bilayer Junctions".
598:
Tien HT, Carbone S, Dawidowicz EA (1966). "Formation of "black" lipid membranes by oxidation products of cholesterol".
199:
is a high resolution optical tool for characterising the order and disruption in lipid bilayers during interactions or
74:
not possible in bulk solution. These advantages come at the cost of unwanted substrate interactions which can denature
3426: 3182: 1804:"Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus" 1565:
Mager MD, Almquist B, Melosh NA (November 2008). "Formation and characterization of fluid lipid bilayers on alumina".
269: 192: 1937:
Lang H, Duschl C, Vogel H (1994). "A new class of thiolipids for the attachment of lipid bilayers on gold surfaces".
410:
and solubilized by a micelle. Bicelles are much smaller than liposomes, and so can be used in experiments such as
4514: 3727: 215: 129: 1253:"Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy" 4377: 3574: 3475: 3392: 1630:"Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons" 1045:
Engel A, Müller DJ (September 2000). "Observing single biomolecules at work with the atomic force microscope".
308: 4466: 3601: 3377: 320: 187: 179: 3829: 3145: 349:
Since artificial SUVs can be made in large quantities they are suitable for bulk material studies such as
108:
and must be relatively viscous to prevent immediate rupture. The most common solvent used is a mixture of
1252: 947:"Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study" 4021: 3589: 3562: 105: 1690:"Lipid mono- and bilayer supported on polymer films: composite polymer-lipid films on solid substrates" 1441:
Groves JT, Ulman N, Boxer SG (January 1997). "Micropatterning fluid lipid bilayers on solid supports".
341:
Diagram of lipid vesicles showing a solution of molecules (green dots) trapped in the vesicle interior.
4476: 3876: 3533: 3528: 3404: 2784: 2727: 2632: 2549:
Hwang WL, Chen M, Cronin B, Holden MA, Bayley H (May 2008). "Asymmetric droplet interface bilayers".
2324: 2267: 2105: 1895: 1815: 1758: 1701: 1641: 1397: 1303: 1154: 1101: 1011: 958: 891: 801: 790:"Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties" 695: 654: 607: 554: 499: 362: 332: 155: 4051: 3611: 3567: 3523: 3261: 2256:"Lipid bilayer vesicle fusion: intermediates captured by high-speed microfluorescence spectroscopy" 353:
to determine lattice spacing and differential scanning calorimetry to determine phase transitions.
70:
Supported bilayers are anchored to a solid substrate, increasing stability and allowing the use of
4345: 4267: 3819: 3033: 2898: 2393: 2368:
Litschel T, Schwille P (March 2021). "Protein Reconstitution Inside Giant Unilamellar Vesicles".
1919: 1466: 1070: 684:"Ion movement through gramicidin A channels. Single-channel measurements at very high potentials" 623: 523: 1628:
Johnson SJ, Bayerl TM, McDermott DC, Adam GW, Rennie AR, Thomas RK, Sackmann E (February 1991).
206:
Many modern fluorescence microscopy techniques also require a rigidly-supported planar surface.
2311:
Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (March 2001).
4323: 4239: 4141: 3911: 3814: 3518: 3025: 2990: 2980: 2949: 2929: 2890: 2851: 2810: 2753: 2693: 2658: 2601: 2566: 2531: 2496: 2442: 2385: 2350: 2293: 2236: 2168: 2133: 2065: 2016: 1981: 1911: 1841: 1784: 1727: 1667: 1582: 1458: 1423: 1366: 1331: 1272: 1233: 1170: 1127: 1062: 1027: 984: 864: 829: 770: 721: 580: 515: 472: 398: 350: 75: 55: 3550: 3444: 3077: 3017: 2972: 2939: 2921: 2882: 2841: 2800: 2792: 2743: 2735: 2685: 2648: 2640: 2621:"Activation of bacterial channel MscL in mechanically stimulated droplet interface bilayers" 2593: 2558: 2523: 2486: 2478: 2432: 2424: 2377: 2340: 2332: 2283: 2275: 2226: 2195: 2160: 2123: 2113: 2055: 2047: 2008: 1973: 1946: 1903: 1868: 1831: 1823: 1774: 1766: 1717: 1709: 1657: 1649: 1610: 1574: 1547: 1520: 1493: 1450: 1413: 1405: 1358: 1321: 1311: 1264: 1225: 1197: 1162: 1117: 1109: 1054: 1019: 974: 966: 927: 899: 856: 819: 809: 760: 752: 711: 703: 662: 615: 570: 562: 507: 462: 454: 200: 4183: 3807: 3501: 3480: 3409: 3212: 2381: 304: 207: 59: 28: 2619:
Najem JS, Dunlap MD, Rowe ID, Freeman EC, Grant JW, Sukharev S, Leo DJ (September 2015).
1090:"Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy" 2788: 2731: 2636: 2465:
Bayley H, Cronin B, Heron A, Holden MA, Hwang WL, Syeda R, et al. (December 2008).
2328: 2271: 2109: 1899: 1819: 1762: 1705: 1645: 1401: 1307: 1158: 1105: 1015: 962: 895: 805: 699: 658: 611: 558: 503: 4232: 4197: 4190: 4169: 4148: 4125: 4005: 3797: 3684: 3555: 3414: 3397: 3202: 3132: 2944: 2805: 2772: 2748: 2715: 2653: 2620: 2491: 2466: 2437: 2412: 2345: 2312: 2288: 2255: 2060: 2035: 1836: 1803: 1779: 1746: 1722: 1689: 1662: 1629: 1418: 1385: 1326: 1291: 1122: 1089: 979: 946: 765: 740: 716: 683: 575: 542: 467: 442: 401:, although they lack a lipid bilayer. In aqueous solutions, micelles are assemblies of 3046: 2925: 2336: 2279: 2128: 2093: 2012: 1827: 1713: 1653: 1409: 1088:
Steltenkamp S, Müller MM, Deserno M, Hennesthal C, Steinem C, Janshoff A (July 2006).
931: 824: 789: 707: 566: 4508: 4471: 4431: 4399: 4292: 4260: 4246: 4225: 4211: 4162: 4155: 4074: 3947: 3837: 3802: 3645: 3635: 3606: 3239: 3232: 3037: 2397: 2199: 2164: 240: 47: 17: 2902: 1470: 1074: 627: 86: 4488: 4421: 4285: 4253: 4218: 4204: 4176: 4102: 4081: 3824: 3667: 3627: 3594: 3366: 3352: 3250: 2771:
Restrepo Schild V, Booth MJ, Box SJ, Olof SN, Mahendran KR, Bayley H (April 2017).
1923: 527: 133: 51: 2918:
Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs
2413:"Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line" 1770: 229: 3021: 2846: 2829: 2231: 2214: 1454: 1166: 239:
diffusion within any one region. Later work extended this concept by integrating
4350: 4095: 3848: 3714: 3662: 3657: 3170: 2976: 1113: 970: 402: 397:
are another class of model membranes that are commonly used to purify and study
370: 166: 142: 2098:
Proceedings of the National Academy of Sciences of the United States of America
1296:
Proceedings of the National Academy of Sciences of the United States of America
794:
Proceedings of the National Academy of Sciences of the United States of America
4481: 4428: 4015: 3928: 3756: 3751: 3704: 3697: 3692: 3677: 3672: 3513: 3448: 3197: 3139: 2886: 2870: 741:"Single molecule methods for monitoring changes in bilayer elastic properties" 253: 150: 101: 458: 4088: 4067: 3969: 3761: 3746: 3733: 3485: 3273: 3192: 3187: 3177: 3165: 3104: 2739: 2118: 1316: 814: 422: 391: 337: 137: 3029: 2994: 2953: 2894: 2855: 2814: 2757: 2697: 2662: 2605: 2570: 2535: 2500: 2446: 2389: 2354: 2297: 2240: 2020: 1985: 1872: 1845: 1788: 1747:"Solid supported lipid bilayers: From biophysical studies to sensor design" 1586: 1370: 1335: 1276: 1237: 1174: 1131: 1066: 1031: 988: 903: 868: 774: 519: 476: 443:"Artificial cell mimics as simplified models for the study of cell biology" 2213:
Popplewell JF, Swann MJ, Freeman NJ, McDonnell C, Ford RC (January 2007).
2172: 2137: 2069: 1915: 1731: 1671: 1462: 1427: 833: 725: 584: 252:
substrate material and lipid species but is generally about 1 nm for
4461: 4406: 3993: 3977: 3942: 3792: 3738: 3640: 3584: 3579: 3470: 3431: 3387: 3289: 3094: 417: 394: 274: 113: 43: 1950: 1201: 4493: 4411: 4392: 3952: 3937: 3774: 3652: 3436: 3421: 3124: 3099: 1977: 245: 39: 2796: 2689: 2644: 2597: 2562: 2527: 2428: 2051: 1614: 1578: 1551: 1524: 1497: 1362: 1268: 1229: 1023: 860: 667: 642: 4439: 4382: 4367: 4317: 4047: 3865: 3843: 3540: 3463: 3458: 3223: 3114: 3109: 2482: 619: 511: 257: 109: 97: 1251:
Andrecka J, Spillane KM, Ortega-Arroyo J, Kukura P (December 2013).
739:
Ingolfson H, Kapoor R, Collingwood SA, Andersen OS (November 2008).
154:
black lipid membrane will survive for less than an hour, precluding
4416: 4043: 3987: 3982: 3347: 3339: 3157: 3119: 1907: 1058: 543:"Analysis of the torus surrounding planar lipid bilayer membranes" 336: 300: 288: 228: 165: 85: 63: 2971:. Methods in Molecular Biology. Vol. 1118. pp. 109–30. 2830:"Membrane proteins, lipids and detergents: not just a soap opera" 2094:"VAMP-1: a synaptic vesicle-associated integral membrane protein" 756: 4355: 3959: 3907: 3853: 3545: 3086: 289: 3880: 3050: 2773:"Light-Patterned Current Generation in a Droplet Bilayer Array" 62:. A model bilayer can be made with either synthetic or natural 411: 1802:
Wong JY, Park CK, Seitz M, Israelachvili J (September 1999).
643:"Hard X-Ray Phase Contrast Imaging of Black lipid membranes" 641:
Beerlink A, Mell M, Tolkiehn M, Salditt T (November 2009).
1290:
de Wit G, Danial JS, Kukura P, Wallace MI (October 2015).
945:
Lin WC, Blanchette CD, Ratto TV, Longo ML (January 2006).
414:
spectroscopy where the larger vesicles are not an option.
2920:. Methods in Enzymology. Vol. 464. pp. 211–31. 195:(QCM) to study binding kinetics at the bilayer surface. 50:
or covering various sub-cellular structures like the
307:
group that forms a covalent bond with gold, forming
4336: 4310: 4277: 4133: 4119: 4112: 4059: 4042: 4035: 4003: 3968: 3926: 3919: 3785: 3713: 3626: 3494: 3376: 3365: 3338: 3310: 3260: 3249: 3222: 3211: 3156: 3085: 2834:Biochimica et Biophysica Acta (BBA) - Biomembranes 2219:Biochimica et Biophysica Acta (BBA) - Biomembranes 2215:"Quantifying the effects of melittin on liposomes" 2153:Biochimica et Biophysica Acta (BBA) - Biomembranes 1351:Langmuir: The ACS Journal of Surfaces and Colloids 849:Langmuir: The ACS Journal of Surfaces and Colloids 203:providing complementary data to QCM measurements. 1292:"Dynamic label-free imaging of lipid nanodomains" 212:total internal reflection fluorescence microscopy 2828:Seddon AM, Curnow P, Booth PJ (November 2004). 2092:Trimble WS, Cowan DM, Scheller RH (June 1988). 2709: 2707: 2313:"Lipid rafts reconstituted in model membranes" 441:Salehi-Reyhani A, Ces O, Elani Y (July 2017). 3892: 3062: 1683: 1681: 8: 2714:Villar G, Graham AD, Bayley H (April 2013). 4455:Reverse transcriptase-related cellular gene 1688:Kühner M, Tampé R, Sackmann E (July 1994). 244:reorganization of membrane proteins at the 4116: 4056: 4039: 3923: 3899: 3885: 3877: 3373: 3257: 3219: 3069: 3055: 3047: 1745:Castellana ET, Cremer PS (November 2006). 234:interface as seen from the color gradient. 2943: 2845: 2804: 2747: 2652: 2490: 2436: 2344: 2287: 2230: 2127: 2117: 2059: 1835: 1778: 1721: 1661: 1417: 1325: 1315: 1121: 978: 823: 813: 764: 715: 666: 574: 466: 27:For theoretical models of membranes, see 2586:Journal of the American Chemical Society 2551:Journal of the American Chemical Society 2417:Journal of the American Chemical Society 1190:Journal of the American Chemical Society 282:Tethered bilayer lipid membranes (t-BLM) 4436:Retroelements not elsewhere classified 433: 46:, as opposed to the bilayer of natural 2254:Lei G, MacDonald RC (September 2003). 224:near field scanning optical microscopy 2460: 2458: 2456: 2411:Matosevic S, Paegel BM (March 2011). 2382:10.1146/annurev-biophys-100620-114132 788:Montal M, Mueller P (December 1972). 220:interferometric scattering microscopy 7: 2036:"The mechanism of vesicle formation" 4388:Integrative and conjugative element 293:Diagram showing formation of t-BLM. 182:(AFM) has been used to image lipid 25: 4445:Diversity-generating retroelement 1384:Hollars CW, Dunn RC (July 1998). 745:Journal of Visualized Experiments 447:Experimental Biology and Medicine 4450:Telomerase reverse transcriptase 4022:Microbes with highly unusual DNA 2716:"A tissue-like printed material" 1966:Biochemical Society Transactions 387:Micelles, bicelles and nanodiscs 355:Dual polarisation interferometry 323:measurement across the bilayer. 197:Dual polarisation interferometry 2188:Chemistry and Physics of Lipids 1540:Journal of Physical Chemistry B 1449:(5300). New York, N.Y.: 651–3. 4373:Defective interfering particle 3723:Last universal common ancestor 3318:Defective interfering particle 170:Diagram of a supported bilayer 162:Supported lipid bilayers (SLB) 1: 4361:Clonally transmissible cancer 3859:Clonally transmissible cancer 3295:Satellite-like nucleic acids 2926:10.1016/s0076-6879(09)64011-8 2337:10.1016/S0006-3495(01)76114-0 2280:10.1016/S0006-3495(03)74590-1 2013:10.1016/S0022-2836(64)80115-7 1828:10.1016/s0006-3495(99)76993-6 1771:10.1016/j.surfrep.2006.06.001 1714:10.1016/s0006-3495(94)80472-2 1654:10.1016/S0006-3495(91)82222-6 1410:10.1016/s0006-3495(98)77518-6 932:10.1016/s0013-4686(01)00759-9 708:10.1016/S0006-3495(83)84414-2 682:Andersen OS (February 1983). 567:10.1016/s0006-3495(72)86095-8 3022:10.3109/09687688.2012.693212 2847:10.1016/j.bbamem.2004.04.011 2467:"Droplet interface bilayers" 2232:10.1016/j.bbamem.2006.05.016 2200:10.1016/0009-3084(71)90010-7 2165:10.1016/0005-2736(67)90094-6 2001:Journal of Molecular Biology 1455:10.1126/science.275.5300.651 1167:10.1126/science.288.5463.143 132:. Membrane proteins such as 3914:, and comparable structures 2977:10.1007/978-1-62703-782-2_7 2969:Cell-Free Protein Synthesis 2875:Journal of Biomolecular NMR 2370:Annual Review of Biophysics 1114:10.1529/biophysj.106.081398 971:10.1529/biophysj.105.067066 193:quartz crystal microbalance 82:Black lipid membranes (BLM) 4531: 3415:Class II or DNA transposon 3410:Class I or retrotransposon 3010:Molecular Membrane Biology 2034:Lasic DD (November 1988). 378:Droplet Interface Bilayers 330: 130:voltage gated ion channels 26: 3728:Earliest known life forms 3602:Repeated sequences in DNA 1047:Nature Structural Biology 309:self assembled monolayers 216:surface plasmon resonance 4378:Endogenous viral element 3575:Endogenous viral element 3393:Horizontal gene transfer 459:10.1177/1535370217711441 191:probe is the use of the 58:for the construction of 3272:dsDNA satellite virus ( 2887:10.1023/a:1008360022444 2740:10.1126/science.1229495 2119:10.1073/pnas.85.12.4538 2040:The Biochemical Journal 1751:Surface Science Reports 1317:10.1073/pnas.1508483112 815:10.1073/pnas.69.12.3561 647:Applied Physics Letters 541:White SH (April 1972). 180:Atomic force microscopy 3830:Helper dependent virus 3146:Biological dark matter 1873:10.1002/anie.199520561 904:10.1002/adma.200700810 342: 294: 235: 171: 92: 72:characterization tools 3590:Endogenous retrovirus 3563:Origin of replication 3279:ssDNA satellite virus 3269:ssRNA satellite virus 340: 292: 232: 188:mechanical properties 169: 156:long-term experiments 106:partition coefficient 89: 18:Black lipid membranes 4477:Transposable element 4467:Spiegelman's Monster 3534:Secondary chromosome 3529:Extrachromosomal DNA 3405:Transposable element 2516:Analytical Chemistry 2471:Molecular BioSystems 1218:Analytical Chemistry 333:Unilamellar liposome 321:electrical impedance 256:lipids supported on 3770:Model lipid bilayer 3612:Interspersed repeat 2789:2017NatSR...746585R 2732:2013Sci...340...48V 2637:2015NatSR...513726N 2329:2001BpJ....80.1417D 2317:Biophysical Journal 2272:2003BpJ....85.1585L 2260:Biophysical Journal 2110:1988PNAS...85.4538T 1951:10.1021/la00013a029 1900:1997Natur.387..580C 1820:1999BpJ....77.1458W 1808:Biophysical Journal 1763:2006SurSR..61..429C 1706:1994BpJ....67..217K 1694:Biophysical Journal 1646:1991BpJ....59..289J 1634:Biophysical Journal 1402:1998BpJ....75..342H 1390:Biophysical Journal 1308:2015PNAS..11212299D 1202:10.1021/ja00104a001 1159:2000Sci...288..143O 1106:2006BpJ....91..217S 1094:Biophysical Journal 1016:2008NanoL...8..941R 963:2006BpJ....90..228L 951:Biophysical Journal 920:Electrochimica Acta 896:2008AdM....20...84M 806:1972PNAS...69.3561M 700:1983BpJ....41..119A 688:Biophysical Journal 659:2009ApPhL..95t3703B 612:1966Natur.212..718T 559:1972BpJ....12..432W 547:Biophysical Journal 504:1962Natur.194..979M 102:hydrophobic solvent 36:model lipid bilayer 4346:Bio-like structure 4268:Tolecusatellitidae 3080:organic structures 2777:Scientific Reports 2625:Scientific Reports 1978:10.1042/BST0290613 884:Advanced Materials 343: 295: 236: 172: 93: 4502: 4501: 4332: 4331: 4306: 4305: 4302: 4301: 4240:Portogloboviridae 4142:Alphasatellitidae 4036:Non-cellular life 4031: 4030: 3912:non-cellular life 3874: 3873: 3815:Non-cellular life 3622: 3621: 3361: 3360: 3334: 3333: 3288:ssRNA satellite ( 2986:978-1-62703-781-5 2797:10.1038/srep46585 2690:10.1021/la203081v 2645:10.1038/srep13726 2598:10.1021/ja200128n 2563:10.1021/ja802089s 2528:10.1021/ac0613479 2429:10.1021/ja109137s 2052:10.1042/bj2560001 1867:(18): 2056–2058. 1615:10.1021/la950580r 1579:10.1021/la802726u 1552:10.1021/jp035543k 1525:10.1021/la0263413 1498:10.1021/la9711701 1363:10.1021/la047654w 1302:(40): 12299–303. 1269:10.1021/nn403367c 1230:10.1021/ac800027s 1024:10.1021/nl080080l 861:10.1021/la703704x 668:10.1063/1.3263946 606:(5063): 718–719. 453:(13): 1309–1317. 399:membrane proteins 351:x-ray diffraction 201:phase transitions 76:membrane proteins 56:synthetic biology 16:(Redirected from 4522: 4515:Membrane biology 4117: 4057: 4040: 3924: 3901: 3894: 3887: 3878: 3551:Gene duplication 3374: 3370:self-replication 3258: 3220: 3078:Self-replicating 3071: 3064: 3057: 3048: 3042: 3041: 3005: 2999: 2998: 2964: 2958: 2957: 2947: 2913: 2907: 2906: 2866: 2860: 2859: 2849: 2825: 2819: 2818: 2808: 2768: 2762: 2761: 2751: 2711: 2702: 2701: 2684:(23): 14335–42. 2673: 2667: 2666: 2656: 2616: 2610: 2609: 2581: 2575: 2574: 2546: 2540: 2539: 2511: 2505: 2504: 2494: 2483:10.1039/b808893d 2477:(12): 1191–208. 2462: 2451: 2450: 2440: 2408: 2402: 2401: 2365: 2359: 2358: 2348: 2308: 2302: 2301: 2291: 2251: 2245: 2244: 2234: 2210: 2204: 2203: 2183: 2177: 2176: 2148: 2142: 2141: 2131: 2121: 2089: 2083: 2080: 2074: 2073: 2063: 2031: 2025: 2024: 1996: 1990: 1989: 1961: 1955: 1954: 1934: 1928: 1927: 1883: 1877: 1876: 1856: 1850: 1849: 1839: 1799: 1793: 1792: 1782: 1742: 1736: 1735: 1725: 1685: 1676: 1675: 1665: 1625: 1619: 1618: 1609:(5): 1343–1350. 1597: 1591: 1590: 1562: 1556: 1555: 1535: 1529: 1528: 1519:(5): 1624–1631. 1508: 1502: 1501: 1481: 1475: 1474: 1438: 1432: 1431: 1421: 1381: 1375: 1374: 1346: 1340: 1339: 1329: 1319: 1287: 1281: 1280: 1263:(12): 10662–70. 1248: 1242: 1241: 1212: 1206: 1205: 1196:(25): 11209–12. 1185: 1179: 1178: 1142: 1136: 1135: 1125: 1085: 1079: 1078: 1042: 1036: 1035: 999: 993: 992: 982: 942: 936: 935: 914: 908: 907: 879: 873: 872: 844: 838: 837: 827: 817: 785: 779: 778: 768: 736: 730: 729: 719: 679: 673: 672: 670: 638: 632: 631: 620:10.1038/212718a0 595: 589: 588: 578: 538: 532: 531: 512:10.1038/194979a0 498:(4832): 979–80. 487: 481: 480: 470: 438: 210:methods such as 208:Evanescent field 184:phase separation 60:artificial cells 21: 4530: 4529: 4525: 4524: 4523: 4521: 4520: 4519: 4505: 4504: 4503: 4498: 4338: 4328: 4298: 4273: 4184:Finnlakeviridae 4129: 4108: 4050: 4046: 4027: 3999: 3964: 3915: 3905: 3875: 3870: 3820:Synthetic virus 3808:Artificial cell 3781: 3709: 3618: 3507:RNA replication 3502:DNA replication 3490: 3481:Group II intron 3379: 3369: 3357: 3348:Mammalian prion 3330: 3306: 3285:dsRNA satellite 3282:ssDNA satellite 3252: 3245: 3214: 3207: 3152: 3081: 3075: 3045: 3007: 3006: 3002: 2987: 2966: 2965: 2961: 2936: 2915: 2914: 2910: 2868: 2867: 2863: 2840:(1–2): 105–17. 2827: 2826: 2822: 2770: 2769: 2765: 2726:(6128): 48–52. 2713: 2712: 2705: 2675: 2674: 2670: 2618: 2617: 2613: 2583: 2582: 2578: 2548: 2547: 2543: 2522:(24): 8169–74. 2513: 2512: 2508: 2464: 2463: 2454: 2423:(9): 2798–800. 2410: 2409: 2405: 2367: 2366: 2362: 2310: 2309: 2305: 2253: 2252: 2248: 2212: 2211: 2207: 2185: 2184: 2180: 2150: 2149: 2145: 2104:(12): 4538–42. 2091: 2090: 2086: 2081: 2077: 2033: 2032: 2028: 1998: 1997: 1993: 1972:(Pt 4): 613–7. 1963: 1962: 1958: 1936: 1935: 1931: 1894:(6633): 580–3. 1885: 1884: 1880: 1858: 1857: 1853: 1801: 1800: 1796: 1757:(10): 429–444. 1744: 1743: 1739: 1687: 1686: 1679: 1627: 1626: 1622: 1599: 1598: 1594: 1573:(22): 12734–7. 1564: 1563: 1559: 1537: 1536: 1532: 1510: 1509: 1505: 1492:(12): 3347–50. 1483: 1482: 1478: 1440: 1439: 1435: 1383: 1382: 1378: 1348: 1347: 1343: 1289: 1288: 1284: 1250: 1249: 1245: 1224:(10): 3666–76. 1214: 1213: 1209: 1187: 1186: 1182: 1153:(5463): 143–6. 1144: 1143: 1139: 1087: 1086: 1082: 1044: 1043: 1039: 1001: 1000: 996: 944: 943: 939: 916: 915: 911: 881: 880: 876: 846: 845: 841: 787: 786: 782: 738: 737: 733: 681: 680: 676: 640: 639: 635: 597: 596: 592: 540: 539: 535: 489: 488: 484: 440: 439: 435: 431: 389: 380: 335: 329: 297: 284: 164: 84: 32: 29:Membrane models 23: 22: 15: 12: 11: 5: 4528: 4526: 4518: 4517: 4507: 4506: 4500: 4499: 4497: 4496: 4491: 4486: 4485: 4484: 4474: 4469: 4464: 4459: 4458: 4457: 4452: 4447: 4442: 4434: 4426: 4425: 4424: 4414: 4409: 4404: 4395: 4390: 4385: 4380: 4375: 4370: 4365: 4364: 4363: 4358: 4348: 4342: 4340: 4334: 4333: 4330: 4329: 4327: 4326: 4321: 4314: 4312: 4308: 4307: 4304: 4303: 4300: 4299: 4297: 4296: 4289: 4281: 4279: 4275: 4274: 4272: 4271: 4264: 4257: 4250: 4243: 4236: 4233:Polydnaviridae 4229: 4222: 4215: 4208: 4201: 4198:Globuloviridae 4194: 4191:Fuselloviridae 4187: 4180: 4173: 4170:Bicaudaviridae 4166: 4159: 4152: 4149:Ampullaviridae 4145: 4137: 4135: 4131: 4130: 4126:Naldaviricetes 4123: 4121: 4114: 4110: 4109: 4107: 4106: 4099: 4092: 4085: 4078: 4071: 4063: 4061: 4054: 4037: 4033: 4032: 4029: 4028: 4026: 4025: 4019: 4011: 4009: 4006:Incertae sedis 4001: 4000: 3998: 3997: 3990: 3985: 3980: 3974: 3972: 3966: 3965: 3963: 3962: 3957: 3956: 3955: 3950: 3940: 3934: 3932: 3921: 3917: 3916: 3906: 3904: 3903: 3896: 3889: 3881: 3872: 3871: 3869: 3868: 3863: 3862: 3861: 3856: 3846: 3840: 3834: 3833: 3832: 3827: 3817: 3812: 3811: 3810: 3805: 3795: 3789: 3787: 3783: 3782: 3780: 3779: 3778: 3777: 3772: 3764: 3759: 3754: 3749: 3743: 3742: 3741: 3730: 3725: 3719: 3717: 3711: 3710: 3708: 3707: 3702: 3701: 3700: 3695: 3687: 3685:Kappa organism 3682: 3681: 3680: 3675: 3670: 3665: 3660: 3650: 3649: 3648: 3643: 3632: 3630: 3624: 3623: 3620: 3619: 3617: 3616: 3615: 3614: 3609: 3599: 3598: 3597: 3592: 3587: 3582: 3572: 3571: 3570: 3560: 3559: 3558: 3556:Non-coding DNA 3553: 3548: 3538: 3537: 3536: 3531: 3526: 3521: 3511: 3510: 3509: 3498: 3496: 3492: 3491: 3489: 3488: 3483: 3478: 3476:Group I intron 3473: 3468: 3467: 3466: 3456: 3455: 3454: 3451: 3442: 3439: 3434: 3429: 3419: 3418: 3417: 3412: 3402: 3401: 3400: 3398:Genomic island 3395: 3384: 3382: 3378:Mobile genetic 3371: 3363: 3362: 3359: 3358: 3356: 3355: 3350: 3344: 3342: 3336: 3335: 3332: 3331: 3329: 3328: 3327: 3326: 3323: 3314: 3312: 3308: 3307: 3305: 3304: 3303: 3302: 3299: 3293: 3286: 3283: 3280: 3277: 3270: 3266: 3264: 3255: 3247: 3246: 3244: 3243: 3236: 3228: 3226: 3217: 3209: 3208: 3206: 3205: 3203:dsDNA-RT virus 3200: 3198:ssRNA-RT virus 3195: 3193:(−)ssRNA virus 3190: 3188:(+)ssRNA virus 3185: 3180: 3175: 3174: 3173: 3162: 3160: 3154: 3153: 3151: 3150: 3149: 3148: 3143: 3133:Incertae sedis 3129: 3128: 3127: 3122: 3117: 3112: 3102: 3097: 3091: 3089: 3083: 3082: 3076: 3074: 3073: 3066: 3059: 3051: 3044: 3043: 3000: 2985: 2959: 2934: 2908: 2861: 2820: 2763: 2703: 2668: 2611: 2592:(24): 9370–5. 2576: 2557:(18): 5878–9. 2541: 2506: 2452: 2403: 2360: 2323:(3): 1417–28. 2303: 2266:(3): 1585–99. 2246: 2205: 2178: 2143: 2084: 2075: 2026: 2007:(5): 660–668. 1991: 1956: 1929: 1878: 1851: 1814:(3): 1458–68. 1794: 1737: 1677: 1620: 1592: 1557: 1530: 1503: 1476: 1433: 1376: 1357:(4): 1377–88. 1341: 1282: 1243: 1207: 1180: 1137: 1080: 1037: 994: 937: 926:(5): 791–798. 909: 874: 839: 800:(12): 3561–6. 780: 731: 674: 653:(20): 203703. 633: 590: 533: 482: 432: 430: 427: 388: 385: 379: 376: 328: 325: 283: 280: 163: 160: 83: 80: 48:cell membranes 24: 14: 13: 10: 9: 6: 4: 3: 2: 4527: 4516: 4513: 4512: 4510: 4495: 4492: 4490: 4487: 4483: 4480: 4479: 4478: 4475: 4473: 4472:Tandem repeat 4470: 4468: 4465: 4463: 4460: 4456: 4453: 4451: 4448: 4446: 4443: 4441: 4438: 4437: 4435: 4433: 4430: 4427: 4423: 4420: 4419: 4418: 4415: 4413: 4410: 4408: 4405: 4402: 4401: 4400:Nanobacterium 4396: 4394: 4391: 4389: 4386: 4384: 4381: 4379: 4376: 4374: 4371: 4369: 4366: 4362: 4359: 4357: 4354: 4353: 4352: 4349: 4347: 4344: 4343: 4341: 4335: 4325: 4322: 4319: 4316: 4315: 4313: 4309: 4295: 4294: 4293:Rhizidiovirus 4290: 4288: 4287: 4283: 4282: 4280: 4276: 4270: 4269: 4265: 4263: 4262: 4261:Thaspiviridae 4258: 4256: 4255: 4251: 4249: 4248: 4247:Pospiviroidae 4244: 4242: 4241: 4237: 4235: 4234: 4230: 4228: 4227: 4226:Plasmaviridae 4223: 4221: 4220: 4216: 4214: 4213: 4212:Halspiviridae 4209: 4207: 4206: 4202: 4200: 4199: 4195: 4193: 4192: 4188: 4186: 4185: 4181: 4179: 4178: 4174: 4172: 4171: 4167: 4165: 4164: 4163:Avsunviroidae 4160: 4158: 4157: 4156:Anelloviridae 4153: 4151: 4150: 4146: 4144: 4143: 4139: 4138: 4136: 4132: 4128: 4127: 4122: 4118: 4115: 4111: 4105: 4104: 4100: 4098: 4097: 4093: 4091: 4090: 4086: 4084: 4083: 4079: 4077: 4076: 4075:Duplodnaviria 4072: 4070: 4069: 4065: 4064: 4062: 4058: 4055: 4053: 4049: 4045: 4041: 4038: 4034: 4023: 4020: 4018: 4017: 4013: 4012: 4010: 4008: 4007: 4002: 3995: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3975: 3973: 3971: 3967: 3961: 3958: 3954: 3951: 3949: 3948:Mitochondrion 3946: 3945: 3944: 3941: 3939: 3936: 3935: 3933: 3930: 3925: 3922: 3920:Cellular life 3918: 3913: 3909: 3902: 3897: 3895: 3890: 3888: 3883: 3882: 3879: 3867: 3864: 3860: 3857: 3855: 3852: 3851: 3850: 3847: 3845: 3841: 3839: 3838:Nanobacterium 3835: 3831: 3828: 3826: 3823: 3822: 3821: 3818: 3816: 3813: 3809: 3806: 3804: 3803:Cell division 3801: 3800: 3799: 3796: 3794: 3791: 3790: 3788: 3784: 3776: 3773: 3771: 3768: 3767: 3765: 3763: 3760: 3758: 3755: 3753: 3750: 3748: 3744: 3740: 3737: 3736: 3735: 3731: 3729: 3726: 3724: 3721: 3720: 3718: 3716: 3712: 3706: 3703: 3699: 3696: 3694: 3691: 3690: 3688: 3686: 3683: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3655: 3654: 3651: 3647: 3646:Hydrogenosome 3644: 3642: 3639: 3638: 3637: 3636:Mitochondrion 3634: 3633: 3631: 3629: 3628:Endosymbiosis 3625: 3613: 3610: 3608: 3607:Tandem repeat 3605: 3604: 3603: 3600: 3596: 3593: 3591: 3588: 3586: 3583: 3581: 3578: 3577: 3576: 3573: 3569: 3566: 3565: 3564: 3561: 3557: 3554: 3552: 3549: 3547: 3544: 3543: 3542: 3539: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3516: 3515: 3512: 3508: 3505: 3504: 3503: 3500: 3499: 3497: 3495:Other aspects 3493: 3487: 3484: 3482: 3479: 3477: 3474: 3472: 3469: 3465: 3462: 3461: 3460: 3457: 3452: 3450: 3446: 3443: 3440: 3438: 3435: 3433: 3430: 3428: 3425: 3424: 3423: 3420: 3416: 3413: 3411: 3408: 3407: 3406: 3403: 3399: 3396: 3394: 3391: 3390: 3389: 3386: 3385: 3383: 3381: 3375: 3372: 3368: 3364: 3354: 3351: 3349: 3346: 3345: 3343: 3341: 3337: 3324: 3321: 3320: 3319: 3316: 3315: 3313: 3309: 3300: 3297: 3296: 3294: 3291: 3287: 3284: 3281: 3278: 3275: 3271: 3268: 3267: 3265: 3263: 3259: 3256: 3254: 3248: 3242: 3241: 3240:Avsunviroidae 3237: 3235: 3234: 3233:Pospiviroidae 3230: 3229: 3227: 3225: 3221: 3218: 3216: 3210: 3204: 3201: 3199: 3196: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3172: 3169: 3168: 3167: 3164: 3163: 3161: 3159: 3155: 3147: 3144: 3142: 3141: 3137: 3136: 3135: 3134: 3130: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3107: 3106: 3103: 3101: 3098: 3096: 3093: 3092: 3090: 3088: 3087:Cellular life 3084: 3079: 3072: 3067: 3065: 3060: 3058: 3053: 3052: 3049: 3039: 3035: 3031: 3027: 3023: 3019: 3015: 3011: 3004: 3001: 2996: 2992: 2988: 2982: 2978: 2974: 2970: 2963: 2960: 2955: 2951: 2946: 2941: 2937: 2935:9780123749697 2931: 2927: 2923: 2919: 2912: 2909: 2904: 2900: 2896: 2892: 2888: 2884: 2881:(4): 387–91. 2880: 2876: 2872: 2869:Cavagnero S, 2865: 2862: 2857: 2853: 2848: 2843: 2839: 2835: 2831: 2824: 2821: 2816: 2812: 2807: 2802: 2798: 2794: 2790: 2786: 2782: 2778: 2774: 2767: 2764: 2759: 2755: 2750: 2745: 2741: 2737: 2733: 2729: 2725: 2721: 2717: 2710: 2708: 2704: 2699: 2695: 2691: 2687: 2683: 2679: 2672: 2669: 2664: 2660: 2655: 2650: 2646: 2642: 2638: 2634: 2630: 2626: 2622: 2615: 2612: 2607: 2603: 2599: 2595: 2591: 2587: 2580: 2577: 2572: 2568: 2564: 2560: 2556: 2552: 2545: 2542: 2537: 2533: 2529: 2525: 2521: 2517: 2510: 2507: 2502: 2498: 2493: 2488: 2484: 2480: 2476: 2472: 2468: 2461: 2459: 2457: 2453: 2448: 2444: 2439: 2434: 2430: 2426: 2422: 2418: 2414: 2407: 2404: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2364: 2361: 2356: 2352: 2347: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2307: 2304: 2299: 2295: 2290: 2285: 2281: 2277: 2273: 2269: 2265: 2261: 2257: 2250: 2247: 2242: 2238: 2233: 2228: 2224: 2220: 2216: 2209: 2206: 2201: 2197: 2194:(4): 324–35. 2193: 2189: 2182: 2179: 2174: 2170: 2166: 2162: 2159:(4): 624–38. 2158: 2154: 2147: 2144: 2139: 2135: 2130: 2125: 2120: 2115: 2111: 2107: 2103: 2099: 2095: 2088: 2085: 2079: 2076: 2071: 2067: 2062: 2057: 2053: 2049: 2045: 2041: 2037: 2030: 2027: 2022: 2018: 2014: 2010: 2006: 2002: 1995: 1992: 1987: 1983: 1979: 1975: 1971: 1967: 1960: 1957: 1952: 1948: 1944: 1940: 1933: 1930: 1925: 1921: 1917: 1913: 1909: 1908:10.1038/42432 1905: 1901: 1897: 1893: 1889: 1882: 1879: 1874: 1870: 1866: 1862: 1855: 1852: 1847: 1843: 1838: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1798: 1795: 1790: 1786: 1781: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1741: 1738: 1733: 1729: 1724: 1719: 1715: 1711: 1707: 1703: 1700:(1): 217–26. 1699: 1695: 1691: 1684: 1682: 1678: 1673: 1669: 1664: 1659: 1655: 1651: 1647: 1643: 1640:(2): 289–94. 1639: 1635: 1631: 1624: 1621: 1616: 1612: 1608: 1604: 1596: 1593: 1588: 1584: 1580: 1576: 1572: 1568: 1561: 1558: 1553: 1549: 1546:(2): 649–57. 1545: 1541: 1534: 1531: 1526: 1522: 1518: 1514: 1507: 1504: 1499: 1495: 1491: 1487: 1480: 1477: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1437: 1434: 1429: 1425: 1420: 1415: 1411: 1407: 1403: 1399: 1396:(1): 342–53. 1395: 1391: 1387: 1380: 1377: 1372: 1368: 1364: 1360: 1356: 1352: 1345: 1342: 1337: 1333: 1328: 1323: 1318: 1313: 1309: 1305: 1301: 1297: 1293: 1286: 1283: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1247: 1244: 1239: 1235: 1231: 1227: 1223: 1219: 1211: 1208: 1203: 1199: 1195: 1191: 1184: 1181: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1141: 1138: 1133: 1129: 1124: 1119: 1115: 1111: 1107: 1103: 1100:(1): 217–26. 1099: 1095: 1091: 1084: 1081: 1076: 1072: 1068: 1064: 1060: 1059:10.1038/78929 1056: 1052: 1048: 1041: 1038: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 998: 995: 990: 986: 981: 976: 972: 968: 964: 960: 957:(1): 228–37. 956: 952: 948: 941: 938: 933: 929: 925: 921: 913: 910: 905: 901: 897: 893: 889: 885: 878: 875: 870: 866: 862: 858: 855:(9): 4952–8. 854: 850: 843: 840: 835: 831: 826: 821: 816: 811: 807: 803: 799: 795: 791: 784: 781: 776: 772: 767: 762: 758: 754: 751:(21): e1032. 750: 746: 742: 735: 732: 727: 723: 718: 713: 709: 705: 701: 697: 694:(2): 119–33. 693: 689: 685: 678: 675: 669: 664: 660: 656: 652: 648: 644: 637: 634: 629: 625: 621: 617: 613: 609: 605: 601: 594: 591: 586: 582: 577: 572: 568: 564: 560: 556: 553:(4): 432–45. 552: 548: 544: 537: 534: 529: 525: 521: 517: 513: 509: 505: 501: 497: 493: 486: 483: 478: 474: 469: 464: 460: 456: 452: 448: 444: 437: 434: 428: 426: 424: 419: 415: 413: 407: 404: 400: 396: 393: 386: 384: 377: 375: 372: 366: 364: 360: 356: 352: 347: 339: 334: 326: 324: 322: 316: 312: 310: 306: 302: 291: 287: 281: 279: 276: 271: 265: 263: 259: 255: 249: 247: 242: 241:microfluidics 231: 227: 225: 221: 217: 213: 209: 204: 202: 198: 194: 189: 185: 181: 176: 168: 161: 159: 157: 152: 146: 144: 139: 135: 131: 126: 121: 117: 115: 111: 107: 103: 99: 88: 81: 79: 77: 73: 67: 65: 61: 57: 53: 49: 45: 41: 37: 30: 19: 4489:Transpoviron 4422:Fungal prion 4398: 4291: 4286:Dinodnavirus 4284: 4266: 4259: 4254:Spiraviridae 4252: 4245: 4238: 4231: 4224: 4219:Ovaliviridae 4217: 4210: 4205:Guttaviridae 4203: 4196: 4189: 4182: 4177:Clavaviridae 4175: 4168: 4161: 4154: 4147: 4140: 4124: 4103:Varidnaviria 4101: 4094: 4087: 4082:Monodnaviria 4080: 4073: 4066: 4014: 4004: 3825:Viral vector 3769: 3668:Gerontoplast 3595:Transpoviron 3367:Nucleic acid 3353:Fungal prion 3251:Helper-virus 3238: 3231: 3138: 3131: 3016:(1): 75–89. 3013: 3009: 3003: 2968: 2962: 2917: 2911: 2878: 2874: 2864: 2837: 2833: 2823: 2780: 2776: 2766: 2723: 2719: 2681: 2677: 2671: 2628: 2624: 2614: 2589: 2585: 2579: 2554: 2550: 2544: 2519: 2515: 2509: 2474: 2470: 2420: 2416: 2406: 2373: 2369: 2363: 2320: 2316: 2306: 2263: 2259: 2249: 2225:(1): 13–20. 2222: 2218: 2208: 2191: 2187: 2181: 2156: 2152: 2146: 2101: 2097: 2087: 2078: 2043: 2039: 2029: 2004: 2000: 1994: 1969: 1965: 1959: 1942: 1938: 1932: 1891: 1887: 1881: 1864: 1860: 1854: 1811: 1807: 1797: 1754: 1750: 1740: 1697: 1693: 1637: 1633: 1623: 1606: 1602: 1595: 1570: 1566: 1560: 1543: 1539: 1533: 1516: 1512: 1506: 1489: 1485: 1479: 1446: 1442: 1436: 1393: 1389: 1379: 1354: 1350: 1344: 1299: 1295: 1285: 1260: 1256: 1246: 1221: 1217: 1210: 1193: 1189: 1183: 1150: 1146: 1140: 1097: 1093: 1083: 1053:(9): 715–8. 1050: 1046: 1040: 1010:(3): 941–4. 1007: 1004:Nano Letters 1003: 997: 954: 950: 940: 923: 919: 912: 887: 883: 877: 852: 848: 842: 797: 793: 783: 757:10.3791/1032 748: 744: 734: 691: 687: 677: 650: 646: 636: 603: 599: 593: 550: 546: 536: 495: 491: 485: 450: 446: 436: 416: 408: 390: 381: 367: 348: 344: 317: 313: 296: 285: 266: 254:zwitterionic 250: 237: 205: 177: 173: 147: 134:ion channels 122: 118: 94: 91:the chamber. 68: 35: 33: 4432:microsphere 4351:Cancer cell 4096:Ribozyviria 3849:Cancer cell 3715:Abiogenesis 3663:Chromoplast 3658:Chloroplast 3441:Degradative 3183:dsRNA virus 3178:ssDNA virus 3171:Giant virus 3166:dsDNA virus 2376:: 525–548. 2046:(1): 1–11. 1945:: 197–210. 1861:Angew. Chem 890:(1): 84–9. 403:amphipathic 371:lipid rafts 319:enables ac 248:interface. 214:(TIRF) and 143:patch clamp 4482:Retroposon 4429:Proteinoid 4339:structures 4337:Comparable 4113:Unassigned 4016:Parakaryon 3929:Prokaryota 3757:Proteinoid 3752:Coacervate 3705:Nitroplast 3698:Trophosome 3693:Bacteriome 3678:Apicoplast 3673:Leucoplast 3514:Chromosome 3432:Resistance 3140:Parakaryon 429:References 331:See also: 305:disulphide 151:chloroform 125:interferes 42:assembled 4089:Riboviria 4068:Adnaviria 4052:Satellite 3970:Eukaryota 3766:Research 3747:Protocell 3486:Retrozyme 3445:Virulence 3427:Fertility 3274:Virophage 3262:Satellite 3253:dependent 3105:Eukaryota 3038:207503256 2783:: 46585. 2631:: 13726. 2398:232131463 418:Nanodiscs 392:Detergent 270:denatured 138:detergent 4509:Category 4462:Ribozyme 4407:Phagemid 4134:Families 3994:Protista 3978:Animalia 3943:Bacteria 3793:Organism 3786:See also 3762:Sulphobe 3739:Ribozyme 3734:RNA life 3641:Mitosome 3585:Prophage 3580:Provirus 3568:Replicon 3524:Circular 3471:Phagemid 3388:Mobilome 3380:elements 3290:Virusoid 3213:Subviral 3125:Protista 3110:Animalia 3095:Bacteria 3030:22716775 2995:24395412 2954:19903557 2903:22774774 2895:10353198 2871:Dyson HJ 2856:15519311 2815:28417964 2758:23559243 2698:21978255 2678:Langmuir 2663:26348441 2606:21591742 2571:18407631 2536:17165804 2501:19396383 2447:21309555 2390:33667121 2355:11222302 2298:12944275 2241:17092481 2021:14187392 1986:11498038 1939:Langmuir 1846:10465756 1789:32287559 1603:Langmuir 1587:18942863 1567:Langmuir 1513:Langmuir 1486:Langmuir 1471:30939780 1371:15697284 1336:26401022 1277:24251388 1257:ACS Nano 1238:18422336 1175:10753119 1132:16617084 1075:20571172 1067:10966636 1032:18254602 989:16214871 869:18370435 775:19066527 628:34363724 520:14476933 477:28580796 395:micelles 365:assays. 327:Vesicles 275:hydrogel 246:synaptic 114:squalene 44:in vitro 4494:Xenobot 4412:Plasmid 4393:Jeewanu 4324:Obelisk 4120:Classes 3988:Plantae 3953:Plastid 3938:Archaea 3775:Jeewanu 3689:Organs 3653:Plastid 3453:Cryptic 3422:Plasmid 3120:Plantae 3100:Archaea 2945:4196316 2806:5394532 2785:Bibcode 2749:3750497 2728:Bibcode 2720:Science 2654:4562232 2633:Bibcode 2492:2763081 2438:3048828 2346:1301333 2325:Bibcode 2289:1303334 2268:Bibcode 2173:4167394 2138:3380805 2106:Bibcode 2070:3066342 2061:1135360 1924:4348659 1916:9177344 1896:Bibcode 1837:1300433 1816:Bibcode 1780:7114318 1759:Bibcode 1732:7918990 1723:1225352 1702:Bibcode 1672:2009353 1663:1281145 1642:Bibcode 1463:9005848 1443:Science 1428:9649391 1419:1299703 1398:Bibcode 1327:4603517 1304:Bibcode 1155:Bibcode 1147:Science 1123:1479081 1102:Bibcode 1012:Bibcode 980:1367021 959:Bibcode 892:Bibcode 834:4509315 802:Bibcode 766:2954507 726:6188500 717:1329161 696:Bibcode 655:Bibcode 608:Bibcode 585:5019479 576:1484121 555:Bibcode 528:2110051 500:Bibcode 468:5528198 361:-based 311:(SAM). 52:nucleus 40:bilayer 38:is any 4440:Retron 4383:Fosmid 4368:Cosmid 4318:Nanobe 4278:Genera 4060:Realms 4048:Viroid 3866:Virome 3844:Nanobe 3541:Genome 3519:Linear 3464:Fosmid 3459:Cosmid 3224:Viroid 3215:agents 3036:  3028:  2993:  2983:  2952:  2942:  2932:  2901:  2893:  2854:  2813:  2803:  2756:  2746:  2696:  2661:  2651:  2604:  2569:  2534:  2499:  2489:  2445:  2435:  2396:  2388:  2353:  2343:  2296:  2286:  2239:  2171:  2136:  2129:280466 2126:  2068:  2058:  2019:  1984:  1922:  1914:  1888:Nature 1844:  1834:  1787:  1777:  1730:  1720:  1670:  1660:  1585:  1469:  1461:  1426:  1416:  1369:  1334:  1324:  1275:  1236:  1173:  1130:  1120:  1073:  1065:  1030:  987:  977:  867:  832:  825:389821 822:  773:  763:  724:  714:  626:  600:Nature 583:  573:  526:  518:  492:Nature 475:  465:  363:fusion 264:data. 258:silica 110:decane 98:Teflon 64:lipids 4417:Prion 4311:Other 4044:Virus 3983:Fungi 3340:Prion 3311:Other 3158:Virus 3115:Fungi 3034:S2CID 2899:S2CID 2394:S2CID 1920:S2CID 1467:S2CID 1071:S2CID 624:S2CID 524:S2CID 301:thiol 4356:HeLa 3960:LUCA 3908:Life 3854:HeLa 3798:Cell 3546:Gene 3026:PMID 2991:PMID 2981:ISBN 2950:PMID 2930:ISBN 2891:PMID 2852:PMID 2838:1666 2811:PMID 2754:PMID 2694:PMID 2659:PMID 2602:PMID 2567:PMID 2532:PMID 2497:PMID 2443:PMID 2386:PMID 2351:PMID 2294:PMID 2237:PMID 2223:1768 2169:PMID 2134:PMID 2066:PMID 2017:PMID 1982:PMID 1912:PMID 1842:PMID 1785:PMID 1728:PMID 1668:PMID 1583:PMID 1459:PMID 1424:PMID 1367:PMID 1332:PMID 1273:PMID 1234:PMID 1171:PMID 1128:PMID 1063:PMID 1028:PMID 985:PMID 865:PMID 830:PMID 771:PMID 722:PMID 581:PMID 516:PMID 473:PMID 359:FRET 262:FRAP 112:and 4320:(?) 4024:(?) 3437:Col 3325:DNA 3322:RNA 3301:DNA 3298:RNA 3018:doi 2973:doi 2940:PMC 2922:doi 2883:doi 2842:doi 2801:PMC 2793:doi 2744:PMC 2736:doi 2724:340 2686:doi 2649:PMC 2641:doi 2594:doi 2590:133 2559:doi 2555:130 2524:doi 2487:PMC 2479:doi 2433:PMC 2425:doi 2421:133 2378:doi 2341:PMC 2333:doi 2284:PMC 2276:doi 2227:doi 2196:doi 2161:doi 2157:135 2124:PMC 2114:doi 2056:PMC 2048:doi 2044:256 2009:doi 1974:doi 1947:doi 1904:doi 1892:387 1869:doi 1832:PMC 1824:doi 1775:PMC 1767:doi 1718:PMC 1710:doi 1658:PMC 1650:doi 1611:doi 1575:doi 1548:doi 1544:108 1521:doi 1494:doi 1451:doi 1447:275 1414:PMC 1406:doi 1359:doi 1322:PMC 1312:doi 1300:112 1265:doi 1226:doi 1198:doi 1194:116 1163:doi 1151:288 1118:PMC 1110:doi 1055:doi 1020:doi 975:PMC 967:doi 928:doi 900:doi 857:doi 820:PMC 810:doi 761:PMC 753:doi 712:PMC 704:doi 663:doi 616:doi 604:212 571:PMC 563:doi 508:doi 496:194 463:PMC 455:doi 451:242 412:NMR 303:or 4511:: 3910:, 3449:Ti 3032:. 3024:. 3014:30 3012:. 2989:. 2979:. 2948:. 2938:. 2928:. 2897:. 2889:. 2879:13 2877:. 2850:. 2836:. 2832:. 2809:. 2799:. 2791:. 2779:. 2775:. 2752:. 2742:. 2734:. 2722:. 2718:. 2706:^ 2692:. 2682:27 2680:. 2657:. 2647:. 2639:. 2627:. 2623:. 2600:. 2588:. 2565:. 2553:. 2530:. 2520:78 2518:. 2495:. 2485:. 2473:. 2469:. 2455:^ 2441:. 2431:. 2419:. 2415:. 2392:. 2384:. 2374:50 2372:. 2349:. 2339:. 2331:. 2321:80 2319:. 2315:. 2292:. 2282:. 2274:. 2264:85 2262:. 2258:. 2235:. 2221:. 2217:. 2190:. 2167:. 2155:. 2132:. 2122:. 2112:. 2102:85 2100:. 2096:. 2064:. 2054:. 2042:. 2038:. 2015:. 2003:. 1980:. 1970:29 1968:. 1943:10 1941:. 1918:. 1910:. 1902:. 1890:. 1865:34 1863:. 1840:. 1830:. 1822:. 1812:77 1810:. 1806:. 1783:. 1773:. 1765:. 1755:61 1753:. 1749:. 1726:. 1716:. 1708:. 1698:67 1696:. 1692:. 1680:^ 1666:. 1656:. 1648:. 1638:59 1636:. 1632:. 1607:12 1605:. 1581:. 1571:24 1569:. 1542:. 1517:19 1515:. 1490:14 1488:. 1465:. 1457:. 1445:. 1422:. 1412:. 1404:. 1394:75 1392:. 1388:. 1365:. 1355:21 1353:. 1330:. 1320:. 1310:. 1298:. 1294:. 1271:. 1259:. 1255:. 1232:. 1222:80 1220:. 1192:. 1169:. 1161:. 1149:. 1126:. 1116:. 1108:. 1098:91 1096:. 1092:. 1069:. 1061:. 1049:. 1026:. 1018:. 1006:. 983:. 973:. 965:. 955:90 953:. 949:. 924:47 922:. 898:. 888:20 886:. 863:. 853:24 851:. 828:. 818:. 808:. 798:69 796:. 792:. 769:. 759:. 749:21 747:. 743:. 720:. 710:. 702:. 692:41 690:. 686:. 661:. 651:95 649:. 645:. 622:. 614:. 602:. 579:. 569:. 561:. 551:12 549:. 545:. 522:. 514:. 506:. 494:. 471:. 461:. 449:. 445:. 423:nm 116:. 78:. 34:A 4403:" 4397:" 3996:' 3992:' 3931:" 3927:" 3900:e 3893:t 3886:v 3842:? 3836:? 3745:† 3732:? 3447:/ 3292:) 3276:) 3070:e 3063:t 3056:v 3040:. 3020:: 2997:. 2975:: 2956:. 2924:: 2905:. 2885:: 2858:. 2844:: 2817:. 2795:: 2787:: 2781:7 2760:. 2738:: 2730:: 2700:. 2688:: 2665:. 2643:: 2635:: 2629:5 2608:. 2596:: 2573:. 2561:: 2538:. 2526:: 2503:. 2481:: 2475:4 2449:. 2427:: 2400:. 2380:: 2357:. 2335:: 2327:: 2300:. 2278:: 2270:: 2243:. 2229:: 2202:. 2198:: 2192:7 2175:. 2163:: 2140:. 2116:: 2108:: 2072:. 2050:: 2023:. 2011:: 2005:8 1988:. 1976:: 1953:. 1949:: 1926:. 1906:: 1898:: 1875:. 1871:: 1848:. 1826:: 1818:: 1791:. 1769:: 1761:: 1734:. 1712:: 1704:: 1674:. 1652:: 1644:: 1617:. 1613:: 1589:. 1577:: 1554:. 1550:: 1527:. 1523:: 1500:. 1496:: 1473:. 1453:: 1430:. 1408:: 1400:: 1373:. 1361:: 1338:. 1314:: 1306:: 1279:. 1267:: 1261:7 1240:. 1228:: 1204:. 1200:: 1177:. 1165:: 1157:: 1134:. 1112:: 1104:: 1077:. 1057:: 1051:7 1034:. 1022:: 1014:: 1008:8 991:. 969:: 961:: 934:. 930:: 906:. 902:: 894:: 871:. 859:: 836:. 812:: 804:: 777:. 755:: 728:. 706:: 698:: 671:. 665:: 657:: 630:. 618:: 610:: 587:. 565:: 557:: 530:. 510:: 502:: 479:. 457:: 31:. 20:)

Index

Black lipid membranes
Membrane models
bilayer
in vitro
cell membranes
nucleus
synthetic biology
artificial cells
lipids
characterization tools
membrane proteins

Teflon
hydrophobic solvent
partition coefficient
decane
squalene
interferes
voltage gated ion channels
ion channels
detergent
patch clamp
chloroform
long-term experiments

Atomic force microscopy
phase separation
mechanical properties
quartz crystal microbalance
Dual polarisation interferometry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.