Knowledge (XXG)

Bond-dissociation energy

Source 📝

196:
Moreover, values measured in the past, especially before the 1970s, can be especially unreliable and have been subject to revisions on the order of 10 kcal/mol (e.g., benzene C–H bonds, from 103 kcal/mol in 1965 to the modern accepted value of 112.9(5) kcal/mol). Even in modern times (between 1990 and 2004), the O−H bond of phenol has been reported to be anywhere from 85.8 to 91.0 kcal/mol. On the other hand, the bond dissociation energy of H
243:). The former parameter tends to be favored in theoretical and computational work, while the latter is more convenient for thermochemical studies. For typical chemical systems, the numerical difference between the quantities is small, and the distinction can often be ignored. For a hydrocarbon RH, where R is significantly larger than H, for instance, the relationship 332:) has a bond dissociation energy of 174 kcal/mol. This vast difference is accounted for by the thermodynamic stability of carbon monoxide (CO), formed upon the C=C bond cleavage of ketene. The difference in availability of spin states upon fragmentation further complicates the use of BDE as a measure of bond strength for head-to-head comparisons, and 363:). In contrast to the BDE, which is usually defined and measured in the gas phase, the BDFE is often determined in the solution phase with respect to a solvent like DMSO, since the free-energy changes for the aforementioned thermochemical steps can be determined from parameters like acid dissociation constants (p 1516:. For instance, the BDE of diiodine is calculated as twice the heat of formation of iodine radical (25.5 kcal/mol) minus the heat of formation of diiodine gas (14.9 kcal/mol). This gives the accepted BDE of diiodine of 36.1 kcal/mol. (By definition, diiodine in the solid state has a heat of formation of 0.) 486:
in organic synthesis, and volcanic emissions. The strength of the bond is attributed to the substantial electronegativity difference between silicon and fluorine, which leads to a substantial contribution from both ionic and covalent bonding to the overall strength of the bond. The C−C single bond
195:
and electrochemical methods have been used to measure bond dissociation energy values. Nevertheless, bond dissociation energy measurements are challenging and are subject to considerable error. The majority of currently known values are accurate to within ±1 or 2 kcal/mol (4–10 kJ/mol).
319:
The bond dissociation energy is an enthalpy change of a particular chemical process, namely homolytic bond cleavage, and "bond strength" as measured by the BDE should not be regarded as an intrinsic property of a particular bond type but rather as an energy change that depends on the chemical
498:
On the other end of the scale, there is no clear boundary between a very weak covalent bond and an intermolecular interaction. Lewis acid–base complexes between transition metal fragments and noble gases are among the weakest of bonds with substantial covalent character, with
491:(HC≡C−C≡CH) linking two sp-hybridized carbon atoms is also among the strongest, at 160 kcal/mol. The strongest bond for a neutral compound, including multiple bonds, is found in carbon monoxide at 257 kcal/mol. The protonated forms of CO, HCN and N 355:°) accompanying homolytic dissociation of AB into A and B. However, it is often thought of and computed stepwise as the sum of the free-energy changes of heterolytic bond dissociation (A–B → A + :B), followed by one-electron reduction of A (A + 388:. While the bond-dissociation energy is the energy of a single chemical bond, the bond energy is the average of all the bond-dissociation energies of the bonds of the same type for a given molecule. For a homoleptic compound EX 462:(C−H). The bond energy is, thus, 99 kcal/mol, or 414 kJ/mol (the average of the bond-dissociation energies). None of the individual bond-dissociation energies equals the bond energy of 99 kcal/mol. 258:(R−H) − 1.5 kcal/mol is a good approximation. Some textbooks ignore the temperature dependence, while others have defined the bond-dissociation energy to be the reaction enthalpy of homolysis at 298 K. 606:
In the gas phase, the enthalpy of heterolysis is larger than that of homolysis, due to the need to separate unlike charges. However, this value is lowered substantially in the presence of a solvent.
2176:
Cerpa, Erick; Krapp, Andreas; Flores-Moreno, Roberto; Donald, Kelling J.; Merino, Gabriel (2009-02-09). "Influence of Endohedral Confinement on the Electronic Interaction between He atoms: A He
1924:
Bordwell, F. G.; Cheng, Jin Pei; Harrelson, John A. (February 1988). "Homolytic bond dissociation energies in solution from equilibrium acidity and electrochemical data".
1483: 956:, concerning relative strengths of bonds within a given group of compounds, and representative bond dissociation energies for common organic compounds are shown below. 408:
X. Average bond energies given in tables are the average values of the bond energies of a collection of species containing "typical" examples of the bond in question.
2258:
Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M. (2015-03-17). "Predicting the reactivity of hydride donors in water: thermodynamic constants for hydrogen".
351:(BDFE), has become more prevalent in the chemical literature. The BDFE of a bond A–B can be defined in the same way as the BDE as the standard free energy change (Δ 1733: 235:) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted 69:. The enthalpy change is temperature-dependent, and the bond-dissociation energy is often defined to be the enthalpy change of the homolysis at 0  482:
Si−F is even larger, at 166 kcal/mol. One consequence to these data are that many reactions generate silicon fluorides, such as glass etching,
495:
are said to have even stronger bonds, although another study argues that the use of BDE as a measure of bond strength in these cases is misleading.
438:
In the same way, for removing successive hydrogen atoms from methane the bond-dissociation energies are 105 kcal/mol (439 kJ/mol) for
2160: 2055: 2031: 2004: 1960: 1789: 1764: 1699: 1565: 2231:
Bartmess, John E.; Scott, Judith A.; McIver, Robert T. (September 1979). "Scale of acidities in the gas phase from methanol to phenol".
2307: 2068: 1590: 1409:
About 2 times stronger than a C−C single bond; however, the π bond (~65 kcal/mol) is weaker than the σ bond
228:), which is sometimes used interchangeably. However, some authors make the distinction that the bond-dissociation energy ( 175:
A variety of experimental techniques, including spectrometric determination of energy levels, generation of radicals by
1512:
The value reported as the bond-dissociation energy (BDE) is generally the enthalpy of the homolytic dissociation of a
284:
for the vibrational ground state, which reduces the amount of energy needed to reach the dissociation limit. Thus,
1816:
Kalescky, Robert; Kraka, Elfi; Cremer, Dieter (2013-08-30). "Identification of the Strongest Bonds in Chemistry".
339:
Historically, the vast majority of tabulated bond energy values are bond enthalpies. More recently, however, the
85: 1759:. New Delhi: Medtech (Scientific International, reprint of 4th revised edition, 1998, Macmillan). p. 101. 1525:
The IUPAC Gold Book does not stipulate a temperature for its definition of bond-dissociation energy (ref. 1).
2312: 688: 528: 503:
W:Ar having a W–Ar bond dissociation energy of less than 3.0 kcal/mol. Held together entirely by the
1654: 524: 62: 1877:"Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities" 2109: 1825: 1602: 188: 1996: 1659: 1984: 504: 435:
bonds in water is said to be 110.3 kcal/mol (461.5 kJ/mol), the average of these values.
261:
The bond dissociation energy is related to but slightly different from the depth of the associated
78: 66: 1857: 379: 1724: 2283: 2275: 2213: 2205: 2156: 2125: 2064: 2000: 1966: 1956: 1906: 1849: 1841: 1795: 1785: 1760: 1737: 1705: 1695: 1672: 1618: 1571: 1561: 1459: 1454: 1449: 953: 720: 277: 184: 2267: 2240: 2197: 2148: 2117: 1989: 1933: 1896: 1888: 1833: 1664: 1610: 1589:
Mulder P, Korth HG, Pratt DA, DiLabio GA, Valgimigli L, Pedulli GF, Ingold KU (March 2005).
1497: 758: 424: 172:, the conversion factor 23.060 kcal/mol (96.485 kJ/mol) for each eV can be used. 838: 1645:
Blanksby SJ, Ellison GB (April 2003). "Bond dissociation energies of organic molecules".
2113: 1829: 1606: 1901: 1876: 1464: 860: 423:
O) requires 118.8 kcal/mol (497.1 kJ/mol). The dissociation of the remaining
333: 262: 157: 2152: 324:
C=CO), which has a C=C bond dissociation energy of 79 kcal/mol, while ethylene (H
2301: 74: 47: 43: 1861: 1493: 885: 508: 483: 161: 614:
The data tabulated below shows how bond strengths vary over the periodic table.
427:
requires 101.8 kcal/mol (425.9 kJ/mol). The bond energy of the covalent
1163:
Lone-pair bearing heteroatoms weaken C−H bonds. THF tends to form hydroperoxides
1488: 1444: 1203: 1025: 515:, has the lowest measured bond dissociation energy of only 0.021 kcal/mol. 488: 470:
According to BDE data, the strongest single bonds are Si−F bonds. The BDE for H
384: 192: 117: 1892: 1304: 793: 180: 2279: 2209: 2129: 1845: 1799: 1492:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 527:
and is the basis of the usual BDEs. Asymmetric scission of a bond is called
2084:
Gillespie, Ronald J. (July 1998). "Covalent and Ionic Molecules: Why Are BeF
2060: 1970: 1709: 1575: 1501: 1226: 176: 2287: 2217: 2201: 2143:
Grills D. C.; George M. W. (2001), "Transition metal-noble gas complexes",
1910: 1853: 1676: 1622: 874:
Slightly stronger than C−H bonds, surprisingly low due to stability of C≡O
320:
context. For instance, Blanksby and Ellison cites the example of ketene (H
523:
Bonds can be broken symmetrically or asymmetrically. The former is called
1326: 929: 816: 770: 698: 432: 416: 412: 54: 2244: 1937: 1755:
Streitwieser, Andrew; Heathcock, Clayton H.; Kosower, Edward M. (2017).
1591:"Critical re-evaluation of the O−H bond dissociation enthalpy in phenol" 2271: 1288: 944: 761:
reactive with almost all organics exothermically by H atom abstraction
2121: 1837: 1668: 1614: 1417: 1394: 1356: 1257: 994: 943:
One of the strongest bonds, large activation energy in production of
907: 649: 428: 89: 70: 16:
Standard enthalpy change when a chemical bond is cleaved by homolysis
370:) and standard redox potentials (ε°) that are measured in solution. 168:
To convert a molar BDE to the energy needed to dissociate the bond
743: 84:
As a typical example, the bond-dissociation energy for one of the
1741: 921:
Stronger than single bonds, weaker than many other double bonds
200:
at 298 K has been measured to high precision and accuracy:
1341:
Akin to allylic C−H bonds. Such bonds show enhanced reactivity
1782:
Perspectives on structure and mechanism in organic chemistry
1371:
Much weaker than C−H bond. Homolytic cleavage occurs when H
103:) is defined as the standard enthalpy change of the process 458:(CH−H) and finally 81 kcal/mol (339 kJ/mol) for 1191:
Conjugating electron-withdrawing groups weaken C−H bonds
474:
Si−F is 152 kcal/mol, almost 50% stronger than the H
808:
O−H bond strength depends strongly on substituent on O
398:) multiplied by the enthalpy change of the reaction EX 1432:
About 2.5 times stronger than a C−C single bond
208:(H−H) = 104.1539(1) kcal/mol or 435.780 kJ/mol. 2030:
Streitwieser A.; Bergman R. G. (19 September 2018).
1955:(3rd ed.). London: Nelson Thornes. p. 7. 1988: 1875:Miller DC, Tarantino KT, Knowles RR (June 2016). 359:→ A•) and one-electron oxidation of B (:B → •B + 1558:Comprehensive handbook of chemical bond energies 531:. For molecular hydrogen, the alternatives are: 382:, the bond-dissociation energy differs from the 1951:Norman, Richard O. C.; Coxon, James M. (2001). 1135:Lone-pair bearing heteroatoms weaken C−H bonds 77:), although the enthalpy change at 298 K ( 1726:Bond Dissociation Energies in Simple Molecules 1690:Anslyn, Eric V.; Dougherty, Dennis A. (2006). 553: = 104.2 kcal/mol (see table below) 81:) is also a frequently encountered parameter. 446:−H), 110 kcal/mol (460 kJ/mol) for 65:to give fragments A and B, which are usually 8: 1987:; Nelson, David L.; Cox, Michael M. (2005). 478:C−F bond (110 kcal/mol). The BDE for F 156:= 101.1(4) kcal/mol = 423.0 ± 1.7 1784:(2nd ed.). Hoboken, N.J.: John Wiley. 1103:Tertiary radicals are even more stabilized 958: 616: 1900: 1658: 1303:Such bonds show enhanced reactivity, see 1009:One of the strongest aliphatic C−H bonds 626:Bond-dissociation enthalpy at 298 K 519:Homolytic versus heterolytic dissociation 2233:Journal of the American Chemical Society 1926:Journal of the American Chemical Society 591: = 34.2 kcal/mol (in water) (p 572: = 400.4 kcal/mol (gas phase) 454:−H), 101 kcal/mol (423 kJ/mol) for 147: 143: 123: 119: 113: 109: 99: 95: 1995:(4th ed.). W. H. Freeman. p.  1476: 968:Bond-dissociation energy at 298 K 952:There is great interest, especially in 687:Very strong, rationalizes inertness of 336:have been suggested as an alternative. 1272:Comparable to vinyl radical, uncommon 2056:CRC Handbook of Chemistry and Physics 2032:"Table of Bond Dissociation Energies" 2025: 2023: 1811: 1809: 1694:. Sausalito, CA: University Science. 1640: 1638: 1636: 1634: 1632: 53:. It can be defined as the standard 7: 2092:High Melting Point Solids whereas BF 2034:. University of California, Berkeley 1991:Lehninger Principles of Biochemistry 1551: 1549: 1547: 276:. This is due to the existence of a 220:is similar to the related notion of 1818:The Journal of Physical Chemistry A 1595:The Journal of Physical Chemistry A 1534:The corresponding BDE at 0 K ( 852:Strongest bond in neutral molecule 1489:Compendium of Chemical Terminology 1241:Acetylenic radicals are very rare 1072:Secondary radicals are stabilized 663:Strong, but weaker than C−H bonds 212:Definitions and related parameters 14: 2059:(87th ed.). Boca Raton, FL: 1757:Introduction to Organic Chemistry 1734:U.S. National Bureau of Standards 1723:Darwent, B. deB. (January 1970). 1692:Modern physical organic chemistry 784:Slightly stronger than C−H bonds 466:Strongest bonds and weakest bonds 1732:. NSRDS-NBS 31. Washington, DC: 2145:Advances in Inorganic Chemistry 1953:Principles of organic synthesis 1379:thermolysed at >500 °C 2190:Chemistry – A European Journal 2147:, Elsevier, pp. 113–150, 610:Representative bond enthalpies 343:analogue of bond-dissociation 1: 2153:10.1016/s0898-8838(05)52002-6 2102:Journal of Chemical Education 1647:Accounts of Chemical Research 899:Much stronger than C−H bonds 411:For example, dissociation of 349:bond-dissociation free energy 2053:Lide, David R., ed. (2006). 1218:Vinyl radicals are uncommon 712:Strong, nonpolarizable bond 394:, the E–X bond energy is (1/ 1881:Topics in Current Chemistry 1541:) is 99.5(5) kcal/mol. 419:bond of a water molecule (H 2329: 1780:Carroll, Felix A. (2010). 222:bond-dissociation enthalpy 1893:10.1007/s41061-016-0030-6 1560:. Boca Raton: CRC Press. 970: 967: 964: 961: 628: 625: 622: 619: 42:) is one measure of the 2308:Chemical bond properties 1494:Bond-dissociation energy 218:bond-dissociation energy 21:bond-dissociation energy 1502:10.1351/goldbook.B00699 298:, and the relationship 2202:10.1002/chem.200801399 1040:Slightly weaker than H 291:is slightly less than 1179:C−H bond α to ketone 263:potential energy well 1985:Lehninger, Albert L. 1151:C−H bond α to ether 1123:C−H bond α to amine 2260:Dalton Transactions 2245:10.1021/ja00514a030 2114:1998JChEd..75..923G 1938:10.1021/ja00212a035 1830:2013JPCA..117.8981K 1607:2005JPCA..109.2647M 1556:Luo, Y. R. (2007). 1060:Isopropyl C−H bond 505:van der Waals force 79:standard conditions 2272:10.1039/C4DT03841J 380:diatomic molecules 183:, measurements of 2266:(13): 5933–5938. 2239:(20): 6046–6056. 2162:978-0-12-023652-7 2122:10.1021/ed075p923 2006:978-0-7167-4339-2 1962:978-0-7487-6162-3 1838:10.1021/jp406200w 1824:(36): 8981–8995. 1791:978-0-470-27610-5 1766:978-93-85998-89-8 1701:978-1-891389-31-3 1669:10.1021/ar020230d 1615:10.1021/jp047148f 1567:978-0-8493-7366-4 1514:gas-phase species 1460:Electron affinity 1455:Ionization energy 1450:Electronegativity 1436: 1435: 954:organic chemistry 950: 949: 796:(an antioxidant) 721:hydrogen fluoride 602: 601: 278:zero-point energy 274:electronic energy 185:chemical kinetics 2320: 2292: 2291: 2255: 2249: 2248: 2228: 2222: 2221: 2196:(8): 1985–1990. 2173: 2167: 2165: 2140: 2134: 2133: 2081: 2075: 2074: 2050: 2044: 2043: 2041: 2039: 2027: 2018: 2017: 2015: 2013: 1994: 1981: 1975: 1974: 1948: 1942: 1941: 1932:(4): 1229–1231. 1921: 1915: 1914: 1904: 1872: 1866: 1865: 1813: 1804: 1803: 1777: 1771: 1770: 1752: 1746: 1745: 1731: 1720: 1714: 1713: 1687: 1681: 1680: 1662: 1642: 1627: 1626: 1586: 1580: 1579: 1553: 1542: 1532: 1526: 1523: 1517: 1510: 1504: 1481: 1420:C≡C triple bond 1091:-Butyl C−H bond 959: 830:typical alcohol 759:hydroxyl radical 617: 536: 535: 425:hydroxyl radical 151: 129: 102: 60: 52: 2328: 2327: 2323: 2322: 2321: 2319: 2318: 2317: 2298: 2297: 2296: 2295: 2257: 2256: 2252: 2230: 2229: 2225: 2187: 2183: 2179: 2175: 2174: 2170: 2163: 2142: 2141: 2137: 2099: 2095: 2091: 2087: 2083: 2082: 2078: 2071: 2052: 2051: 2047: 2037: 2035: 2029: 2028: 2021: 2011: 2009: 2007: 1983: 1982: 1978: 1963: 1950: 1949: 1945: 1923: 1922: 1918: 1874: 1873: 1869: 1815: 1814: 1807: 1792: 1779: 1778: 1774: 1767: 1754: 1753: 1749: 1729: 1722: 1721: 1717: 1702: 1689: 1688: 1684: 1660:10.1.1.616.3043 1644: 1643: 1630: 1601:(11): 2647–55. 1588: 1587: 1583: 1568: 1555: 1554: 1545: 1540: 1533: 1529: 1524: 1520: 1511: 1507: 1482: 1478: 1473: 1441: 1391: 1387: 1378: 1374: 1353: 1349: 1322: 1318: 1314: 1284: 1280: 1253: 1249: 1199: 1175: 1171: 1147: 1143: 1119: 1115: 1111: 1084: 1080: 1056: 1052: 1043: 1021: 1017: 990: 882: 839:carbon monoxide 674: 612: 597: 583: 564: 545: 521: 514: 502: 494: 481: 477: 473: 468: 453: 445: 422: 402: 392: 376: 369: 347:, known as the 334:force constants 331: 327: 323: 315: 311: 304: 297: 290: 283: 272:, known as the 271: 257: 249: 242: 234: 214: 207: 199: 160:= 4.40(2)  149: 145: 141: 139: 125: 121: 115: 111: 107: 101: 97: 93: 67:radical species 58: 50: 34: 17: 12: 11: 5: 2326: 2324: 2316: 2315: 2313:Binding energy 2310: 2300: 2299: 2294: 2293: 2250: 2223: 2185: 2181: 2177: 2168: 2161: 2135: 2097: 2093: 2089: 2085: 2076: 2069: 2045: 2019: 2005: 1976: 1961: 1943: 1916: 1867: 1805: 1790: 1772: 1765: 1747: 1715: 1700: 1682: 1628: 1581: 1566: 1543: 1538: 1527: 1518: 1505: 1475: 1474: 1472: 1469: 1468: 1467: 1465:Lattice energy 1462: 1457: 1452: 1447: 1440: 1437: 1434: 1433: 1430: 1427: 1424: 1421: 1415: 1411: 1410: 1407: 1404: 1401: 1398: 1392: 1389: 1385: 1381: 1380: 1376: 1372: 1369: 1366: 1363: 1360: 1354: 1351: 1347: 1343: 1342: 1339: 1336: 1333: 1330: 1324: 1320: 1316: 1312: 1308: 1307: 1301: 1298: 1295: 1292: 1286: 1282: 1278: 1274: 1273: 1270: 1267: 1264: 1261: 1255: 1251: 1247: 1243: 1242: 1239: 1236: 1233: 1230: 1224: 1220: 1219: 1216: 1213: 1210: 1207: 1201: 1197: 1193: 1192: 1189: 1186: 1183: 1180: 1177: 1173: 1169: 1165: 1164: 1161: 1158: 1155: 1152: 1149: 1145: 1141: 1137: 1136: 1133: 1130: 1127: 1124: 1121: 1117: 1113: 1109: 1105: 1104: 1101: 1098: 1095: 1092: 1086: 1082: 1078: 1074: 1073: 1070: 1067: 1064: 1061: 1058: 1054: 1050: 1046: 1045: 1041: 1038: 1035: 1032: 1029: 1023: 1019: 1015: 1011: 1010: 1007: 1004: 1001: 998: 992: 988: 984: 983: 980: 977: 973: 972: 969: 966: 963: 948: 947: 941: 938: 935: 932: 927: 923: 922: 919: 916: 913: 910: 905: 901: 900: 897: 894: 891: 888: 883: 880: 876: 875: 872: 869: 866: 863: 861:carbon dioxide 858: 854: 853: 850: 847: 844: 841: 836: 832: 831: 828: 825: 822: 819: 814: 810: 809: 806: 803: 800: 797: 790: 786: 785: 782: 779: 776: 773: 767: 763: 762: 755: 752: 749: 746: 740: 736: 735: 732: 729: 726: 723: 718: 714: 713: 710: 707: 704: 701: 696: 692: 691: 685: 682: 679: 676: 672: 669: 665: 664: 661: 658: 655: 652: 646: 642: 641: 638: 635: 631: 630: 627: 624: 621: 611: 608: 604: 603: 600: 599: 595: 585: 581: 578: 574: 573: 566: 562: 559: 555: 554: 547: 543: 540: 520: 517: 512: 500: 492: 479: 475: 471: 467: 464: 451: 443: 420: 400: 390: 375: 372: 367: 329: 325: 321: 313: 309: 302: 295: 288: 281: 269: 255: 247: 240: 232: 213: 210: 205: 197: 191:, and various 166: 165: 137: 131: 61:is cleaved by 32: 15: 13: 10: 9: 6: 4: 3: 2: 2325: 2314: 2311: 2309: 2306: 2305: 2303: 2289: 2285: 2281: 2277: 2273: 2269: 2265: 2261: 2254: 2251: 2246: 2242: 2238: 2234: 2227: 2224: 2219: 2215: 2211: 2207: 2203: 2199: 2195: 2191: 2188:Case Study". 2172: 2169: 2164: 2158: 2154: 2150: 2146: 2139: 2136: 2131: 2127: 2123: 2119: 2115: 2111: 2107: 2103: 2100:Are Gases?". 2080: 2077: 2072: 2070:0-8493-0487-3 2066: 2062: 2058: 2057: 2049: 2046: 2033: 2026: 2024: 2020: 2008: 2002: 1998: 1993: 1992: 1986: 1980: 1977: 1972: 1968: 1964: 1958: 1954: 1947: 1944: 1939: 1935: 1931: 1927: 1920: 1917: 1912: 1908: 1903: 1898: 1894: 1890: 1886: 1882: 1878: 1871: 1868: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1812: 1810: 1806: 1801: 1797: 1793: 1787: 1783: 1776: 1773: 1768: 1762: 1758: 1751: 1748: 1743: 1739: 1735: 1728: 1727: 1719: 1716: 1711: 1707: 1703: 1697: 1693: 1686: 1683: 1678: 1674: 1670: 1666: 1661: 1656: 1653:(4): 255–63. 1652: 1648: 1641: 1639: 1637: 1635: 1633: 1629: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1585: 1582: 1577: 1573: 1569: 1563: 1559: 1552: 1550: 1548: 1544: 1537: 1531: 1528: 1522: 1519: 1515: 1509: 1506: 1503: 1499: 1495: 1491: 1490: 1485: 1480: 1477: 1470: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1442: 1438: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1412: 1408: 1405: 1402: 1399: 1396: 1393: 1383: 1382: 1370: 1367: 1364: 1361: 1358: 1355: 1345: 1344: 1340: 1337: 1334: 1331: 1328: 1325: 1310: 1309: 1306: 1302: 1299: 1296: 1293: 1290: 1287: 1276: 1275: 1271: 1268: 1265: 1262: 1259: 1256: 1245: 1244: 1240: 1237: 1234: 1231: 1228: 1225: 1222: 1221: 1217: 1214: 1211: 1208: 1205: 1202: 1195: 1194: 1190: 1187: 1184: 1181: 1178: 1167: 1166: 1162: 1159: 1156: 1153: 1150: 1139: 1138: 1134: 1131: 1128: 1125: 1122: 1107: 1106: 1102: 1099: 1096: 1093: 1090: 1087: 1076: 1075: 1071: 1068: 1065: 1062: 1059: 1048: 1047: 1039: 1036: 1033: 1030: 1027: 1024: 1013: 1012: 1008: 1005: 1002: 999: 996: 993: 986: 985: 981: 978: 975: 974: 960: 957: 955: 946: 942: 939: 936: 933: 931: 928: 925: 924: 920: 917: 914: 911: 909: 906: 903: 902: 898: 895: 892: 889: 887: 884: 878: 877: 873: 870: 867: 864: 862: 859: 856: 855: 851: 848: 845: 842: 840: 837: 834: 833: 829: 826: 823: 820: 818: 815: 812: 811: 807: 804: 801: 798: 795: 791: 788: 787: 783: 780: 777: 774: 772: 768: 765: 764: 760: 757:Very strong, 756: 753: 750: 747: 745: 741: 738: 737: 733: 730: 727: 724: 722: 719: 716: 715: 711: 708: 705: 702: 700: 697: 694: 693: 690: 686: 683: 680: 677: 670: 667: 666: 662: 659: 656: 653: 651: 647: 644: 643: 639: 636: 633: 632: 618: 615: 609: 607: 594: 590: 586: 579: 576: 575: 571: 567: 560: 557: 556: 552: 548: 541: 538: 537: 534: 533: 532: 530: 526: 518: 516: 510: 506: 496: 490: 485: 465: 463: 461: 457: 449: 441: 436: 434: 430: 426: 418: 414: 409: 407: 403: 397: 393: 387: 386: 381: 373: 371: 366: 362: 358: 354: 350: 346: 342: 337: 335: 317: 308: 301: 294: 287: 279: 275: 268: 265:of the bond, 264: 259: 253: 246: 238: 231: 227: 226:bond enthalpy 223: 219: 211: 209: 203: 194: 190: 186: 182: 178: 173: 171: 163: 159: 155: 135: 132: 127: 106: 105: 104: 91: 87: 82: 80: 76: 75:absolute zero 72: 68: 64: 56: 49: 48:chemical bond 45: 41: 40: 35: 31: 26: 22: 2263: 2259: 2253: 2236: 2232: 2226: 2193: 2189: 2171: 2144: 2138: 2105: 2101: 2079: 2054: 2048: 2036:. Retrieved 2010:. Retrieved 1990: 1979: 1952: 1946: 1929: 1925: 1919: 1884: 1880: 1870: 1821: 1817: 1781: 1775: 1756: 1750: 1725: 1718: 1691: 1685: 1650: 1646: 1598: 1594: 1584: 1557: 1535: 1530: 1521: 1513: 1508: 1487: 1479: 1088: 951: 886:formaldehyde 734:Very strong 613: 605: 592: 588: 577:Asymmetric: 569: 558:Asymmetric: 550: 522: 509:helium dimer 497: 484:deprotection 469: 459: 455: 447: 439: 437: 410: 405: 399: 395: 389: 383: 377: 364: 360: 356: 352: 348: 344: 340: 338: 318: 306: 299: 292: 285: 273: 266: 260: 251: 244: 236: 229: 225: 221: 217: 215: 201: 193:calorimetric 174: 170:per molecule 169: 167: 153: 133: 83: 57:change when 38: 37: 29: 28: 24: 20: 18: 1445:Bond energy 976:(kcal/mol) 648:in typical 634:(kcal/mol) 546:→ 2 H 539:Symmetric: 529:heterolysis 489:diacetylene 385:bond energy 378:Except for 374:Bond energy 341:free energy 189:equilibrium 164:(per bond). 2302:Categories 2108:(7): 923. 1471:References 1368:3.60–3.90 1305:drying oil 1227:Acetylenic 982:(eV/bond) 794:tocopherol 660:3.60–3.90 640:(eV/bond) 181:photolysis 2280:1477-9234 2210:0947-6539 2130:0021-9584 2061:CRC Press 1887:(3): 30. 1846:1089-5639 1800:286483846 1655:CiteSeerX 1397:C=C bond 1359:C−C bond 1329:C−H bond 1291:C−H bond 1260:C−H bond 1229:C−H bond 1206:C−H bond 1028:C−H bond 997:C−H bond 979:(kJ/mol) 637:(kJ/mol) 525:homolysis 216:The term 177:pyrolysis 86:C−H bonds 63:homolysis 2288:25697077 2218:19021178 2038:13 March 1971:48595804 1911:27573270 1862:11884042 1854:23927609 1742:70602101 1710:55600610 1677:12693923 1623:16833571 1576:76961295 1439:See also 1365:347–377 1327:Benzylic 971:Comment 930:nitrogen 817:methanol 771:methanol 699:hydrogen 657:347–377 629:Comment 598:= 25.1) 584:→ H + H 565:→ H + H 345:enthalpy 250:(R−H) ≈ 55:enthalpy 44:strength 2110:Bibcode 2096:and SiF 2088:and AlF 2012:May 20, 1902:5107260 1826:Bibcode 1603:Bibcode 1289:Allylic 1172:C(=O)CH 945:ammonia 316:holds. 116:−H → 2286:  2278:  2216:  2208:  2159:  2128:  2067:  2003:  1969:  1959:  1909:  1899:  1860:  1852:  1844:  1798:  1788:  1763:  1740:  1708:  1698:  1675:  1657:  1621:  1574:  1564:  1429:~10.0 1418:Alkyne 1414:HC≡CH 1395:Alkene 1362:83–90 1357:Alkane 1338:3.907 1300:3.856 1269:4.902 1258:Phenyl 1238:5.763 1223:HCC−H 1215:4.809 1188:4.163 1160:3.990 1148:OCH−H 1132:3.949 1100:4.187 1069:4.293 1037:4.384 1006:4.550 995:Methyl 908:oxygen 849:11.16 689:Teflon 654:83–90 650:alkane 404:→ E + 158:kJ/mol 90:ethane 1858:S2CID 1730:(PDF) 1484:IUPAC 1426:~960 1423:~230 1406:~7.4 1403:~710 1400:~170 1204:Vinyl 1200:CH−H 1094:96.5 1057:CH−H 1026:Ethyl 965:Bond 962:Bond 940:9.79 918:5.15 896:7.75 871:5.51 857:O=CO 846:1077 827:3.99 805:3.35 792:in α- 781:4.56 754:5.15 744:water 731:5.90 709:4.52 684:4.99 671:in CH 623:Bond 620:Bond 152:) = Δ 46:of a 36:, or 2284:PMID 2276:ISSN 2214:PMID 2206:ISSN 2157:ISBN 2126:ISSN 2065:ISBN 2040:2019 2014:2016 2001:ISBN 1967:OCLC 1957:ISBN 1907:PMID 1850:PMID 1842:ISSN 1796:OCLC 1786:ISBN 1761:ISBN 1738:LCCN 1706:OCLC 1696:ISBN 1673:PMID 1619:PMID 1572:OCLC 1562:ISBN 1388:C=CH 1375:C−CH 1350:C−CH 1335:377 1297:372 1281:CHCH 1266:473 1263:113 1235:556 1232:133 1212:464 1209:111 1185:402 1157:385 1129:381 1097:404 1085:C−H 1066:414 1044:C−H 1034:423 1031:101 1003:439 1000:105 991:C−H 937:945 934:226 926:N≡N 915:498 912:119 904:O=O 893:748 890:179 879:O=CH 868:532 865:127 843:257 835:C≡O 824:385 813:C-O 802:323 789:O−H 778:440 775:105 766:O−H 751:497 748:119 739:O−H 728:569 725:136 717:H−F 706:431 703:103 695:H−H 681:481 678:115 668:C−F 645:C−C 511:, He 499:(CO) 328:C=CH 224:(or 187:and 128:+ H• 19:The 2268:doi 2241:doi 2237:101 2198:doi 2149:doi 2118:doi 1934:doi 1930:110 1897:PMC 1889:doi 1885:374 1834:doi 1822:117 1665:doi 1611:doi 1599:109 1498:doi 1496:". 1332:90 1323:−H 1294:89 1285:−H 1254:−H 1182:96 1176:−H 1154:92 1140:(CH 1126:91 1120:−H 1116:NCH 1108:(CH 1077:(CH 1063:99 1049:(CH 1022:−H 821:92 799:77 769:in 742:in 487:of 450:(CH 442:(CH 312:− ε 256:298 241:298 206:298 179:or 138:298 88:in 59:A−B 51:A−B 39:DH° 25:BDE 2304:: 2282:. 2274:. 2264:44 2262:. 2235:. 2212:. 2204:. 2194:15 2192:. 2186:20 2182:20 2180:@C 2155:, 2124:. 2116:. 2106:75 2104:. 2063:. 2022:^ 1999:. 1997:48 1965:. 1928:. 1905:. 1895:. 1883:. 1879:. 1856:. 1848:. 1840:. 1832:. 1820:. 1808:^ 1794:. 1736:. 1704:. 1671:. 1663:. 1651:36 1649:. 1631:^ 1617:. 1609:. 1597:. 1593:. 1570:. 1546:^ 1486:, 1319:CH 1277:CH 1196:CH 1168:CH 675:F 589:G° 570:H° 551:H° 507:, 413:HO 305:= 252:DH 237:DH 202:DH 162:eV 154:H° 150:−H 146:CH 142:CH 134:DH 122:CH 118:CH 112:CH 108:CH 27:, 2290:. 2270:: 2247:. 2243:: 2220:. 2200:: 2184:H 2178:2 2166:. 2151:: 2132:. 2120:: 2112:: 2098:4 2094:3 2090:3 2086:2 2073:. 2042:. 2016:. 1973:. 1940:. 1936:: 1913:. 1891:: 1864:. 1836:: 1828:: 1802:. 1769:. 1744:. 1712:. 1679:. 1667:: 1625:. 1613:: 1605:: 1578:. 1539:0 1536:D 1500:: 1390:2 1386:2 1384:H 1377:3 1373:3 1352:3 1348:3 1346:H 1321:2 1317:5 1315:H 1313:6 1311:C 1283:2 1279:2 1252:5 1250:H 1248:6 1246:C 1198:2 1174:2 1170:3 1146:3 1144:) 1142:2 1118:2 1114:2 1112:) 1110:3 1089:t 1083:3 1081:) 1079:3 1055:2 1053:) 1051:3 1042:3 1020:5 1018:H 1016:2 1014:C 989:3 987:H 881:2 673:3 596:a 593:K 587:Δ 582:2 580:H 568:Δ 563:2 561:H 549:Δ 544:2 542:H 513:2 501:5 493:2 480:3 476:3 472:3 460:D 456:D 452:2 448:D 444:3 440:D 433:H 431:− 429:O 421:2 417:H 415:− 406:n 401:n 396:n 391:n 368:a 365:K 361:e 357:e 353:G 330:2 326:2 322:2 314:0 310:e 307:D 303:0 300:D 296:e 293:D 289:0 286:D 282:0 280:ε 270:e 267:D 254:° 248:0 245:D 239:° 233:0 230:D 204:° 198:2 148:2 144:3 140:( 136:° 130:, 126:• 124:2 120:3 114:2 110:3 100:6 98:H 96:2 94:C 92:( 73:( 71:K 33:0 30:D 23:(

Index

strength
chemical bond
enthalpy
homolysis
radical species
K
absolute zero
standard conditions
C−H bonds
ethane
CH3CH2
kJ/mol
eV
pyrolysis
photolysis
chemical kinetics
equilibrium
calorimetric
potential energy well
zero-point energy
force constants
diatomic molecules
bond energy
HO
H
hydroxyl radical
O
H
deprotection
diacetylene

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.