Knowledge

Caloron

Source 📝

827: 372: 120: 367:{\displaystyle A_{\mu }^{a}(x)={\bar {\eta }}_{\mu \nu }^{a}\Pi (x)\partial _{\nu }\Pi ^{-1}(x)\quad {\text{with}}\quad \Pi (x)=1+{\frac {\pi \rho ^{2}T}{r}}{\frac {\sinh(2\pi rT)}{\cosh(2\pi rT)-\cos(2\pi \tau T)}}\ ,} 419: 455: 769:
Philipp Gerhold; Ernst-Michael Ilgenfritz; Michael MĂźller-Preussker (2007). "Improved superposition schemes for approximate multi-caloron configurations".
868: 98:, at finite temperature, the Euclidean time dimension is periodic, which means that instanton solutions have to be periodic as well. 680: 657: 94:). This changes the overall structure of spacetime, and thus also changes the form of the instanton solutions. According to the 892: 490: 91: 64: 861: 380: 90:
Finite temperatures in quantum field theories are modeled by compactifying the imaginary (Euclidean) time (see
551:
Harrington, Barry; Shepard (1978). "Periodic Euclidean Solutions and the Finite Temperature Yang–Mills Gas".
43:
of the Euclidean version of the theory under consideration, and which are furthermore localized in Euclidean
887: 754:
Shnir (2006). "Self-dual and non-self dual axially symmetric caloron solutions in SU(2) Yang-Mills theory".
605: 461:
is the temperature. This solution was found based on a periodic multi-instanton solution first suggested by
107: 80: 854: 790: 711: 614: 562: 512: 462: 20: 498: 72: 95: 806: 780: 755: 740: 727: 701: 690:
Dmitri Diakonov; Nikolay Gromov (2005). "SU(N) caloron measure and its relation to instantons".
422: 834: 771: 692: 676: 653: 553: 503: 486: 60: 48: 114:. The generalization thereof to finite temperature has been found by Harrington and Shepard: 798: 719: 672: 649: 622: 570: 520: 440: 794: 715: 618: 566: 516: 838: 494: 111: 68: 56: 40: 881: 810: 731: 600: 524: 466: 84: 802: 52: 39:
At zero temperature, instantons are the name given to solutions of the classical
723: 626: 603:(1977). "Some Exact Multi-Instanton Solutions of Classical Yang–Mills Theory". 574: 44: 28: 76: 826: 785: 760: 745: 706: 55:
of the Minkowski theory. One important example of an instanton is the
501:(1975). "Pseudoparticle solutions of the Yang–Mills equations". 739:
Daniel Nogradi (2005). "Multi-calorons and their moduli".
110:
at zero temperature, the instantons have the form of the
842: 443: 383: 123: 83:field equations in Euclidean spacetime (i.e. after 449: 413: 366: 27:is the finite temperature generalization of an 79:stable solution to the four-dimensional SU(2) 862: 414:{\displaystyle {\bar {\eta }}_{\mu \nu }^{a}} 8: 869: 855: 784: 759: 744: 705: 442: 405: 397: 386: 385: 382: 275: 260: 250: 223: 204: 194: 172: 164: 153: 152: 133: 128: 122: 587: 478: 7: 823: 821: 541:for a derivation of this formalism. 538: 229: 201: 191: 178: 14: 35:Finite temperature and instantons 825: 803:10.1016/j.nuclphysb.2007.04.003 646:Finite Temperature Field Theory 429:is the distance from the point 228: 222: 433:to the center of the caloron, 391: 352: 337: 325: 310: 299: 284: 238: 232: 219: 213: 187: 181: 158: 145: 139: 51:between different topological 1: 841:. You can help Knowledge by 525:10.1016/0370-2693(75)90163-X 437:is the size of the caloron, 92:thermal quantum field theory 16:Finite temperature instanton 909: 820: 724:10.1103/PhysRevD.72.025003 669:Instantons in Gauge Theory 627:10.1103/PhysRevLett.38.121 457:is the Euclidean time and 102:In SU(2) Yang–Mills theory 575:10.1103/PhysRevD.17.2122 59:, discovered in 1975 by 606:Physical Review Letters 837:-related article is a 451: 415: 368: 893:Quantum physics stubs 452: 450:{\displaystyle \tau } 416: 369: 473:References and notes 441: 381: 121: 21:mathematical physics 795:2007NuPhB.774..268G 716:2005PhRvD..72b5003D 644:Das, Ashok (1997). 619:1977PhRvL..38..121W 567:1978PhRvD..17.2122H 517:1975PhLB...59...85B 410: 177: 138: 96:Matsubara formalism 41:equations of motion 447: 411: 384: 364: 151: 124: 850: 849: 835:quantum mechanics 772:Nuclear Physics B 693:Physical Review D 554:Physical Review D 504:Physics Letters B 465:and published by 394: 360: 356: 273: 226: 161: 108:Yang–Mills theory 900: 871: 864: 857: 829: 822: 814: 788: 779:(1–3): 268–297. 765: 763: 750: 748: 735: 709: 686: 673:World Scientific 667:Shifman (1994). 663: 650:World Scientific 631: 630: 597: 591: 585: 579: 578: 548: 542: 535: 529: 528: 483: 456: 454: 453: 448: 420: 418: 417: 412: 409: 404: 396: 395: 387: 373: 371: 370: 365: 358: 357: 355: 302: 276: 274: 269: 265: 264: 251: 227: 224: 212: 211: 199: 198: 176: 171: 163: 162: 154: 137: 132: 47:. They describe 908: 907: 903: 902: 901: 899: 898: 897: 878: 877: 876: 875: 818: 768: 753: 738: 689: 683: 666: 660: 643: 640: 635: 634: 599: 598: 594: 586: 582: 550: 549: 545: 536: 532: 495:Albert Schwartz 485: 484: 480: 475: 439: 438: 423:'t Hooft symbol 379: 378: 303: 277: 256: 252: 200: 190: 119: 118: 104: 37: 17: 12: 11: 5: 906: 904: 896: 895: 890: 888:Gauge theories 880: 879: 874: 873: 866: 859: 851: 848: 847: 830: 816: 815: 786:hep-ph/0610426 766: 761:hep-th/0609019 751: 746:hep-th/0511125 736: 707:hep-th/0502132 687: 681: 664: 658: 639: 636: 633: 632: 601:Witten, Edward 592: 580: 543: 530: 477: 476: 474: 471: 446: 408: 403: 400: 393: 390: 375: 374: 363: 354: 351: 348: 345: 342: 339: 336: 333: 330: 327: 324: 321: 318: 315: 312: 309: 306: 301: 298: 295: 292: 289: 286: 283: 280: 272: 268: 263: 259: 255: 249: 246: 243: 240: 237: 234: 231: 221: 218: 215: 210: 207: 203: 197: 193: 189: 186: 183: 180: 175: 170: 167: 160: 157: 150: 147: 144: 141: 136: 131: 127: 112:BPST instanton 103: 100: 57:BPST instanton 36: 33: 15: 13: 10: 9: 6: 4: 3: 2: 905: 894: 891: 889: 886: 885: 883: 872: 867: 865: 860: 858: 853: 852: 846: 844: 840: 836: 831: 828: 824: 819: 812: 808: 804: 800: 796: 792: 787: 782: 778: 774: 773: 767: 762: 757: 752: 747: 742: 737: 733: 729: 725: 721: 717: 713: 708: 703: 700:(2): 025003. 699: 695: 694: 688: 684: 682:981-02-1681-5 678: 674: 670: 665: 661: 659:981-02-2856-2 655: 651: 647: 642: 641: 637: 628: 624: 620: 616: 612: 608: 607: 602: 596: 593: 589: 588:Shifman (1994 584: 581: 576: 572: 568: 564: 560: 556: 555: 547: 544: 540: 534: 531: 526: 522: 518: 514: 510: 506: 505: 500: 496: 492: 488: 482: 479: 472: 470: 468: 464: 460: 444: 436: 432: 428: 424: 406: 401: 398: 388: 361: 349: 346: 343: 340: 334: 331: 328: 322: 319: 316: 313: 307: 304: 296: 293: 290: 287: 281: 278: 270: 266: 261: 257: 253: 247: 244: 241: 235: 216: 208: 205: 195: 184: 173: 168: 165: 155: 148: 142: 134: 129: 125: 117: 116: 115: 113: 109: 101: 99: 97: 93: 88: 86: 85:Wick rotation 82: 78: 77:topologically 74: 70: 66: 62: 58: 54: 53:vacuum states 50: 46: 42: 34: 32: 30: 26: 22: 843:expanding it 832: 817: 776: 770: 697: 691: 668: 645: 638:Bibliography 610: 604: 595: 583: 558: 552: 546: 533: 508: 502: 481: 458: 434: 430: 426: 421:is the anti- 376: 105: 89: 75:. This is a 38: 24: 18: 561:(8): 2122. 882:Categories 613:(3): 121. 539:Das (1997) 487:Belavin, A 81:Yang–Mills 811:119471511 732:119496217 511:(1): 85. 445:τ 402:ν 399:μ 392:¯ 389:η 347:τ 344:π 335:⁡ 329:− 317:π 308:⁡ 291:π 282:⁡ 258:ρ 254:π 230:Π 206:− 202:Π 196:ν 192:∂ 179:Π 169:ν 166:μ 159:¯ 156:η 130:μ 106:In SU(2) 49:tunneling 45:spacetime 29:instanton 491:Polyakov 463:'t Hooft 69:Schwartz 65:Polyakov 791:Bibcode 712:Bibcode 615:Bibcode 563:Bibcode 513:Bibcode 499:Tyupkin 73:Tyupkin 61:Belavin 25:caloron 809:  730:  679:  656:  467:Witten 377:where 359:  833:This 807:S2CID 781:arXiv 756:arXiv 741:arXiv 728:S2CID 702:arXiv 590::122) 839:stub 677:ISBN 654:ISBN 537:See 305:cosh 279:sinh 225:with 71:and 23:, a 799:doi 777:774 720:doi 623:doi 571:doi 521:doi 332:cos 87:). 19:In 884:: 805:. 797:. 789:. 775:. 726:. 718:. 710:. 698:72 696:. 675:. 671:. 652:. 648:. 621:. 611:38 609:. 569:. 559:17 557:. 519:. 509:59 507:. 497:; 493:; 489:; 469:. 425:, 67:, 63:, 31:. 870:e 863:t 856:v 845:. 813:. 801:: 793:: 783:: 764:. 758:: 749:. 743:: 734:. 722:: 714:: 704:: 685:. 662:. 629:. 625:: 617:: 577:. 573:: 565:: 527:. 523:: 515:: 459:T 435:ρ 431:x 427:r 407:a 362:, 353:) 350:T 341:2 338:( 326:) 323:T 320:r 314:2 311:( 300:) 297:T 294:r 288:2 285:( 271:r 267:T 262:2 248:+ 245:1 242:= 239:) 236:x 233:( 220:) 217:x 214:( 209:1 188:) 185:x 182:( 174:a 149:= 146:) 143:x 140:( 135:a 126:A

Index

mathematical physics
instanton
equations of motion
spacetime
tunneling
vacuum states
BPST instanton
Belavin
Polyakov
Schwartz
Tyupkin
topologically
Yang–Mills
Wick rotation
thermal quantum field theory
Matsubara formalism
Yang–Mills theory
BPST instanton
't Hooft symbol
't Hooft
Witten
Belavin, A
Polyakov
Albert Schwartz
Tyupkin
Physics Letters B
Bibcode
1975PhLB...59...85B
doi
10.1016/0370-2693(75)90163-X

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑