Knowledge (XXG)

Carbon peapod

Source 📝

61: 41: 148:
when heated to 1000–1200 °C under ambient conditions; when heated to such a high temperature within a carbon nanotube, they instead merge in an ordered manner to form another SWNT, thus creating a double-wall carbon nanotube. Owing to the ease with which fullerenes can encapsulate or be doped
131:
and form a chain inside the tube. Controlled production of carbon peapods allow for greater variety in both the nanotube structure and the fullerene composition. Varying elements can be incorporated into a carbon peapod through doping and will dramatically affect the resulting thermal and electrical
126:
fullerene impurities are formed during the annealing treatment and acid purification, and enter the nanotubes through defects or vapor-phase diffusion. Fullerenes within a nanotube are only stabilized at a diameter difference of 0.34 nm or less, and when the diameters are
205:
covalently bound, one-dimensional polymer chain with metallic conductivity. Overall, the doping of SWNTs and peapods by alkali metal atoms actively enhances the conductivity of the molecule since the charge is relocated from the metal ions to the nanotubes. Doping carbon nanotubes with oxidized
232:
Gorantla, Sandeep; Börrnert, Felix; Bachmatiuk, Alicja; Dimitrakopoulou, Maria; Schönfelder, Ronny; Schäffel, Franziska; Thomas, Jürgen; Gemming, Thomas; Borowiak-Palen, Ewa; Warner, Jamie H.; Yakobson, Boris I.; Eckert, Jürgen; Büchner, Bernd; Rümmeli, Mark H. (2010). "In situ observations of
83:. It is named due to their resemblance to the seedpod of the pea plant. Since the properties of carbon peapods differ from those of nanotubes and fullerenes, the carbon peapod can be recognized as a new type of a self-assembled graphitic structure. Possible applications of nano-peapods include 149:
with other molecules and the transparency of nanotubes to electron beams, carbon peapods can also serve as nano-scale test tubes. After fullerenes containing reactants diffuse into an SWNT, a high-energy electron beam can be used to induce high reactivity, thus triggering formation of C
20: 127:
nearly identical, the interacting energy heightens to such a degree (comparable to 0.1 GPa) that the fullerenes become unable to be extracted from the SWNT even under high vacuum. The encapsulated fullerenes have diameters close to that of C
210:
is significantly reduced. A good application would be the introduction of silicon dioxide to carbon nanotubes. It constructs memory effect as some research group has invented ways to create memory devices based on carbon peapods grown on
193:
and ropes of SWNTs are superconductors, unfortunately, the critical temperatures for the superconducting phase transition in these materials are low. There are hopes that carbon nano-peapods could be superconducting at room temperature.
197:
With chemical doping, the electronic characteristics of peapods can be further adjusted. When carbon peapod is doped with alkali metal atoms like potassium, the dopants will react with the C
21: 22: 276:
Gimenez-Lopez, Maria del Carmen; Chuvilin, Andrey; Kaiser, Ute; Khlobystov, Andrei N. (2011). "Functionalised endohedral fullerenes in single-walled carbon nanotubes".
24: 107:
sheet. In 1998, the first peapod was observed by Brian Smith, Marc Monthioux and David Luzzi. The idea of peapods came from the structure that was produced inside a
140:
The existence of carbon peapods demonstrates further properties of carbon nanotubes, such as potential to be a stringently controlled environment for reactions. C
153:
dimers and merging of their contents. Additionally, due to the enclosed fullerenes being limited to only a one-dimensional degree of mobility, phenomena such as
173:
sizes and nanotube structures can lead to various electric conductivity property of carbon peapods due to orientation of rotations. For example, the C
111:
in 2000. They were first recognized in fragments obtained by a pulsed-laser vaporization synthesis followed by treatment with an acid and annealing.
688:
Smith, Brian W.; Luzzi, David E. (2000). "Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis".
23: 830:
Chen, Jiangwei; Dong, Jinming (2004). "Electronic properties of peapods: Effects of fullerene rotation and different types of tube".
108: 52:
peapods. Metal atoms (M = Ho or Sc) are seen as dark spots inside the fullerene molecules; they are doubly encapsulated in the C
1000:
Krive, I. V.; Shekhter, R. I.; Jonson, M. (2006). "Carbon "peapods"—a new tunable nanoscale graphitic structure (Review)".
206:
metal is another way to adjust conductivity. It creates a very interesting high temperature superconducting state as the
768:"Time-Resolved Imaging of Stochastic Cascade Reactions over a Submillisecond to Second Time Range at the Angstrom Level" 321:
Barzegar, Hamid Reza; Gracia-Espino, Eduardo; Yan, Aiming; Ojeda-Aristizabal, Claudia; Dunn, Gabriel; Wågberg, Thomas;
88: 91:, spin-qubit arrays for quantum computing, nanopipettes, and data storage devices thanks to the memory effects and 916:
Yoon, Young-Gui; Mazzoni, Mario S. C.; Louie, Steven G. (2003). "Quantum conductance of carbon nanotube peapods".
189:@ (17,0) equals 0.1 eV. Research into their potential as semiconductors is still ongoing. Although both the doped 1041: 951:
Lee, C. H.; Kang, K. T.; Park, K. S.; Kim, M. S.; Kim, H. S.; Kim, H. G.; Fischer, J. E.; Johnson, A. T. (2003).
423:; Iijima, Sumio (1999). ""Bucky Shuttle" Memory Device: Synthetic Approach and Molecular Dynamics Simulations". 552:
Burteaux, Beatrice; Claye, Agnès; Smith, Brian W.; Monthioux, Marc; Luzzi, David E.; Fischer, John E. (1999).
953:"The Nano-Memory Devices of a Single Wall and Peapod Structural Carbon Nanotube Field Effect Transistor" 119:
Carbon peapods can be naturally produced during carbon nanotube synthesis by pulsed laser vaporization.
1009: 964: 925: 839: 732: 697: 657: 610: 569: 518: 471: 432: 393: 338: 242: 169:
The diameter of carbon peapods range from ca. 1 to 50 nanometers. Various combinations of fullerene C
158: 120: 1046: 982: 898: 855: 805: 779: 626: 487: 890: 797: 748: 534: 356: 303: 258: 92: 1017: 972: 933: 882: 873:
Service, R. F. (2001). "SOLID-STATE PHYSICS: Nanotube 'Peapods' Show Electrifying Promise".
847: 789: 740: 705: 665: 618: 577: 526: 479: 440: 420: 401: 346: 293: 285: 250: 145: 103:
Single-walled nanotubes (SWNTs) were first seen in 1993 as cylinders rolled from a single
80: 29: 723:
Terrones, M (2010). "Transmission electron microscopy: Visualizing fullerene chemistry".
459: 1013: 968: 929: 843: 736: 701: 661: 614: 573: 522: 475: 436: 397: 342: 246: 709: 670: 645: 582: 553: 405: 1035: 859: 851: 809: 491: 986: 902: 766:
Shimizu, Toshiki; Lungerich, Dominik; Harano, Koji; Nakamura, Eiichi (24 May 2022).
630: 381: 530: 505:
Pichler, T.; Kuzmany, H.; Kataura, H.; Achiba, Y. (2001). "Metallic Polymers of C
886: 767: 444: 207: 322: 190: 60: 646:"Carbon nanotube encapsulated fullerenes: A unique class of hybrid materials" 154: 84: 76: 894: 801: 752: 538: 360: 307: 262: 977: 952: 793: 597:
Smith, Brian W.; Monthioux, Marc; Luzzi, David E. (1998). "Encapsulated C
182: 104: 40: 298: 289: 254: 1021: 937: 744: 483: 351: 326: 460:"Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots" 784: 622: 59: 39: 458:
Utko, Pawel; Nygård, Jesper; Monthioux, Marc; Noé, Laure (2006).
327:"C60/Collapsed Carbon Nanotube Hybrids: A Variant of Peapods" 644:
Smith, Brian W.; Monthioux, Marc; Luzzi, David E. (1999).
201:
molecules inside the SWNT. It forms a negatively charged C
64:
TEM image of a wide double-wall CNT densely filled with C
683: 681: 384:(2002). "Carbon nanotubes: Past, present, and future". 233:
fullerene fusion and ejection in carbon nanotubes".
181:@ (17,0) peapod is a semiconductor. The calculated 36:
transmission electron microscopy (TEM) observation.
75:is a hybrid nanomaterial consisting of spheroidal 8: 177:@ (10,10) is a good superconductor and the C 28:Generation of fullerene molecules inside a 976: 783: 669: 581: 350: 297: 772:Journal of the American Chemical Society 509:Inside Single-Walled Carbon Nanotubes". 376: 374: 372: 370: 18: 224: 7: 832:Journal of Physics: Condensed Matter 957:Japanese Journal of Applied Physics 14: 558:in single-wall carbon nanotubes" 109:transmission electron microscope 56:molecules and in the nanotubes. 1: 710:10.1016/S0009-2614(00)00307-9 671:10.1016/S0009-2614(99)00896-9 583:10.1016/S0009-2614(99)00720-4 531:10.1103/PhysRevLett.87.267401 406:10.1016/S0921-4526(02)00869-4 554:"Abundance of encapsulated C 887:10.1126/science.292.5514.45 445:10.1103/PhysRevLett.82.1470 386:Physica B: Condensed Matter 89:single electron transistors 1063: 852:10.1088/0953-8984/16/8/021 132:conductivity properties. 690:Chemical Physics Letters 650:Chemical Physics Letters 562:Chemical Physics Letters 144:molecules normally form 115:Production and structure 1002:Low Temperature Physics 918:Applied Physics Letters 511:Physical Review Letters 464:Applied Physics Letters 425:Physical Review Letters 161:can easily be studied. 601:in carbon nanotubes". 79:encapsulated within a 69: 57: 37: 165:Electronic properties 159:phase transformations 63: 43: 27: 978:10.1143/JJAP.42.5392 794:10.1021/jacs.2c02297 1014:2006LTP....32..887K 969:2003JaJAP..42.5392L 930:2003ApPhL..83.5217Y 844:2004JPCM...16.1401C 737:2010NatCh...2...82T 702:2000CPL...321..169S 662:1999CPL...315...31S 615:1998Natur.396R.323S 574:1999CPL...310...21B 523:2001PhRvL..87z7401P 476:2006ApPhL..89w3118U 437:1999PhRvL..82.1470K 398:2002PhyB..323....1I 343:2015NanoL..15..829B 247:2010Nanos...2.2077G 136:Chemical properties 16:Hybrid nanomaterial 419:Kwon, Young-Kyun; 290:10.1039/C0CC02929G 255:10.1039/C0NR00426J 70: 58: 38: 1022:10.1063/1.2364474 938:10.1063/1.1633680 778:(22): 9797–9805. 745:10.1038/nchem.526 609:(6709): 323–324. 484:10.1063/1.2403909 352:10.1021/nl503388f 95:of nano-peapods. 93:superconductivity 25: 1054: 1042:Carbon nanotubes 1026: 1025: 997: 991: 990: 980: 948: 942: 941: 913: 907: 906: 870: 864: 863: 838:(8): 1401–1408. 827: 821: 820: 818: 816: 787: 763: 757: 756: 725:Nature Chemistry 720: 714: 713: 696:(1–2): 169–174. 685: 676: 675: 673: 641: 635: 634: 594: 588: 587: 585: 549: 543: 542: 502: 496: 495: 455: 449: 448: 431:(7): 1470–1473. 416: 410: 409: 378: 365: 364: 354: 318: 312: 311: 301: 284:(7): 2116–2118. 273: 267: 266: 229: 146:amorphous carbon 85:nanoscale lasers 26: 1062: 1061: 1057: 1056: 1055: 1053: 1052: 1051: 1032: 1031: 1030: 1029: 999: 998: 994: 950: 949: 945: 915: 914: 910: 872: 871: 867: 829: 828: 824: 814: 812: 765: 764: 760: 722: 721: 717: 687: 686: 679: 643: 642: 638: 600: 596: 595: 591: 557: 551: 550: 546: 508: 504: 503: 499: 457: 456: 452: 418: 417: 413: 380: 379: 368: 320: 319: 315: 275: 274: 270: 231: 230: 226: 221: 214: 204: 200: 188: 180: 176: 172: 167: 152: 143: 138: 130: 124: 117: 101: 81:carbon nanotube 67: 55: 51: 47: 44:TEM images of M 30:carbon nanotube 19: 17: 12: 11: 5: 1060: 1058: 1050: 1049: 1044: 1034: 1033: 1028: 1027: 992: 943: 908: 865: 822: 758: 715: 677: 656:(1–2): 31–36. 636: 598: 589: 568:(1–2): 21–24. 555: 544: 517:(26): 267401. 506: 497: 470:(23): 233118. 450: 421:Tománek, David 411: 366: 313: 268: 241:(10): 2077–9. 223: 222: 220: 217: 212: 202: 198: 186: 178: 174: 170: 166: 163: 150: 141: 137: 134: 128: 122: 116: 113: 100: 97: 65: 53: 49: 45: 15: 13: 10: 9: 6: 4: 3: 2: 1059: 1048: 1045: 1043: 1040: 1039: 1037: 1023: 1019: 1015: 1011: 1007: 1003: 996: 993: 988: 984: 979: 974: 970: 966: 963:: 5392–5394. 962: 958: 954: 947: 944: 939: 935: 931: 927: 923: 919: 912: 909: 904: 900: 896: 892: 888: 884: 880: 876: 869: 866: 861: 857: 853: 849: 845: 841: 837: 833: 826: 823: 811: 807: 803: 799: 795: 791: 786: 781: 777: 773: 769: 762: 759: 754: 750: 746: 742: 738: 734: 730: 726: 719: 716: 711: 707: 703: 699: 695: 691: 684: 682: 678: 672: 667: 663: 659: 655: 651: 647: 640: 637: 632: 628: 624: 623:10.1038/24521 620: 616: 612: 608: 604: 593: 590: 584: 579: 575: 571: 567: 563: 559: 548: 545: 540: 536: 532: 528: 524: 520: 516: 512: 501: 498: 493: 489: 485: 481: 477: 473: 469: 465: 461: 454: 451: 446: 442: 438: 434: 430: 426: 422: 415: 412: 407: 403: 399: 395: 391: 387: 383: 382:Iijima, Sumio 377: 375: 373: 371: 367: 362: 358: 353: 348: 344: 340: 337:(2): 829–34. 336: 332: 328: 324: 317: 314: 309: 305: 300: 295: 291: 287: 283: 279: 272: 269: 264: 260: 256: 252: 248: 244: 240: 236: 228: 225: 218: 216: 209: 195: 192: 184: 164: 162: 160: 156: 147: 135: 133: 125: 114: 112: 110: 106: 98: 96: 94: 90: 86: 82: 78: 74: 73:Carbon peapod 62: 42: 35: 31: 1005: 1001: 995: 960: 956: 946: 924:(25): 5217. 921: 917: 911: 881:(5514): 45. 878: 874: 868: 835: 831: 825: 813:. Retrieved 775: 771: 761: 728: 724: 718: 693: 689: 653: 649: 639: 606: 602: 592: 565: 561: 547: 514: 510: 500: 467: 463: 453: 428: 424: 414: 392:(1–4): 1–5. 389: 385: 334: 331:Nano Letters 330: 316: 281: 278:Chem. Commun 277: 271: 238: 234: 227: 196: 168: 139: 118: 102: 72: 71: 33: 1008:(10): 887. 731:(2): 82–3. 323:Zettl, Alex 299:10347/32317 208:Fermi level 68:fullerenes. 1047:Fullerenes 1036:Categories 785:2202.13332 219:References 215:surfaces. 191:fullerides 77:fullerenes 860:250811298 810:247158917 492:120800423 235:Nanoscale 155:diffusion 987:33790729 903:33284325 895:11294210 802:35609254 753:21124394 631:30670931 539:11800854 361:25557832 325:(2015). 308:21183975 263:20714658 183:band gap 105:graphene 32:(CNT) – 1010:Bibcode 965:Bibcode 926:Bibcode 875:Science 840:Bibcode 733:Bibcode 698:Bibcode 658:Bibcode 611:Bibcode 570:Bibcode 519:Bibcode 472:Bibcode 433:Bibcode 394:Bibcode 339:Bibcode 243:Bibcode 99:History 34:in situ 985:  901:  893:  858:  815:26 May 808:  800:  751:  629:  603:Nature 537:  490:  359:  306:  261:  211:Si/SiO 983:S2CID 899:S2CID 856:S2CID 806:S2CID 780:arXiv 627:S2CID 488:S2CID 891:PMID 817:2022 798:PMID 749:PMID 535:PMID 357:PMID 304:PMID 259:PMID 185:of C 1018:doi 973:doi 934:doi 883:doi 879:292 848:doi 790:doi 776:144 741:doi 706:doi 694:321 666:doi 654:315 619:doi 607:396 578:doi 566:310 527:doi 480:doi 441:doi 402:doi 390:323 347:doi 294:hdl 286:doi 251:doi 157:or 48:N@C 1038:: 1016:. 1006:32 1004:. 981:. 971:. 961:42 959:. 955:. 932:. 922:83 920:. 897:. 889:. 877:. 854:. 846:. 836:16 834:. 804:. 796:. 788:. 774:. 770:. 747:. 739:. 727:. 704:. 692:. 680:^ 664:. 652:. 648:. 625:. 617:. 605:. 599:60 576:. 564:. 560:. 556:60 533:. 525:. 515:87 513:. 507:60 486:. 478:. 468:89 466:. 462:. 439:. 429:82 427:. 400:. 388:. 369:^ 355:. 345:. 335:15 333:. 329:. 302:. 292:. 282:47 280:. 257:. 249:. 237:. 203:60 199:60 187:60 179:60 175:60 171:60 151:60 142:60 129:60 123:60 87:, 66:60 54:80 50:80 1024:. 1020:: 1012:: 989:. 975:: 967:: 940:. 936:: 928:: 905:. 885:: 862:. 850:: 842:: 819:. 792:: 782:: 755:. 743:: 735:: 729:2 712:. 708:: 700:: 674:. 668:: 660:: 633:. 621:: 613:: 586:. 580:: 572:: 541:. 529:: 521:: 494:. 482:: 474:: 447:. 443:: 435:: 408:. 404:: 396:: 363:. 349:: 341:: 310:. 296:: 288:: 265:. 253:: 245:: 239:2 213:2 121:C 46:3

Index

carbon nanotube


fullerenes
carbon nanotube
nanoscale lasers
single electron transistors
superconductivity
graphene
transmission electron microscope
C60
amorphous carbon
diffusion
phase transformations
band gap
fullerides
Fermi level
Bibcode
2010Nanos...2.2077G
doi
10.1039/C0NR00426J
PMID
20714658
doi
10.1039/C0CC02929G
hdl
10347/32317
PMID
21183975
Zettl, Alex

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.