Knowledge (XXG)

Magnetohydrodynamic drive

Source 📝

376: 256: 612: 624: 36: 2853: 2834: 93: 655:, assigned his senior year undergraduate students to build the operational unit. This MHD submarine operated on batteries delivering power to electrodes and electromagnets, which produced a magnetic field of 0.015 tesla. The cruise speed was about 0.4 meter per second (15 inches per second) during the test in the bay of 1173:, especially pulsed inductive ones. The rapid ablation of electrodes under the intense thermal flow is also a concern. For these reasons, studies remain largely theoretical and experiments are still conducted in the laboratory, although over 60 years have passed since the first research in this kind of thrusters. 1382: 1115:
to improve its electrical conductivity. All charged species within the plasma, from positive and negative ions to free electrons, as well as neutral atoms by the effect of collisions, are accelerated in the same direction by the Lorentz "body" force, which results from the combination of a magnetic
643:
by an engine. Problems with current technologies include expense and slow speed compared to a propeller driven by an engine. The extra expense is from the large generator that must be driven by an engine. Such a large generator is not required when an engine directly drives a propeller.
868:
Shock wave mitigation for thermal control and reduction of the wave drag and form drag. Some theoretical studies suggest the flow velocity could be controlled everywhere on the wetted area of an aircraft, so shock waves could be totally cancelled when using enough
1839:
A. Iwata, Y. Saji and S. Sato, "Construction of Model Ship ST-500 with Superconducting Electromagnetic Thrust System", in Proceedings of the 8th International Cryogenic Engineering Conference (ICEC 8), edited by C. Rizzuto (IPC Science and Technology, 1980), pp.
1232:. In reality, the current traveling through the water would create gases and noise, and the magnetic fields would induce a detectable magnetic signature. In the film, it was suggested that this sound could be confused with geological activity. In 2600: 533:
from electrolysis) but need much more intense peak magnetic fields to operate. Since one of the biggest issues with such thrusters is the limited energy available on-board, induction MHD drives have not been developed out of the laboratory.
752:
by a "magnetic shield". Hypersonic ionized flow interacts with the magnetic field, inducing eddy currents in the plasma. The current combines with the magnetic field to give Lorentz forces that oppose the flow and detach the
443: 875:
Airflow velocity reduction upstream to feed a scramjet by the use of an MHD generator section combined with an MHD accelerator downstream at the exhaust nozzle, powered by the generator through an MHD bypass
694:
Small-scale ship models were later built and studied extensively in the laboratory, leading to successful comparisons between the measurements and the theoretical prediction of ship terminal speeds.
977:. As external flow systems can control the flow over the whole wetted area, limiting thermal issues at high speeds, ambient air would be ionized and radially accelerated by Lorentz forces around an 1116:
field with an orthogonal electric field (hence the name of "cross-field accelerator"), these fields not being in the direction of the acceleration. This is a fundamental difference with
599:
characteristics. External field systems on the contrary have the ability to act on a very large expanse of surrounding water volume with higher efficiency and the ability to decrease
1080:
are based on magnetohydrodynamics. As this kind of MHD propulsion involves compressible fluids in the form of plasmas (ionized gases) it is also referred to as magnetogasdynamics or
635:
MHD has no moving parts, which means that a good design might be silent, reliable, and efficient. Additionally, the MHD design eliminates many of the wear and friction pieces of the
317:, positive and negative species (in opposite directions). If either positive or negative species dominate the vehicle is put in motion in the opposite direction from the net charge. 748:. As low-pressure air is naturally ionized at such very high velocities and altitude, it was thought to use the effect of a magnetic field produced by an electromagnet to replace 2109:"Shock wave annihilation by MHD action in supersonic flows. Two-dimensional steady non-isentropic analysis. Anti-shock criterion, and shock tube simulations for isentropic flows" 1366:
Way, S. (15 October 1958). Examination of Bipolar Electric and Magnetic Fields for Submarine Propulsion (Report). US Navy Bureau of Ships. Preliminary Memorandum Communication.
2796:
Roy, Subrata; Arnold, David; Lin, Jenshan; Schmidt, Tony; Lind, Rick; et al. (20 December 2011). Air Force Office of Scientific Research; University of Florida (eds.).
1029:
would have been replaced by a "purely electromagnetic rotor" with no moving part, sucking the air downward. Such concepts of flying MHD disks have been developed in the
900:. These projects aim to develop MHD generators feeding MHD accelerators for a new generation of high-speed vehicles. Such MHD bypass systems are often designed around a 1638:
Weier, Tom; Shatrov, Victor; Gerbeth, Gunter (2007). "Flow Control and Propulsion in Poor Conductors". In Molokov, Sergei S.; Moreau, R.; Moffatt, H. Keith (eds.).
1593: 1135:
First experimental studies involving cross-field plasma accelerators (square channels and rocket nozzles) date back to the late 1950s. Such systems provide greater
647:
The first prototype, a 3-meter (10-feet) long submarine called EMS-1, was designed and tested in 1966 by Stewart Way, a professor of mechanical engineering at the
570:
of the vehicle, the electromagnetic fields extending around the body of the vehicle. The propulsion force results from the pressure distribution on the shell (as
930:
gases, making the development of demonstrators much more difficult to realize than for MHD in liquids. "Cold plasmas" with magnetic fields are subject to the
2322: 1891: 529:
As induction MHD accelerators are electrodeless, they do not exhibit the common issues related to conduction systems (especially Joule heating, bubbles and
3120: 1850:
Takezawa, Setsuo; Tamama, Hiroshi; Sugawawa, Kazumi; Sakai, Hiroshi; Matsuyama, Chiaki; Morita, Hiroaki; Suzuki, Hiromi; Ueyama, Yoshihiro (March 1995).
1088: 220: 397: 2851:, Subrata Roy, "Wingless hovering of micro air vehicle", issued 2015-02-24, assigned to University of Florida Research Foundation Inc. 973:), one could imagine future aircraft of a new kind silently powered by MHD accelerators, able to ionize and direct enough air downward to lift several 942:
MHD propulsion has been considered as the main propulsion system for both marine and space ships since there is no need to produce lift to counter the
2832:, Subrata Roy, "Wingless hovering of micro air vehicle", issued 2013-02-26, assigned to University of Florida Research Foundation Inc 1851: 893: 648: 130: 781:, modifying its velocity, direction, pressure, friction, heat flux parameters, in order to preserve materials and engines from stress, allowing 777:
Active flow control by MHD force fields on the contrary involves a direct and imperious action of forces to locally accelerate or slow down the
1784: 2406: 1655: 379:
Crossed-field magnetohydrodynamic converters (linear Faraday type with segmented electrodes). A: MHD generator mode. B: MHD accelerator mode.
3125: 1046: 884:(Ajax) is an example of MHD-controlled hypersonic aircraft concept. A US program also exists to design a hypersonic MHD bypass system, the 702: 1693: 1194:, has a magnetohydrodynamic drive. This allows the ship to turn very sharply and brake instantly, instead of gliding for a few miles. In 1005:. In order to maximize such pressure difference between the two opposite sides, and since the most efficient MHD converters (with a high 2780: 79: 1161:
Even today, these systems are not ready to be launched in space as they still lack a suitable compact power source offering enough
800:
Air ionization is achieved at high altitude (electrical conductivity of air increases as atmospheric pressure reduces according to
46: 2812: 1216: 190:, and increasing the magnetic field strength is limited by the cost, size and weight (as well as technological limitations) of 885: 1052:
These futuristic visions have been advertised in the media although they still remain beyond the reach of modern technology.
2713:"Experimental investigation of a 2-D MHD slipstream generator and accelerator with freestream Mach = 7.6 and T(0) = 4100 K" 1151: 1067: 897: 706: 369: 250: 198:
launched the PUMP program to build a marine engine using superconducting magnets expected to reach a field strength of 20
1674: 1244:
of the so-called "tunnel drive" type (the tunnels provided acoustic camouflage for the cavitation from the propellers).
652: 383:
As the Lorentz force in an MHD converter does not act on a single isolated charged particle nor on electrons in a solid
2502:. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. San Francisco, California. 2083:"Shock wave annihilation by MHD action in supersonic flow. Quasi one dimensional steady analysis and thermal blockage" 684: 259:
Illustration of the right-hand rule for the Lorentz force, cross product of an electric current with a magnetic field.
61: 2952:
Wilson, T.A. (December 1958). "Remarks on Rocket and Aerodynamic Applications of Magnetohydrodynamic Channel Flow".
2848: 2829: 2595: 797:, as the working fluid is the air (a gas instead of a liquid) ionized to become electrically conductive (a plasma). 3110: 2037:"The convective instability of the boundary-layer flow over a rotating cone in and out of a uniform magnetic field" 1813: 1253: 931: 375: 255: 57: 2339: 1906: 1155: 1071: 680: 656: 518: 687:). The ship successfully carried a crew of ten plus passengers at speeds of up to 15 km/h (8.1 kn) in 2152:. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Capua, Italy. 1553:
Overduin, James; Polyak, Viktor; Rutah, Anjalee; Sebastian, Thomas; Selway, Jim; Zile, Daniel (November 2017).
1233: 1061: 920: 754: 676: 549: 212: 3115: 1594:"DARPA Works to Make A Practical Ultraquiet Superconducting Magnet Drive for Submarines | NextBigFuture.com" 1196: 1042: 1018: 167: 1866: 507:
flows in the fluid due to an applied voltage between pairs of electrodes, the magnetic field being steady.
345: 2891: 662:
Later, a Japanese prototype, the 3.6-meter long "ST-500", achieved speeds of up to 0.6 m/s in 1979.
2563:"Theoretical Performance of a Magnetohydrodynamic-Bypass Scramjet Engine with Nonequilibrium Ionization" 2492: 1931: 1077: 496:
MHD thrusters are classified in two categories according to the way the electromagnetic fields operate:
2531:
Chase, R. L.; Boyd, R.; Czysz, P.; Froning, Jr., H. D.; Lewis, Mark; McKinney, L. E. (September 1998).
2058: 1377: 3066: 2918: 2655: 2287: 2187: 2123: 1701: 1566: 1502: 1279: 927: 916: 766: 722: 145: 2243:
Bityurin, V. A.; Lineberry, J.; Potebnia, V.; Alferov, V.; Kuranov, A.; Sheikin, E. G. (June 1997).
1794: 1380:, Warren A. Rice, "Propulsion System", issued 1961-08-22, assigned to Carl E. Grebe 2967:
Wood, G.P.; Carter, A.F. (1960). "Considerations in the Design of a Steady D.C. Plasma Generator".
2472:. 12th AIAA International Space Planes and Hypersonic Systems and Technologies. Norfolk, Virginia. 1852:"Operation of the thruster for superconducting electromagnetohydrodynamic propulsion ship YAMATO-1" 1455:
Doragh, R.A. (November 1963). "Magnetohydrodynamic Ship Propulsion using Superconducting Magnets".
978: 858: 514: 206: 2356: 1983:. 9th International Space Planes and Hypersonic Systems and Technologies Conference. Norfolk, VA. 611: 2934: 2331: 2303: 2005:
Lineberry, John T.; Rosa, R. J.; Bityurin, V. A.; Botcharov, A. N.; Potebnya, V. G. (July 2000).
1898: 1492: 1225: 836: 596: 357: 153: 2382: 1555:"The Hunt for Red October II: A magnetohydrodynamic boat demonstration for introductory physics" 1479:
Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe (2017).
2062: 1717: 2804: 2776: 1651: 1530: 1229: 924: 840: 782: 749: 745: 737: 545: 384: 314: 216: 160: 2431:
Adamovich, Igor V.; Rich, J. William; Schneider, Steven J.; Blankson, Isaiah M. (June 2003).
2330:. 3rd workshop on Thermochemical processes in plasma aerodynamics. Saint Petersburg, Russia. 3074: 3032: 2998: 2926: 2753: 2723: 2693: 2663: 2577: 2543: 2511: 2503: 2473: 2443: 2295: 2253: 2225: 2195: 2153: 2017: 1984: 1948: 1760: 1709: 1643: 1574: 1520: 1510: 1412: 1207: 1140: 1026: 1002: 943: 801: 762: 733: 337: 329: 291: 279: 228: 623: 1789: 1009:) are disk-shaped, such MHD aircraft would be preferably flattened to take the shape of a 889: 812: 477: 175: 2868: 2108: 2082: 2016:. 35th Intersociety Energy Conversion Engineering Conference and Exhibit. Las Vegas, NV. 3095: 3070: 2922: 2659: 2291: 2191: 2127: 1705: 1570: 1506: 1021:, it would share no similarities with conventional aircraft, but it would behave like a 2797: 1525: 1480: 1416: 1162: 1121: 966: 951: 934:
occurring at a critical Hall parameter, which makes full-scale developments difficult.
820: 600: 504: 485: 469: 461: 388: 361: 321: 310: 299: 295: 122: 118: 2172: 1974:"Influence of EM discharges on hypersonic vehicle lift, drag, and airbreathing thrust" 1713: 595:
Internal flow systems concentrate the MHD interaction in a limited volume, preserving
3104: 2969:
Dynamics of Conducting Gases (Proceedings of the 3rd Biennial Gas Dynamics Symposium)
2307: 2216: 1554: 1284: 1263: 1191: 1170: 1144: 1125: 1010: 741: 619:
at the Ship Science Museum in Tokyo. The electrode plates are visible top and bottom.
582: 553: 341: 307: 287: 283: 244: 232: 191: 179: 3018:"Constant-Electric-Field and Constant-Magnetic-Field Magnetogasdynamic Channel Flow" 2938: 2773:
Lightcraft Flight Handbook LTI-20: Hypersonic Flight Transport for an Era Beyond Oil
2692:. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Los Angeles, CA. 2335: 2036: 1902: 1266:
was feasible and potentially profitable, had a magnetohydrodynamic drive mated to a
1154:
sometimes referred to as the Lorentz force accelerator (LFA), and the electrodeless
969:
solved (for example with the availability of a still missing multi-megawatt compact
205:
Stronger technical limitations apply to air-breathing MHD propulsion (where ambient
2752:. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, AL. 1267: 1202: 1186: 1166: 1129: 1117: 970: 808: 805: 571: 522: 325: 199: 183: 126: 2070:. 8th International Conference on MHD Electrical Power Generation. Moscow, Russia. 438:{\displaystyle \mathbf {f} =\rho \mathbf {E} +\mathbf {J} \times \mathbf {B} \,\!} 1515: 209:
is ionized) that is still limited to theoretical concepts and early experiments.
17: 2636: 2200: 1825:
Way, S.; Devlin, C. (July 1967). "Prospects for the Electromagnetic Submarine".
1436:
Phillips, O.M. (1962). "The prospects for magnetohydrodynamic ship propulsion".
1150:
Some devices also studied nowadays besides cross-field accelerators include the
1034: 1030: 1006: 854: 828: 567: 537:
Both systems can put the working fluid in motion according to two main designs:
365: 769:
studies are still ongoing, but a large-scale demonstrator has yet to be built.
736:
around vehicles date back to the late 1950s, with the concept of a new kind of
2743:"Experimental Investigation of a 2-D MHD Slipstream Accelerator and Generator" 2272: 1892:
Sea-water magnetohydrodynamic propulsion for next-generation undersea vehicles
1807: 1647: 1038: 1022: 959: 636: 587: 557: 333: 272: 263:
The working principle involves the acceleration of an electrically conductive
133: 2683:"MHD slipstream accelerator investigation in the RPI hypersonic shock tunnel" 2432: 2006: 1147:
and even modern ion drives, at the cost of a higher required energy density.
865:
Action on the boundary layer to prevent laminar flow from becoming turbulent.
2516: 2462: 2433:"Magnetogasdynamic Power Extraction and Flow Conditioning for a Gas Turbine" 2244: 1457:
Transactions of the Society of Naval Architects and Marine Engineers (SNAME)
1221: 1108: 1092: 816: 758: 710: 640: 353: 303: 187: 3051: 2142: 1973: 1534: 2598:, "Propelling device", published 1936-01-15, issued 1938-02-16 1306: 2983: 2532: 1338: 1248: 1241: 998: 994: 982: 947: 905: 901: 832: 667: 171: 97: 2757: 2697: 2562: 2547: 2507: 2477: 2463:"Hypersonic Engine using MHD Energy Bypass with a Conventional Turbojet" 2447: 2257: 2229: 2157: 2021: 888:(HVEPS). A working prototype was completed in 2017 under development by 2930: 2808: 2727: 1988: 1932:
Interactions of spacecraft and other moving bodies with natural plasmas
1481:"Experimental and Theoretical Study of Magnetohydrodynamic Ship Models" 1220:
popularized the magnetohydrodynamic drive as a "caterpillar drive" for
1112: 1100: 847: 778: 698: 579: 552:, the MHD interaction being concentrated within the pipe (similarly to 391:
in motion, it is a "volumetric" (body) force, a force per unit volume:
349: 2742: 2712: 2615: 2299: 1897:(Report). Applied Research Laboratory, Pennsylvania State University. 1617: 1578: 697:
Military research about underwater MHD propulsion included high-speed
166:
Few large-scale marine prototypes have been built, limited by the low
92: 2909:
Resler, E.L.; Sears, W.R. (1958). "Magneto-Gasdynamic Channel Flow".
2682: 2640: 1397: 1136: 1104: 990: 955: 909: 843: 268: 224: 137: 3078: 3017: 2667: 2442:. 34th AIAA Plasmadynamics and Lasers Conference. Orlando, Florida. 1764: 997:
being the engine. Lift and thrust would arise as a consequence of a
231:
at the same time, and the propellant would last much longer than in
64:. Statements consisting only of original research should be removed. 3036: 3002: 2581: 2271:
Fraĭshtadt, V. L.; Kuranov, A. L.; Sheĭkin, E. G. (November 1998).
1829:. AIAA 3rd Propulsion Joint Specialist Conference. Washington, D.C. 1497: 1745: 1096: 974: 881: 824: 672: 622: 610: 530: 374: 264: 254: 195: 149: 91: 2984:"Electrode Boundary Layers in Direct-Current Plasma Accelerators" 544:
when the fluid is accelerated within and propelled back out of a
1014: 1001:
difference between the upper and lower surfaces, induced by the
986: 688: 575: 102: 2561:
Park, Chul; Bogdanoff, David W.; Mehta, Unmeel B. (July 2003).
2224:. 27th Plasma Dynamics and Lasers Conference. New Orleans, LA. 2215:
Bityurin, V. A.; Zeigarnik, V. A.; Kuranov, A. L. (June 1996).
275: 141: 29: 2616:"Flying saucers R&D: The Coanda effect (English version)" 2461:
Blankson, Isaiah M.; Schneider, Stephen J. (December 2003).
2218:
On a perspective of MHD technology in aerospace applications
2892:"The World's First Flying Saucer: Made Right Here on Earth" 1224:, a nearly undetectable "silent drive" intended to achieve 761:
which is due to the brutal recompression of air behind the
2252:. 28th Plasmadynamics and Lasers Conference. Atlanta, GA. 1890:
Lin, T. F.; Gilbert, J. B; Kossowsky, R. (February 1990).
1287:, relates electric and magnetic fields to propulsion force 1103:. Depending on the propellant used, it can be seeded with 340:
devices, an MHD accelerator is reversible: if the ambient
2722:. 38th Aerospace Sciences Meeting and Exhibit. Reno, NV. 1937:(Report). NASA. 19660007777. NASA-CR-70362. JPLAI/LS-541. 1809:"EMS-1 electromagnetic submarine on US television (1966)" 1611: 1609: 1201:
Clive Cussler writes the same drive into the powering of
2798:
Demonstration of a Wingless Electromagnetic Air Vehicle
1905:. US Navy/ONR Annual Report AD-A218 318. Archived from 53: 3096:
Demonstrate Magnetohydrodynamic Propulsion in a Minute
1236:
from which the film was adapted, the caterpillar that
3052:"Rocket motor with electric accelerationin tehthroat" 1642:. Springer Science+Business Media. pp. 295–312. 1640:
Magnetohydrodynamics: Historical Evolution and Trends
400: 2681:
Myrabo, L. N.; Kerl, J.M.; et al. (June 1999).
965:
Nonetheless, considering the current problem of the
785:. It is a field of magnetohydrodynamics also called 2141:Sheikin, Evgeniy G.; Kuranov, Alexander L. (2005). 1405:
Journal of the American Society for Naval Engineers
1033:literature from the mid 1970s mainly by physicists 2383:"Hypersonic Vehicle Electric Power System (HVEPS)" 1262:built to prove that exploration and mining of the 437: 2641:"MHD propulsion by absorption of laser radiation" 2533:"An AJAX technology advanced SSTO design concept" 2064:Is supersonic flight without shock wave possible? 2000: 1998: 1949:"Magnetohydrodynamic flow control during reentry" 1746:"Electromagnetic propulsion for cargo submarines" 732:First studies of the interaction of plasmas with 434: 2911:Zeitschrift für Angewandte Mathematik und Physik 2803:(Report). Defense Technical Information Center. 2542:. AIAA and SAE, 1998 World Aviation Conference. 2407:"Scramjet MHD System Generates Electrical Power" 1091:, the working fluid is most of the time ionized 332:is replaced by the fluid acting directly as the 328:) except that in an MHD drive, the solid moving 2493:"Annular MHD Physics for Turbojet Energy Bypas" 2357:"General Atomics Scores Power Production First" 2321:Sheikin, E. G.; Kuranov, A. L. (October 2003). 2007:"Prospects of MHD flow control for hypersonics" 1859:Bulletin of Marine Engineering Society of Japan 665:In 1991, the world's first full-size prototype 566:when the fluid is accelerated around the whole 117:is a method for propelling vehicles using only 105:, Japan. The first working full-scale MHD ship. 27:Vehicle propulsion using electromagnetic fields 1972:Froning, H. D.; Roach, R. L. (November 1999). 1258:the ship where some of the action took place, 659:, in accordance with theoretical predictions. 194:and the power available to feed them. In 2023 1332: 1330: 8: 2771:Myrabo, Leik N.; Lewis, John S. (May 2009). 1700:. Vol. 30, no. 2. pp. 58–65. 627:A view of the end of the thruster unit from 344:is moving relatively to the magnetic field, 2711:Myrabo, L. N.; et al. (January 2000). 2387:The University of Tennessee Space Institute 2273:"Use of MHD systems in hypersonic aircraft" 1739: 1737: 1124:to accelerate only positive ions using the 757:further ahead of the vehicle, lowering the 2879:(in French). No. 702. pp. 42–49. 603:, increasing the efficiency even further. 525:. No electrodes are required in this case. 2515: 2199: 1524: 1514: 1496: 908:are also considered, as well as subsonic 615:A view through a tube in the thruster of 433: 428: 420: 412: 401: 399: 320:This is the same working principle as an 80:Learn how and when to remove this message 2741:Myrabo, L. N.; et al. (July 2000). 2173:"MHD flow-control for hypersonic flight" 2035:Ullah, L.; Samad, A.; Nawaz, A. (2021). 886:Hypersonic Vehicle Electric Power System 521:by a rapidly varying magnetic field, as 219:have also been actively studied as such 2171:Petit, J.-P.; Geffray, J. (June 2009). 1297: 894:University of Tennessee Space Institute 857:try to extend the domain of hypersonic 649:University of California, Santa Barbara 360:with no moving parts, transforming the 2041:European Journal of Mechanics B/Fluids 1669: 1667: 1474: 1472: 1470: 159:Studies examining MHD in the field of 2246:Assessment of hypersonic MHD concepts 1675:"What is the Russian Ayaks aircraft?" 1548: 1546: 1544: 1348:. Bonnier Corporation. pp. 80–85 954:), which is ruled out in the case of 703:remotely operated underwater vehicles 7: 2324:Analysis of Scramjet with MHD bypass 2143:"Scramjet with MHD Controlled Inlet" 1692:Choueiri, Edgar Y. (February 2009). 1076:A number of experimental methods of 1047:Wingless Electromagnetic Air Vehicle 313:. The Lorentz force accelerates all 2982:Kerrebrock, Jack L. (August 1961). 2871:[A plasma engine for UFOs] 1930:Sterkin, Carol K. (December 1965). 1616:Pope, Gregory T. (September 1995). 631:at the Ship Science Museum in Tokyo 156:, the vehicle accelerates forward. 3121:Plasma technology and applications 2890:Greenemeier, Larry (7 July 2008). 2818:from the original on May 17, 2013. 1417:10.1111/j.1559-3584.1961.tb02428.x 25: 3059:Journal of Spacecraft and Rockets 3025:Journal of the Aerospace Sciences 2991:Journal of the Aerospace Sciences 2867:Petit, Jean-Pierre (March 1976). 2648:Journal of Spacecraft and Rockets 2107:Petit, J.-P.; Lebrun, B. (1989). 2081:Petit, J.-P.; Lebrun, B. (1989). 1785:"Run Silent, Run Electromagnetic" 1714:10.1038/scientificamerican0209-58 1398:"Electromagnetic ship propulsion" 1337:Normile, Dennis (November 1992). 839:… with or without seeding of low 709:(AUV), up to larger ones such as 152:is directed to the rear and as a 3050:Rosciszewski, Jan (March 1965). 2775:. Collector's Guide Publishing. 685:Ocean Policy Research Foundation 651:. Way, on leave from his job at 429: 421: 413: 402: 34: 2869:"Un moteur à plasma pour ovnis" 2570:Journal of Propulsion and Power 2411:Wright-Patterson Air Force Base 2116:European Journal of Mechanics B 2090:European Journal of Mechanics B 1339:"Superconductivity goes to sea" 915:Such studies covers a field of 215:using magnetohydrodynamics for 1396:Friauf, J.B. (February 1961). 707:autonomous underwater vehicles 1: 2381:Whorton, Mark (2 July 2017). 1694:"New dawn of electric rocket" 1152:magnetoplasmadynamic thruster 1068:Magnetoplasmadynamic thruster 904:engine, but easier to design 898:Air Force Research Laboratory 350:electric potential difference 251:Magnetohydrodynamic converter 2811:. AFRL-OSR-VA-TR-2012-0922. 2614:Petit, J.-P. (August 1974). 1793:. 1966-09-23. Archived from 1516:10.1371/journal.pone.0178599 804:) using various techniques: 480:(current per unit area) and 356:: the device then acts as a 3126:Magnetic propulsion devices 2201:10.12693/aphyspola.115.1149 1169:) to feed the power-greedy 681:Ship & Ocean Foundation 364:of the incoming fluid into 352:that can be harnessed with 60:the claims made and adding 3142: 1865:(1): 46–55. Archived from 1592:Wang, Brian (2023-05-25). 1190:series of books by author 1065: 1059: 932:electrothermal instability 795:magnetoplasma aerodynamics 720: 548:of tubular or ring-shaped 464:(charge per unit volume), 248: 242: 221:electromagnetic propulsion 163:began in the late 1950s. 3016:Oates, Gordon C. (1962). 2954:TN-58-1058, ASTIA 207 228 1648:10.1007/978-1-4020-4833-3 1305:Dane, Abe (August 1990). 1156:pulsed inductive thruster 1089:electromagnetic thrusters 1072:Pulsed inductive thruster 861:to higher Mach regimes: 738:thermal protection system 657:Santa Barbara, California 456:(force per unit volume), 213:Plasma propulsion engines 111:magnetohydrodynamic drive 1438:Journal of Ship Research 1217:The Hunt for Red October 1062:Plasma propulsion engine 1019:airbreathing jet engines 921:magnetic Reynolds number 750:thermal ablative shields 677:research and development 591:move water around them). 2180:Acta Physica Polonica A 1753:Journal of Hydronautics 1214:The film adaptation of 950:) nor in space (due to 853:MHD studies applied to 639:with a directly driven 168:electrical conductivity 131:electrically conductive 2491:Schneider, Stephen J. 1165:(such as hypothetical 896:, sponsored by the US 809:electric arc discharge 691:Harbour in June 1992. 632: 620: 439: 387:, but on a continuous 380: 260: 106: 2956:. Cornell University. 2849:US patent 8960595 2830:US patent 8382029 2596:US patent 2108652 1953:European Space Agency 1378:US patent 2997013 1082:magnetoplasmadynamics 1078:spacecraft propulsion 1056:Spacecraft propulsion 967:electric power source 653:Westinghouse Electric 626: 614: 440: 378: 286:, resulting from the 258: 95: 1797:on January 14, 2009. 1280:Electrohydrodynamics 1240:used was actually a 880:The Russian project 841:ionization potential 728:Passive flow control 723:Flow control (fluid) 683:(later known as the 515:alternating currents 398: 302:applied between two 146:magnetohydrodynamics 3071:1965JSpRo...2..278R 2923:1958ZaMP....9..509R 2896:Scientific American 2758:10.2514/6.2000-3486 2698:10.2514/6.1999-2842 2660:1976JSpRo..13..466M 2548:10.2514/6.1998-5527 2508:10.2514/6.2011-2230 2478:10.2514/6.2003-6922 2448:10.2514/6.2003-4289 2292:1998JTePh..43.1309F 2258:10.2514/6.1997-2393 2230:10.2514/6.1996-2355 2192:2009AcPPA.115.1149P 2158:10.2514/6.2005-3223 2128:1989EJMF....8..307L 2022:10.2514/6.2000-3057 1706:2009SciAm.300b..58C 1698:Scientific American 1679:North Atlantic Blog 1618:"Fly by microwaves" 1571:2017PhTea..55..460O 1559:The Physics Teacher 1507:2017PLoSO..1278599C 1307:"100 mph Jet Ships" 872:Inlet flow control. 791:magnetoaerodynamics 773:Active flow control 717:Aircraft propulsion 389:charge distribution 186:in the vicinity of 2931:10.1007/BF02424770 2728:10.2514/6.2000-446 2061:(September 1983). 1989:10.2514/6.1999-487 1143:than conventional 981:body (shaped as a 837:radioactive source 819:) electromagnetic 787:magnetogasdynamics 744:during high-speed 633: 621: 501:Conduction devices 435: 381: 298:accelerated by an 261: 129:, accelerating an 107: 45:possibly contains 3111:Marine propulsion 2877:Science & Vie 2623:Science & Vie 2300:10.1134/1.1259189 2286:(11): 1309–1313. 2280:Technical Physics 1657:978-1-4020-4832-6 1627:. pp. 44–45. 1625:Popular Mechanics 1579:10.1119/1.5008337 1314:Popular Mechanics 1230:submarine warfare 946:in water (due to 850:) into the flow. 846:substances (like 783:hypersonic flight 679:(R&D) by the 675:after 6 years of 671:was completed in 607:Marine propulsion 511:Induction devices 346:charge separation 315:charged particles 217:space exploration 161:marine propulsion 90: 89: 82: 47:original research 18:Caterpillar drive 16:(Redirected from 3133: 3083: 3082: 3056: 3047: 3041: 3040: 3022: 3013: 3007: 3006: 2988: 2979: 2973: 2972: 2964: 2958: 2957: 2949: 2943: 2942: 2917:(5–6): 509–518. 2906: 2900: 2899: 2887: 2881: 2880: 2874: 2864: 2858: 2857: 2856: 2852: 2845: 2839: 2838: 2837: 2833: 2826: 2820: 2819: 2817: 2802: 2793: 2787: 2786: 2768: 2762: 2761: 2747: 2738: 2732: 2731: 2717: 2708: 2702: 2701: 2687: 2678: 2672: 2671: 2645: 2633: 2627: 2626: 2620: 2611: 2605: 2604: 2603: 2599: 2592: 2586: 2585: 2567: 2558: 2552: 2551: 2537: 2528: 2522: 2521: 2519: 2517:2060/20110016528 2497: 2488: 2482: 2481: 2467: 2458: 2452: 2451: 2437: 2428: 2422: 2421: 2419: 2418: 2403: 2397: 2396: 2394: 2393: 2378: 2372: 2371: 2369: 2368: 2353: 2347: 2346: 2344: 2338:. Archived from 2329: 2318: 2312: 2311: 2277: 2268: 2262: 2261: 2251: 2240: 2234: 2233: 2223: 2212: 2206: 2205: 2203: 2186:(6): 1149–1513. 2177: 2168: 2162: 2161: 2147: 2138: 2132: 2131: 2113: 2104: 2098: 2097: 2087: 2078: 2072: 2071: 2069: 2055: 2049: 2048: 2032: 2026: 2025: 2011: 2002: 1993: 1992: 1978: 1969: 1963: 1962: 1960: 1959: 1945: 1939: 1938: 1936: 1927: 1921: 1920: 1918: 1917: 1911: 1896: 1887: 1881: 1880: 1878: 1877: 1871: 1856: 1847: 1841: 1837: 1831: 1830: 1822: 1816: 1810: 1805: 1799: 1798: 1781: 1775: 1774: 1772: 1771: 1750: 1744:Way, S. (1968). 1741: 1732: 1731: 1729: 1728: 1722: 1716:. Archived from 1689: 1683: 1682: 1681:. 30 March 2015. 1671: 1662: 1661: 1635: 1629: 1628: 1622: 1613: 1604: 1603: 1601: 1600: 1589: 1583: 1582: 1550: 1539: 1538: 1528: 1518: 1500: 1476: 1465: 1464: 1452: 1446: 1445: 1433: 1427: 1426: 1424: 1423: 1402: 1393: 1387: 1386: 1385: 1381: 1374: 1368: 1367: 1363: 1357: 1356: 1354: 1353: 1343: 1334: 1325: 1324: 1322: 1321: 1316:. pp. 60–62 1311: 1302: 1145:chemical rockets 1141:specific impulse 1132:electric field. 944:gravity of Earth 763:stagnation point 734:hypersonic flows 444: 442: 441: 436: 432: 424: 416: 405: 324:(more exactly a 292:electric current 267:(which can be a 233:chemical rockets 229:specific impulse 85: 78: 74: 71: 65: 62:inline citations 38: 37: 30: 21: 3141: 3140: 3136: 3135: 3134: 3132: 3131: 3130: 3101: 3100: 3092: 3087: 3086: 3079:10.2514/3.28172 3054: 3049: 3048: 3044: 3020: 3015: 3014: 3010: 2986: 2981: 2980: 2976: 2966: 2965: 2961: 2951: 2950: 2946: 2908: 2907: 2903: 2889: 2888: 2884: 2872: 2866: 2865: 2861: 2854: 2847: 2846: 2842: 2835: 2828: 2827: 2823: 2815: 2800: 2795: 2794: 2790: 2783: 2770: 2769: 2765: 2745: 2740: 2739: 2735: 2715: 2710: 2709: 2705: 2685: 2680: 2679: 2675: 2668:10.2514/3.27919 2643: 2635: 2634: 2630: 2618: 2613: 2612: 2608: 2601: 2594: 2593: 2589: 2565: 2560: 2559: 2555: 2535: 2530: 2529: 2525: 2495: 2490: 2489: 2485: 2465: 2460: 2459: 2455: 2435: 2430: 2429: 2425: 2416: 2414: 2405: 2404: 2400: 2391: 2389: 2380: 2379: 2375: 2366: 2364: 2363:. 21 March 2017 2361:General Atomics 2355: 2354: 2350: 2342: 2327: 2320: 2319: 2315: 2275: 2270: 2269: 2265: 2249: 2242: 2241: 2237: 2221: 2214: 2213: 2209: 2175: 2170: 2169: 2165: 2145: 2140: 2139: 2135: 2111: 2106: 2105: 2101: 2085: 2080: 2079: 2075: 2067: 2057: 2056: 2052: 2034: 2033: 2029: 2009: 2004: 2003: 1996: 1976: 1971: 1970: 1966: 1957: 1955: 1947: 1946: 1942: 1934: 1929: 1928: 1924: 1915: 1913: 1909: 1894: 1889: 1888: 1884: 1875: 1873: 1869: 1854: 1849: 1848: 1844: 1838: 1834: 1824: 1823: 1819: 1808: 1806: 1802: 1783: 1782: 1778: 1769: 1767: 1765:10.2514/3.62773 1748: 1743: 1742: 1735: 1726: 1724: 1720: 1691: 1690: 1686: 1673: 1672: 1665: 1658: 1637: 1636: 1632: 1620: 1615: 1614: 1607: 1598: 1596: 1591: 1590: 1586: 1552: 1551: 1542: 1491:(6): e0178599. 1478: 1477: 1468: 1454: 1453: 1449: 1435: 1434: 1430: 1421: 1419: 1400: 1395: 1394: 1390: 1383: 1376: 1375: 1371: 1365: 1364: 1360: 1351: 1349: 1346:Popular Science 1341: 1336: 1335: 1328: 1319: 1317: 1309: 1304: 1303: 1299: 1294: 1276: 1197:Valhalla Rising 1179: 1167:fusion reactors 1074: 1064: 1058: 993:…), the entire 940: 890:General Atomics 775: 765:. Such passive 730: 725: 719: 609: 494: 478:current density 396: 395: 385:electrical wire 338:electromagnetic 296:charge carriers 253: 247: 241: 176:current density 123:magnetic fields 115:MHD accelerator 86: 75: 69: 66: 51: 39: 35: 28: 23: 22: 15: 12: 11: 5: 3139: 3137: 3129: 3128: 3123: 3118: 3116:Fluid dynamics 3113: 3103: 3102: 3099: 3098: 3091: 3090:External links 3088: 3085: 3084: 3065:(2): 278–280. 3042: 3037:10.2514/8.9372 3031:(2): 231–232. 3008: 3003:10.2514/8.9117 2997:(8): 631–644. 2974: 2959: 2944: 2901: 2882: 2859: 2840: 2821: 2788: 2782:978-1926592039 2781: 2763: 2733: 2703: 2690:AIAA-1999-2842 2673: 2654:(8): 466–472. 2628: 2606: 2587: 2582:10.2514/2.6156 2576:(4): 529–537. 2553: 2523: 2500:AIAA–2011–2230 2483: 2470:AIAA 2003-6922 2453: 2440:AIAA 2003-4289 2423: 2398: 2373: 2348: 2345:on 2018-04-12. 2313: 2263: 2235: 2207: 2163: 2150:AIAA 2005-3223 2133: 2122:(4): 307–326. 2099: 2073: 2050: 2027: 2014:AIAA 2000-3057 1994: 1964: 1940: 1922: 1882: 1842: 1832: 1817: 1800: 1776: 1733: 1684: 1663: 1656: 1630: 1605: 1584: 1565:(8): 460–466. 1540: 1466: 1447: 1428: 1411:(1): 139–142. 1388: 1369: 1358: 1326: 1296: 1295: 1293: 1290: 1289: 1288: 1282: 1275: 1272: 1184:a ship in the 1178: 1175: 1171:electromagnets 1163:energy density 1122:electrostatics 1120:which rely on 1060:Main article: 1057: 1054: 971:fusion reactor 952:weightlessness 939: 936: 928:weakly ionized 878: 877: 873: 870: 866: 821:glow discharge 774: 771: 755:bow shock wave 742:space capsules 729: 726: 718: 715: 608: 605: 593: 592: 583:microorganisms 561: 527: 526: 508: 505:direct current 493: 490: 486:magnetic field 470:electric field 462:charge density 446: 445: 431: 427: 423: 419: 415: 411: 408: 404: 362:kinetic energy 336:. As with all 322:electric motor 311:magnetic field 300:electric field 243:Main article: 240: 237: 192:electromagnets 178:is limited by 101:on display in 88: 87: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3138: 3127: 3124: 3122: 3119: 3117: 3114: 3112: 3109: 3108: 3106: 3097: 3094: 3093: 3089: 3080: 3076: 3072: 3068: 3064: 3060: 3053: 3046: 3043: 3038: 3034: 3030: 3026: 3019: 3012: 3009: 3004: 3000: 2996: 2992: 2985: 2978: 2975: 2970: 2963: 2960: 2955: 2948: 2945: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2912: 2905: 2902: 2897: 2893: 2886: 2883: 2878: 2870: 2863: 2860: 2850: 2844: 2841: 2831: 2825: 2822: 2814: 2810: 2806: 2799: 2792: 2789: 2784: 2778: 2774: 2767: 2764: 2759: 2755: 2751: 2744: 2737: 2734: 2729: 2725: 2721: 2714: 2707: 2704: 2699: 2695: 2691: 2684: 2677: 2674: 2669: 2665: 2661: 2657: 2653: 2649: 2642: 2638: 2632: 2629: 2625:(683): 68–73. 2624: 2617: 2610: 2607: 2597: 2591: 2588: 2583: 2579: 2575: 2571: 2564: 2557: 2554: 2549: 2545: 2541: 2534: 2527: 2524: 2518: 2513: 2509: 2505: 2501: 2494: 2487: 2484: 2479: 2475: 2471: 2464: 2457: 2454: 2449: 2445: 2441: 2434: 2427: 2424: 2413:. 7 June 2017 2412: 2408: 2402: 2399: 2388: 2384: 2377: 2374: 2362: 2358: 2352: 2349: 2341: 2337: 2333: 2326: 2325: 2317: 2314: 2309: 2305: 2301: 2297: 2293: 2289: 2285: 2281: 2274: 2267: 2264: 2259: 2255: 2248: 2247: 2239: 2236: 2231: 2227: 2220: 2219: 2211: 2208: 2202: 2197: 2193: 2189: 2185: 2181: 2174: 2167: 2164: 2159: 2155: 2151: 2144: 2137: 2134: 2129: 2125: 2121: 2117: 2110: 2103: 2100: 2096:(2): 163–178. 2095: 2091: 2084: 2077: 2074: 2066: 2065: 2060: 2054: 2051: 2046: 2042: 2038: 2031: 2028: 2023: 2019: 2015: 2008: 2001: 1999: 1995: 1990: 1986: 1982: 1975: 1968: 1965: 1954: 1950: 1944: 1941: 1933: 1926: 1923: 1912:on 2018-04-05 1908: 1904: 1900: 1893: 1886: 1883: 1872:on 2017-12-15 1868: 1864: 1860: 1853: 1846: 1843: 1836: 1833: 1828: 1821: 1818: 1815: 1811: 1804: 1801: 1796: 1792: 1791: 1786: 1780: 1777: 1766: 1762: 1758: 1754: 1747: 1740: 1738: 1734: 1723:on 2016-10-18 1719: 1715: 1711: 1707: 1703: 1699: 1695: 1688: 1685: 1680: 1676: 1670: 1668: 1664: 1659: 1653: 1649: 1645: 1641: 1634: 1631: 1626: 1619: 1612: 1610: 1606: 1595: 1588: 1585: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1549: 1547: 1545: 1541: 1536: 1532: 1527: 1522: 1517: 1512: 1508: 1504: 1499: 1494: 1490: 1486: 1482: 1475: 1473: 1471: 1467: 1462: 1458: 1451: 1448: 1443: 1439: 1432: 1429: 1418: 1414: 1410: 1406: 1399: 1392: 1389: 1379: 1373: 1370: 1362: 1359: 1347: 1340: 1333: 1331: 1327: 1315: 1308: 1301: 1298: 1291: 1286: 1285:Lorentz force 1283: 1281: 1278: 1277: 1273: 1271: 1269: 1265: 1264:Asteroid Belt 1261: 1257: 1255: 1254:The Precipice 1250: 1245: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1218: 1212: 1211: 1209: 1204: 1200: 1198: 1193: 1192:Clive Cussler 1189: 1188: 1183: 1176: 1174: 1172: 1168: 1164: 1159: 1157: 1153: 1148: 1146: 1142: 1138: 1133: 1131: 1127: 1126:Coulomb force 1123: 1119: 1118:ion thrusters 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1085: 1083: 1079: 1073: 1069: 1063: 1055: 1053: 1050: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1011:biconvex lens 1008: 1004: 1003:Coandă effect 1000: 996: 992: 988: 984: 980: 976: 972: 968: 963: 961: 957: 953: 949: 945: 937: 935: 933: 929: 926: 922: 918: 917:resistive MHD 913: 911: 907: 903: 899: 895: 891: 887: 883: 874: 871: 867: 864: 863: 862: 860: 856: 851: 849: 845: 842: 838: 834: 830: 826: 822: 818: 814: 810: 807: 803: 802:Paschen's law 798: 796: 792: 788: 784: 780: 772: 770: 768: 764: 760: 756: 751: 747: 743: 739: 735: 727: 724: 716: 714: 712: 708: 704: 700: 695: 692: 690: 686: 682: 678: 674: 670: 669: 663: 660: 658: 654: 650: 645: 642: 638: 630: 625: 618: 613: 606: 604: 602: 598: 590: 589: 584: 581: 577: 573: 569: 565: 564:External flow 562: 559: 555: 551: 550:cross-section 547: 543: 542:Internal flow 540: 539: 538: 535: 532: 524: 523:eddy currents 520: 516: 512: 509: 506: 502: 499: 498: 497: 491: 489: 487: 483: 479: 475: 471: 467: 463: 459: 455: 454:force density 451: 425: 417: 409: 406: 394: 393: 392: 390: 386: 377: 373: 371: 370:MHD generator 367: 363: 359: 355: 351: 347: 343: 342:working fluid 339: 335: 331: 327: 323: 318: 316: 312: 309: 308:perpendicular 305: 301: 297: 293: 289: 288:cross product 285: 284:Lorentz force 281: 277: 274: 270: 266: 257: 252: 246: 245:Lorentz force 238: 236: 234: 230: 226: 222: 218: 214: 210: 208: 203: 201: 197: 193: 189: 185: 181: 180:Joule heating 177: 174:. Increasing 173: 169: 164: 162: 157: 155: 151: 147: 143: 139: 135: 132: 128: 124: 120: 116: 112: 104: 100: 99: 94: 84: 81: 73: 63: 59: 55: 49: 48: 43:This article 41: 32: 31: 19: 3062: 3058: 3045: 3028: 3024: 3011: 2994: 2990: 2977: 2968: 2962: 2953: 2947: 2914: 2910: 2904: 2895: 2885: 2876: 2862: 2843: 2824: 2791: 2772: 2766: 2750:AIAA-00-3486 2749: 2736: 2720:AIAA-00-0446 2719: 2706: 2689: 2676: 2651: 2647: 2637:Myrabo, L.N. 2631: 2622: 2609: 2590: 2573: 2569: 2556: 2539: 2526: 2499: 2486: 2469: 2456: 2439: 2426: 2415:. Retrieved 2410: 2401: 2390:. Retrieved 2386: 2376: 2365:. Retrieved 2360: 2351: 2340:the original 2323: 2316: 2283: 2279: 2266: 2245: 2238: 2217: 2210: 2183: 2179: 2166: 2149: 2136: 2119: 2118:. B/Fluids. 2115: 2102: 2093: 2092:. B/Fluids. 2089: 2076: 2063: 2059:Petit, J.-P. 2053: 2044: 2040: 2030: 2013: 1981:AIAA-99-4878 1980: 1967: 1956:. Retrieved 1952: 1943: 1925: 1914:. Retrieved 1907:the original 1885: 1874:. Retrieved 1867:the original 1862: 1858: 1845: 1835: 1827:Paper 67-432 1826: 1820: 1803: 1795:the original 1788: 1779: 1768:. Retrieved 1759:(2): 49–57. 1756: 1752: 1725:. Retrieved 1718:the original 1697: 1687: 1678: 1639: 1633: 1624: 1597:. Retrieved 1587: 1562: 1558: 1488: 1484: 1460: 1456: 1450: 1441: 1437: 1431: 1420:. Retrieved 1408: 1404: 1391: 1372: 1361: 1350:. Retrieved 1345: 1318:. Retrieved 1313: 1300: 1268:fusion power 1260:Starpower 1, 1259: 1252: 1246: 1237: 1215: 1213: 1206: 1203:Captain Nemo 1195: 1187:Oregon Files 1185: 1181: 1180: 1160: 1149: 1134: 1130:high voltage 1086: 1081: 1075: 1051: 1027:rotor blades 1013:. Having no 979:axisymmetric 964: 941: 914: 879: 852: 806:high voltage 799: 794: 790: 786: 776: 767:flow control 731: 696: 693: 666: 664: 661: 646: 634: 628: 616: 594: 586: 563: 541: 536: 528: 510: 500: 495: 481: 473: 465: 457: 453: 449: 447: 382: 368:, called an 358:power source 326:linear motor 319: 262: 223:offers high 211: 204: 184:electrolysis 165: 158: 127:moving parts 114: 110: 108: 96: 76: 67: 44: 2540:Anaheim, CA 1238:Red October 1139:and higher 1043:Subrata Roy 1035:Leik Myrabo 1031:peer review 1007:Hall effect 855:aeronautics 568:wetted area 558:jet engines 366:electricity 348:induces an 294:(motion of 3105:Categories 2809:B01IKW9SES 2417:2018-04-13 2392:2018-04-13 2367:2018-04-13 1958:2018-04-13 1916:2018-04-04 1876:2018-04-04 1770:2018-04-04 1727:2018-04-04 1599:2023-05-25 1498:1707.02743 1463:: 370–386. 1422:2018-04-04 1352:2018-04-04 1320:2018-04-04 1292:References 1222:submarines 1066:See also: 1039:Lightcraft 1023:helicopter 960:atmosphere 925:nonthermal 923:≪ 1 using 817:microwaves 721:See also: 711:submarines 637:drivetrain 588:Paramecium 354:electrodes 334:propellant 304:electrodes 249:See also: 188:electrodes 182:and water 134:propellant 70:April 2020 54:improve it 2308:122017083 1234:the novel 1109:potassium 1093:hydrazine 1049:(WEAV). 1045:with the 1037:with the 938:Prospects 906:turbojets 759:heat flux 699:torpedoes 641:propeller 629:Yamato I, 617:Yamato I, 578:, or how 426:× 410:ρ 306:) with a 282:) by the 278:called a 239:Principle 227:and high 58:verifying 2939:97266881 2813:Archived 2639:(1976). 2336:10143742 2047:: 12–23. 1903:35847351 1840:775–784. 1535:28665941 1485:PLOS ONE 1444:: 43–51. 1274:See also 1249:Ben Bova 1242:pump-jet 1208:Nautilus 1128:along a 1107:such as 1087:In such 999:pressure 995:airframe 983:cylinder 948:buoyancy 902:scramjet 892:and the 833:betatron 668:Yamato 1 585:such as 492:Typology 172:seawater 154:reaction 125:with no 119:electric 98:Yamato 1 3067:Bibcode 2919:Bibcode 2656:Bibcode 2288:Bibcode 2188:Bibcode 2124:Bibcode 1814:YouTube 1702:Bibcode 1567:Bibcode 1526:5493298 1503:Bibcode 1270:plant. 1247:In the 1226:stealth 1182:Oregon, 1177:Fiction 1158:(PIT). 1113:caesium 1101:lithium 958:in the 910:ramjets 876:system. 848:caesium 779:airflow 746:reentry 705:(ROV), 597:stealth 580:ciliate 519:induced 503:when a 452:is the 273:ionized 144:) with 52:Please 2937:  2855:  2836:  2807:  2779:  2602:  2334:  2306:  1901:  1654:  1533:  1523:  1384:  1251:novel 1137:thrust 1105:alkali 1041:, and 1025:whose 991:sphere 975:tonnes 956:flight 869:power. 859:planes 844:alkali 829:e-beam 554:rocket 546:nozzle 448:where 290:of an 280:plasma 271:or an 269:liquid 225:thrust 148:. The 138:liquid 3055:(PDF) 3021:(PDF) 2987:(PDF) 2935:S2CID 2873:(PDF) 2816:(PDF) 2801:(PDF) 2746:(PDF) 2716:(PDF) 2686:(PDF) 2644:(PDF) 2619:(PDF) 2566:(PDF) 2536:(PDF) 2496:(PDF) 2466:(PDF) 2436:(PDF) 2343:(PDF) 2332:S2CID 2328:(PDF) 2304:S2CID 2276:(PDF) 2250:(PDF) 2222:(PDF) 2176:(PDF) 2146:(PDF) 2112:(PDF) 2086:(PDF) 2068:(PDF) 2010:(PDF) 1977:(PDF) 1935:(PDF) 1910:(PDF) 1899:S2CID 1895:(PDF) 1870:(PDF) 1855:(PDF) 1749:(PDF) 1721:(PDF) 1621:(PDF) 1493:arXiv 1401:(PDF) 1342:(PDF) 1310:(PDF) 1097:xenon 1015:wings 919:with 882:Ayaks 825:laser 673:Japan 574:on a 531:redox 513:when 330:rotor 265:fluid 200:Tesla 196:DARPA 150:fluid 2805:ASIN 2777:ISBN 1790:Time 1652:ISBN 1531:PMID 1070:and 1017:nor 989:, a 987:cone 985:, a 740:for 689:Kobe 601:drag 576:wing 572:lift 517:are 484:the 476:the 468:the 460:the 121:and 103:Kobe 3075:doi 3033:doi 2999:doi 2927:doi 2754:doi 2724:doi 2694:doi 2664:doi 2578:doi 2544:doi 2512:hdl 2504:doi 2474:doi 2444:doi 2296:doi 2254:doi 2226:doi 2196:doi 2184:115 2154:doi 2018:doi 1985:doi 1812:on 1761:doi 1710:doi 1644:doi 1575:doi 1521:PMC 1511:doi 1413:doi 1228:in 1205:'s 1111:or 1099:or 831:or 793:or 556:or 276:gas 207:air 170:of 142:gas 140:or 113:or 56:by 3107:: 3073:. 3061:. 3057:. 3029:29 3027:. 3023:. 2995:28 2993:. 2989:. 2933:. 2925:. 2915:9b 2913:. 2894:. 2875:. 2748:. 2718:. 2688:. 2662:. 2652:13 2650:. 2646:. 2621:. 2574:19 2572:. 2568:. 2538:. 2510:. 2498:. 2468:. 2438:. 2409:. 2385:. 2359:. 2302:. 2294:. 2284:43 2282:. 2278:. 2194:. 2182:. 2178:. 2148:. 2114:. 2088:. 2045:87 2043:. 2039:. 2012:. 1997:^ 1979:. 1951:. 1863:23 1861:. 1857:. 1787:. 1755:. 1751:. 1736:^ 1708:. 1696:. 1677:. 1666:^ 1650:. 1623:. 1608:^ 1573:. 1563:55 1561:. 1557:. 1543:^ 1529:. 1519:. 1509:. 1501:. 1489:12 1487:. 1483:. 1469:^ 1461:71 1459:. 1442:43 1440:. 1409:73 1407:. 1403:. 1344:. 1329:^ 1312:. 1095:, 1084:. 962:. 912:. 835:, 827:, 823:, 813:RF 811:, 789:, 713:. 701:, 560:). 488:. 472:, 372:. 235:. 202:. 109:A 3081:. 3077:: 3069:: 3063:2 3039:. 3035:: 3005:. 3001:: 2971:. 2941:. 2929:: 2921:: 2898:. 2785:. 2760:. 2756:: 2730:. 2726:: 2700:. 2696:: 2670:. 2666:: 2658:: 2584:. 2580:: 2550:. 2546:: 2520:. 2514:: 2506:: 2480:. 2476:: 2450:. 2446:: 2420:. 2395:. 2370:. 2310:. 2298:: 2290:: 2260:. 2256:: 2232:. 2228:: 2204:. 2198:: 2190:: 2160:. 2156:: 2130:. 2126:: 2120:8 2094:8 2024:. 2020:: 1991:. 1987:: 1961:. 1919:. 1879:. 1773:. 1763:: 1757:2 1730:. 1712:: 1704:: 1660:. 1646:: 1602:. 1581:. 1577:: 1569:: 1537:. 1513:: 1505:: 1495:: 1425:. 1415:: 1355:. 1323:. 1256:, 1210:. 1199:, 815:( 482:B 474:J 466:E 458:ρ 450:f 430:B 422:J 418:+ 414:E 407:= 403:f 136:( 83:) 77:( 72:) 68:( 50:. 20:)

Index

Caterpillar drive
original research
improve it
verifying
inline citations
Learn how and when to remove this message

Yamato 1
Kobe
electric
magnetic fields
moving parts
electrically conductive
propellant
liquid
gas
magnetohydrodynamics
fluid
reaction
marine propulsion
electrical conductivity
seawater
current density
Joule heating
electrolysis
electrodes
electromagnets
DARPA
Tesla
air

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.