Knowledge

Cellular approximation theorem

Source 📝

2426: 2233: 1769: 2151: 2509: 1990: 1224: 145: 961: 788: 1525: 1417: 554: 468: 348: 2302: 1287: 2342: 1925: 1613: 1058: 2043: 1562: 1454: 1373: 1329: 1174: 1481: 626: 1854: 739: 382: 2259: 1795: 995: 911: 1881: 1658: 877: 842: 815: 1821: 1143: 1678: 2554: 2536: 2347: 2160: 1683: 1581: 2048: 1627:. Thus one often can use CW approximation to reduce a general statement to a simpler version that only concerns CW complexes. 2431: 688: 1930: 2528: 1623:. CW approximation, being a weak homotopy equivalence, induces isomorphisms on homology and cohomology groups of 299: 1179: 101: 920: 495: 417: 200: 191:. From an algebraic topological viewpoint, any map between CW-complexes can thus be taken to be cellular. 744: 298:. Then it is a general result of CW-complexes that any compact subspace of a CW-complex meets (that is, 1486: 1378: 513: 427: 320: 2264: 1249: 2307: 1890: 1586: 1036: 2006: 1530: 1422: 224: 1338: 1294: 271: 28: 1152: 695:, and patching these homotopies together, will finish the proof. For details, consult Hatcher. 286:, being the image of the characteristic map of the cell, and hence the image of the closure of 2532: 1459: 595: 36: 1826: 715: 361: 2238: 1774: 970: 886: 1859: 1636: 855: 820: 793: 1800: 1122: 1663: 1335:-connected, so it follows from the long exact sequence of homotopy groups for the pair 845: 709: 216: 17: 2548: 2522: 151:. The content of the cellular approximation theorem is then that any continuous map 1116: 997:
which consists of the base point only. That is, any such map is nullhomotopic.
302: 279: 2157:
The cellular approximation ensures then that adding (i+1)-cells doesn't affect
1631: 914: 76: 40: 708:
The cellular approximation theorem can be used to immediately calculate some
471: 172: 1096:. Use the homotopy extension property to extend this homotopy to all of 1018: 2421:{\displaystyle \pi _{i}(Z_{i+1}){\stackrel {\cong }{\to }}\pi _{i}(X)} 592:
to begin with, we can repeat this process finitely many times to make
1100:, and apply cellular approximation again to obtain a map cellular on 655:
is already cellular, and we thus obtain a homotopy (relative to the (
2228:{\displaystyle \pi _{k}(Z_{i}){\stackrel {\cong }{\to }}\pi _{k}(X)} 416:. It is then a technical, non-trivial result (see Hatcher) that the 187:, then we can furthermore choose the homotopy to be stationary on 1764:{\displaystyle (f_{i})_{*}\colon \pi _{k}(Z_{i})\to \pi _{k}(X)} 43:
can always be taken to be of a specific type. Concretely, if
2146:{\displaystyle \pi _{i+1}(X)/(f_{i})_{*}(\pi _{i+1}(Z_{i}))} 2304:
gets factored by the classes of the attachment mappings
1242:, any such map is homotopic to a map whose image is in 1230:
is homotopic to a cellular map of pairs, and since the
1088:
and use cellular approximation to obtain a homotopy of
2511:
is evident from the second step of the construction.
2434: 2350: 2310: 2267: 2241: 2163: 2051: 2009: 1933: 1893: 1862: 1829: 1803: 1777: 1686: 1666: 1639: 1589: 1533: 1489: 1462: 1425: 1381: 1341: 1297: 1252: 1182: 1155: 1125: 1039: 973: 923: 889: 858: 823: 796: 747: 718: 598: 516: 430: 364: 323: 104: 2504:{\displaystyle \pi _{i+1}(Z_{i+1})\to \pi _{i+1}(X)} 1999:
are attached by constant mappings and are mapped to
1883:by attaching (i+1)-cells that (for all basepoints) 1246:, and hence it is 0 in the relative homotopy group 963:is then homotopic to a map whose image lies in the 243:to a map which is cellular on the 0-skeleton of X. 2503: 2420: 2336: 2296: 2253: 2227: 2145: 2037: 1996:by the contraction of the corresponding spheroids) 1984: 1919: 1875: 1848: 1815: 1789: 1763: 1672: 1652: 1607: 1556: 1519: 1475: 1448: 1411: 1367: 1323: 1281: 1218: 1168: 1137: 1052: 989: 955: 905: 871: 836: 809: 782: 733: 620: 548: 462: 376: 342: 139: 1104:, but without violating the cellular property on 848:CW-structure, with one 0-cell each, and with one 305:) only finitely many cells of the complex. Thus 1985:{\displaystyle \pi _{i}(Z_{i})\to \pi _{i}(X)} 1630:CW approximation is constructed inducting on 506:, we can further homotope the restriction of 8: 215:. For the base case n=0, notice that every 350:to be a cell of highest dimension meeting 239:by a path, but this gives a homotopy from 2480: 2458: 2439: 2433: 2403: 2391: 2386: 2384: 2383: 2368: 2355: 2349: 2328: 2315: 2309: 2285: 2272: 2266: 2240: 2210: 2198: 2193: 2191: 2190: 2181: 2168: 2162: 2131: 2112: 2099: 2089: 2077: 2056: 2050: 2014: 2008: 1967: 1951: 1938: 1932: 1911: 1898: 1892: 1867: 1861: 1834: 1828: 1802: 1776: 1746: 1730: 1717: 1704: 1694: 1685: 1665: 1644: 1638: 1588: 1553: 1538: 1532: 1516: 1507: 1494: 1488: 1472: 1461: 1445: 1430: 1424: 1408: 1399: 1386: 1380: 1364: 1355: 1340: 1320: 1311: 1296: 1278: 1257: 1251: 1215: 1206: 1190: 1181: 1165: 1154: 1124: 1111:As a consequence, we have that a CW-pair 1049: 1038: 978: 972: 947: 934: 922: 894: 888: 863: 857: 828: 822: 801: 795: 765: 752: 746: 717: 609: 597: 540: 521: 515: 454: 435: 429: 363: 328: 322: 131: 115: 103: 1219:{\displaystyle (D^{i},\partial D^{i})\,} 691:to extend this to a homotopy on all of 392:, since in this case only cells of the 313:) meets at most finitely many cells of 140:{\displaystyle f(X^{n})\subseteq Y^{n}} 956:{\displaystyle f\colon S^{n}\to S^{k}} 1145:have dimension strictly greater than 235:can thus be connected to a 0-cell of 7: 179:is already cellular on a subcomplex 1199: 783:{\displaystyle \pi _{n}(S^{k})=0.} 679:to a map cellular on all cells of 659: − 1)-skeleton of 588:) met only finitely many cells of 254: − 1)-skeleton of 25: 1520:{\displaystyle \pi _{n}(X^{n})\,} 1412:{\displaystyle \pi _{i}(X^{n})\,} 647:, fixing cells of the subcomplex 639:We repeat this process for every 549:{\displaystyle X^{n-1}\cup e^{n}} 463:{\displaystyle X^{n-1}\cup e^{n}} 1001:Cellular approximation for pairs 343:{\displaystyle e^{k}\subseteq Y} 2297:{\displaystyle \pi _{i}(Z_{i})} 1576:one can construct a CW complex 1282:{\displaystyle \pi _{i}(X,A)\,} 1072:is homotopic to a cellular map 2555:Theorems in algebraic topology 2498: 2492: 2473: 2470: 2451: 2415: 2409: 2387: 2380: 2361: 2337:{\displaystyle S^{i}\to Z_{i}} 2321: 2291: 2278: 2222: 2216: 2194: 2187: 2174: 2140: 2137: 2124: 2105: 2096: 2082: 2074: 2068: 2032: 2026: 1979: 1973: 1960: 1957: 1944: 1920:{\displaystyle S^{i}\to Z_{i}} 1904: 1758: 1752: 1739: 1736: 1723: 1701: 1687: 1608:{\displaystyle f\colon Z\to X} 1599: 1550: 1544: 1513: 1500: 1442: 1436: 1405: 1392: 1361: 1342: 1317: 1298: 1275: 1263: 1212: 1183: 1053:{\displaystyle A\subseteq X\,} 940: 771: 758: 615: 602: 121: 108: 33:cellular approximation theorem 1: 2038:{\displaystyle \pi _{i+1}(X)} 1887:are attached by the mappings 1557:{\displaystyle \pi _{n}(X)\,} 1449:{\displaystyle \pi _{i}(X)\,} 1927:that generate the kernel of 211:is cellular on the skeleton 1368:{\displaystyle (X,X^{n})\,} 1324:{\displaystyle (X,X^{n})\,} 1291:We have in particular that 689:homotopy extension property 223:must contain a 0-cell. The 2571: 2529:Cambridge University Press 1823:(for any basepoint). Then 1375:that we have isomorphisms 207:, with the statement that 199:The proof can be given by 175:to a cellular map, and if 63:is a continuous map, then 1582:weak homotopy equivalence 1169:{\displaystyle i\leq n\,} 632:of dimension larger than 560:, with the property that 478:to a map missing a point 408:), so we may assume that 1476:{\displaystyle i<n\,} 1080:. To see this, restrict 671:) of the restriction of 621:{\displaystyle f(e^{n})} 246:Assume inductively that 2521:Hatcher, Allen (2005), 1849:{\displaystyle Z_{i+1}} 734:{\displaystyle n<k,} 388:is already cellular on 377:{\displaystyle k\leq n} 2505: 2422: 2344:of these cells giving 2338: 2298: 2255: 2254:{\displaystyle k<i} 2229: 2147: 2039: 1986: 1921: 1877: 1850: 1817: 1791: 1790:{\displaystyle k<i} 1765: 1674: 1654: 1609: 1558: 1521: 1477: 1450: 1413: 1369: 1325: 1283: 1220: 1170: 1139: 1054: 991: 990:{\displaystyle S^{k},} 957: 907: 906:{\displaystyle S^{k}.} 873: 838: 811: 784: 735: 622: 550: 464: 378: 344: 141: 51:are CW-complexes, and 18:Cellular approximation 2506: 2423: 2339: 2299: 2256: 2230: 2148: 2040: 1987: 1922: 1878: 1876:{\displaystyle Z_{i}} 1851: 1818: 1792: 1766: 1675: 1655: 1653:{\displaystyle Z_{i}} 1610: 1559: 1522: 1478: 1451: 1414: 1370: 1326: 1284: 1221: 1171: 1140: 1092:to a cellular map on 1055: 992: 958: 915:base-point preserving 908: 874: 872:{\displaystyle S^{n}} 839: 837:{\displaystyle S^{k}} 812: 810:{\displaystyle S^{n}} 785: 736: 683:of dimension at most 623: 551: 465: 379: 345: 163:between CW-complexes 142: 2432: 2348: 2308: 2265: 2239: 2161: 2049: 2007: 1931: 1891: 1860: 1827: 1801: 1775: 1684: 1664: 1637: 1587: 1531: 1487: 1460: 1423: 1379: 1339: 1295: 1250: 1180: 1153: 1123: 1037: 971: 921: 887: 856: 821: 794: 745: 716: 712:. In particular, if 704:Some homotopy groups 596: 576:, still relative to 514: 496:deformation retracts 490: − { 428: 362: 321: 250:is cellular on the ( 102: 1992:(and are mapped to 1816:{\displaystyle k=i} 1771:are isomorphic for 1680:, so that the maps 1138:{\displaystyle X-A} 1033:, and the image of 294:is also compact in 2524:Algebraic topology 2501: 2428:. Surjectivity of 2418: 2334: 2294: 2251: 2225: 2143: 2035: 1982: 1917: 1873: 1846: 1813: 1787: 1761: 1670: 1650: 1605: 1554: 1517: 1473: 1446: 1409: 1365: 1321: 1279: 1216: 1166: 1135: 1119:, if all cells of 1050: 987: 953: 903: 869: 834: 807: 780: 731: 628:miss all cells of 618: 568:) misses the cell 546: 498:onto the subspace 472:homotoped relative 460: 374: 340: 137: 29:algebraic topology 2538:978-0-521-79540-1 2396: 2203: 1797:and are onto for 1673:{\displaystyle Z} 1615:that is called a 1483:and a surjection 687:. Using then the 317:, so we can take 16:(Redirected from 2562: 2541: 2510: 2508: 2507: 2502: 2491: 2490: 2469: 2468: 2450: 2449: 2427: 2425: 2424: 2419: 2408: 2407: 2398: 2397: 2395: 2390: 2385: 2379: 2378: 2360: 2359: 2343: 2341: 2340: 2335: 2333: 2332: 2320: 2319: 2303: 2301: 2300: 2295: 2290: 2289: 2277: 2276: 2260: 2258: 2257: 2252: 2234: 2232: 2231: 2226: 2215: 2214: 2205: 2204: 2202: 2197: 2192: 2186: 2185: 2173: 2172: 2152: 2150: 2149: 2144: 2136: 2135: 2123: 2122: 2104: 2103: 2094: 2093: 2081: 2067: 2066: 2044: 2042: 2041: 2036: 2025: 2024: 1991: 1989: 1988: 1983: 1972: 1971: 1956: 1955: 1943: 1942: 1926: 1924: 1923: 1918: 1916: 1915: 1903: 1902: 1882: 1880: 1879: 1874: 1872: 1871: 1855: 1853: 1852: 1847: 1845: 1844: 1822: 1820: 1819: 1814: 1796: 1794: 1793: 1788: 1770: 1768: 1767: 1762: 1751: 1750: 1735: 1734: 1722: 1721: 1709: 1708: 1699: 1698: 1679: 1677: 1676: 1671: 1659: 1657: 1656: 1651: 1649: 1648: 1617:CW approximation 1614: 1612: 1611: 1606: 1572:For every space 1568:CW approximation 1563: 1561: 1560: 1555: 1543: 1542: 1526: 1524: 1523: 1518: 1512: 1511: 1499: 1498: 1482: 1480: 1479: 1474: 1455: 1453: 1452: 1447: 1435: 1434: 1418: 1416: 1415: 1410: 1404: 1403: 1391: 1390: 1374: 1372: 1371: 1366: 1360: 1359: 1330: 1328: 1327: 1322: 1316: 1315: 1288: 1286: 1285: 1280: 1262: 1261: 1225: 1223: 1222: 1217: 1211: 1210: 1195: 1194: 1175: 1173: 1172: 1167: 1144: 1142: 1141: 1136: 1059: 1057: 1056: 1051: 996: 994: 993: 988: 983: 982: 966: 962: 960: 959: 954: 952: 951: 939: 938: 912: 910: 909: 904: 899: 898: 882: 878: 876: 875: 870: 868: 867: 851: 843: 841: 840: 835: 833: 832: 816: 814: 813: 808: 806: 805: 789: 787: 786: 781: 770: 769: 757: 756: 740: 738: 737: 732: 627: 625: 624: 619: 614: 613: 555: 553: 552: 547: 545: 544: 532: 531: 469: 467: 466: 461: 459: 458: 446: 445: 412: >  383: 381: 380: 375: 349: 347: 346: 341: 333: 332: 146: 144: 143: 138: 136: 135: 120: 119: 21: 2570: 2569: 2565: 2564: 2563: 2561: 2560: 2559: 2545: 2544: 2539: 2520: 2517: 2476: 2454: 2435: 2430: 2429: 2399: 2364: 2351: 2346: 2345: 2324: 2311: 2306: 2305: 2281: 2268: 2263: 2262: 2237: 2236: 2206: 2177: 2164: 2159: 2158: 2127: 2108: 2095: 2085: 2052: 2047: 2046: 2010: 2005: 2004: 1963: 1947: 1934: 1929: 1928: 1907: 1894: 1889: 1888: 1863: 1858: 1857: 1830: 1825: 1824: 1799: 1798: 1773: 1772: 1742: 1726: 1713: 1700: 1690: 1682: 1681: 1662: 1661: 1640: 1635: 1634: 1585: 1584: 1570: 1534: 1529: 1528: 1503: 1490: 1485: 1484: 1458: 1457: 1426: 1421: 1420: 1395: 1382: 1377: 1376: 1351: 1337: 1336: 1307: 1293: 1292: 1290: 1253: 1248: 1247: 1202: 1186: 1178: 1177: 1176:, then any map 1151: 1150: 1121: 1120: 1035: 1034: 1003: 974: 969: 968: 964: 943: 930: 919: 918: 890: 885: 884: 880: 859: 854: 853: 849: 824: 819: 818: 797: 792: 791: 761: 748: 743: 742: 714: 713: 710:homotopy groups 706: 701: 605: 594: 593: 556:to a map, say, 536: 517: 512: 511: 450: 431: 426: 425: 360: 359: 324: 319: 318: 231:of a 0-cell of 197: 127: 111: 100: 99: 23: 22: 15: 12: 11: 5: 2568: 2566: 2558: 2557: 2547: 2546: 2543: 2542: 2537: 2516: 2513: 2500: 2497: 2494: 2489: 2486: 2483: 2479: 2475: 2472: 2467: 2464: 2461: 2457: 2453: 2448: 2445: 2442: 2438: 2417: 2414: 2411: 2406: 2402: 2394: 2389: 2382: 2377: 2374: 2371: 2367: 2363: 2358: 2354: 2331: 2327: 2323: 2318: 2314: 2293: 2288: 2284: 2280: 2275: 2271: 2250: 2247: 2244: 2224: 2221: 2218: 2213: 2209: 2201: 2196: 2189: 2184: 2180: 2176: 2171: 2167: 2155: 2154: 2142: 2139: 2134: 2130: 2126: 2121: 2118: 2115: 2111: 2107: 2102: 2098: 2092: 2088: 2084: 2080: 2076: 2073: 2070: 2065: 2062: 2059: 2055: 2034: 2031: 2028: 2023: 2020: 2017: 2013: 1997: 1981: 1978: 1975: 1970: 1966: 1962: 1959: 1954: 1950: 1946: 1941: 1937: 1914: 1910: 1906: 1901: 1897: 1870: 1866: 1856:is built from 1843: 1840: 1837: 1833: 1812: 1809: 1806: 1786: 1783: 1780: 1760: 1757: 1754: 1749: 1745: 1741: 1738: 1733: 1729: 1725: 1720: 1716: 1712: 1707: 1703: 1697: 1693: 1689: 1669: 1647: 1643: 1604: 1601: 1598: 1595: 1592: 1569: 1566: 1552: 1549: 1546: 1541: 1537: 1515: 1510: 1506: 1502: 1497: 1493: 1471: 1468: 1465: 1444: 1441: 1438: 1433: 1429: 1407: 1402: 1398: 1394: 1389: 1385: 1363: 1358: 1354: 1350: 1347: 1344: 1319: 1314: 1310: 1306: 1303: 1300: 1277: 1274: 1271: 1268: 1265: 1260: 1256: 1214: 1209: 1205: 1201: 1198: 1193: 1189: 1185: 1164: 1161: 1158: 1134: 1131: 1128: 1048: 1045: 1042: 1025:is a map from 1002: 999: 986: 981: 977: 950: 946: 942: 937: 933: 929: 926: 902: 897: 893: 866: 862: 831: 827: 804: 800: 779: 776: 773: 768: 764: 760: 755: 751: 730: 727: 724: 721: 705: 702: 700: 697: 617: 612: 608: 604: 601: 543: 539: 535: 530: 527: 524: 520: 457: 453: 449: 444: 441: 438: 434: 373: 370: 367: 339: 336: 331: 327: 217:path-component 196: 193: 134: 130: 126: 123: 118: 114: 110: 107: 67:is said to be 35:states that a 24: 14: 13: 10: 9: 6: 4: 3: 2: 2567: 2556: 2553: 2552: 2550: 2540: 2534: 2530: 2526: 2525: 2519: 2518: 2514: 2512: 2495: 2487: 2484: 2481: 2477: 2465: 2462: 2459: 2455: 2446: 2443: 2440: 2436: 2412: 2404: 2400: 2392: 2375: 2372: 2369: 2365: 2356: 2352: 2329: 2325: 2316: 2312: 2286: 2282: 2273: 2269: 2248: 2245: 2242: 2219: 2211: 2207: 2199: 2182: 2178: 2169: 2165: 2132: 2128: 2119: 2116: 2113: 2109: 2100: 2090: 2086: 2078: 2071: 2063: 2060: 2057: 2053: 2029: 2021: 2018: 2015: 2011: 2002: 1998: 1995: 1976: 1968: 1964: 1952: 1948: 1939: 1935: 1912: 1908: 1899: 1895: 1886: 1885: 1884: 1868: 1864: 1841: 1838: 1835: 1831: 1810: 1807: 1804: 1784: 1781: 1778: 1755: 1747: 1743: 1731: 1727: 1718: 1714: 1710: 1705: 1695: 1691: 1667: 1645: 1641: 1633: 1628: 1626: 1622: 1618: 1602: 1596: 1593: 1590: 1583: 1579: 1575: 1567: 1565: 1547: 1539: 1535: 1508: 1504: 1495: 1491: 1469: 1466: 1463: 1439: 1431: 1427: 1400: 1396: 1387: 1383: 1356: 1352: 1348: 1345: 1334: 1312: 1308: 1304: 1301: 1272: 1269: 1266: 1258: 1254: 1245: 1241: 1237: 1234:-skeleton of 1233: 1229: 1207: 1203: 1196: 1191: 1187: 1162: 1159: 1156: 1148: 1132: 1129: 1126: 1118: 1114: 1109: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1046: 1043: 1040: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1000: 998: 984: 979: 975: 967:-skeleton of 948: 944: 935: 931: 927: 924: 916: 900: 895: 891: 864: 860: 847: 829: 825: 802: 798: 777: 774: 766: 762: 753: 749: 728: 725: 722: 719: 711: 703: 698: 696: 694: 690: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 646: 642: 637: 635: 631: 610: 606: 599: 591: 587: 583: 579: 575: 571: 567: 563: 559: 541: 537: 533: 528: 525: 522: 518: 509: 505: 501: 497: 493: 489: 485: 482: ∈  481: 477: 473: 455: 451: 447: 442: 439: 436: 432: 423: 419: 415: 411: 407: 403: 399: 396:-skeleton of 395: 391: 387: 371: 368: 365: 357: 353: 337: 334: 329: 325: 316: 312: 308: 304: 303:non-trivially 301: 297: 293: 289: 285: 281: 277: 273: 269: 265: 261: 257: 253: 249: 244: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 195:Idea of proof 194: 192: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 132: 128: 124: 116: 112: 105: 97: 93: 90:-skeleton of 89: 85: 81: 79: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 19: 2523: 2156: 2003:to generate 2000: 1993: 1629: 1624: 1620: 1616: 1577: 1573: 1571: 1332: 1243: 1239: 1238:sits inside 1235: 1231: 1227: 1146: 1112: 1110: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1064:sits inside 1061: 1030: 1026: 1022: 1017:be a map of 1014: 1010: 1006: 1004: 707: 699:Applications 692: 684: 680: 676: 672: 668: 664: 660: 656: 652: 648: 644: 640: 638: 633: 629: 589: 585: 581: 577: 573: 569: 565: 561: 557: 507: 503: 499: 491: 487: 483: 479: 475: 421: 413: 409: 405: 401: 397: 393: 389: 385: 355: 351: 314: 310: 306: 295: 291: 287: 283: 275: 267: 263: 259: 255: 251: 247: 245: 240: 236: 232: 228: 220: 212: 208: 204: 198: 188: 184: 180: 176: 168: 164: 160: 156: 152: 148: 95: 91: 87: 83: 77: 72: 68: 64: 60: 56: 52: 48: 44: 41:CW-complexes 32: 26: 1117:n-connected 1021:, that is, 418:restriction 2515:References 883:-cell for 852:-cell for 667:-cells of 384:, the map 300:intersects 258:, and let 98:, i.e. if 75:takes the 2478:π 2474:→ 2437:π 2401:π 2393:≅ 2388:→ 2353:π 2322:→ 2270:π 2208:π 2200:≅ 2195:→ 2166:π 2110:π 2101:∗ 2054:π 2012:π 1965:π 1961:→ 1936:π 1905:→ 1744:π 1740:→ 1715:π 1711:: 1706:∗ 1600:→ 1594:: 1536:π 1492:π 1428:π 1384:π 1255:π 1200:∂ 1160:≤ 1130:− 1044:⊆ 941:→ 928:: 846:canonical 750:π 651:on which 643:-cell of 534:∪ 526:− 448:∪ 440:− 369:≤ 335:⊆ 266:-cell of 201:induction 173:homotopic 125:⊆ 80:-skeleton 2549:Category 2261:, while 1456:for all 1019:CW-pairs 879:and one 663:and the 580:. Since 486:. Since 155: : 147:for all 94:for all 69:cellular 55: : 39:between 1632:skeleta 1068:. Then 470:can be 280:compact 272:closure 86:to the 2535:  1580:and a 1060:under 844:their 400:meets 358:). If 290:under 270:. The 262:be an 227:under 203:after 31:, the 1228:(X,A) 1149:: If 1113:(X,A) 1078:(Y,B) 1074:(X,A) 1015:(Y,B) 1011:(X,A) 790:Give 741:then 225:image 71:, if 2533:ISBN 2246:< 2235:for 2045:(or 1782:< 1467:< 1005:Let 917:map 913:Any 817:and 723:< 167:and 47:and 1660:of 1619:to 1331:is 1115:is 1084:to 1029:to 675:to 572:of 510:to 474:to 424:to 420:of 282:in 278:is 274:of 219:of 183:of 171:is 82:of 37:map 27:In 2551:: 2531:, 2527:, 2153:). 1564:. 1108:. 778:0. 636:. 494:} 159:→ 59:→ 2499:) 2496:X 2493:( 2488:1 2485:+ 2482:i 2471:) 2466:1 2463:+ 2460:i 2456:Z 2452:( 2447:1 2444:+ 2441:i 2416:) 2413:X 2410:( 2405:i 2381:) 2376:1 2373:+ 2370:i 2366:Z 2362:( 2357:i 2330:i 2326:Z 2317:i 2313:S 2292:) 2287:i 2283:Z 2279:( 2274:i 2249:i 2243:k 2223:) 2220:X 2217:( 2212:k 2188:) 2183:i 2179:Z 2175:( 2170:k 2141:) 2138:) 2133:i 2129:Z 2125:( 2120:1 2117:+ 2114:i 2106:( 2097:) 2091:i 2087:f 2083:( 2079:/ 2075:) 2072:X 2069:( 2064:1 2061:+ 2058:i 2033:) 2030:X 2027:( 2022:1 2019:+ 2016:i 2001:X 1994:X 1980:) 1977:X 1974:( 1969:i 1958:) 1953:i 1949:Z 1945:( 1940:i 1913:i 1909:Z 1900:i 1896:S 1869:i 1865:Z 1842:1 1839:+ 1836:i 1832:Z 1811:i 1808:= 1805:k 1785:i 1779:k 1759:) 1756:X 1753:( 1748:k 1737:) 1732:i 1728:Z 1724:( 1719:k 1702:) 1696:i 1692:f 1688:( 1668:Z 1646:i 1642:Z 1625:X 1621:X 1603:X 1597:Z 1591:f 1578:Z 1574:X 1551:) 1548:X 1545:( 1540:n 1527:→ 1514:) 1509:n 1505:X 1501:( 1496:n 1470:n 1464:i 1443:) 1440:X 1437:( 1432:i 1419:→ 1406:) 1401:n 1397:X 1393:( 1388:i 1362:) 1357:n 1353:X 1349:, 1346:X 1343:( 1333:n 1318:) 1313:n 1309:X 1305:, 1302:X 1299:( 1289:. 1276:) 1273:A 1270:, 1267:X 1264:( 1259:i 1244:A 1240:A 1236:X 1232:n 1226:→ 1213:) 1208:i 1204:D 1197:, 1192:i 1188:D 1184:( 1163:n 1157:i 1147:n 1133:A 1127:X 1106:A 1102:X 1098:X 1094:A 1090:f 1086:A 1082:f 1076:→ 1070:f 1066:B 1062:f 1047:X 1041:A 1031:Y 1027:X 1023:f 1013:→ 1009:: 1007:f 985:, 980:k 976:S 965:n 949:k 945:S 936:n 932:S 925:f 901:. 896:k 892:S 881:k 865:n 861:S 850:n 830:k 826:S 803:n 799:S 775:= 772:) 767:k 763:S 759:( 754:n 729:, 726:k 720:n 693:X 685:n 681:X 677:X 673:f 669:A 665:n 661:X 657:n 653:f 649:A 645:X 641:n 634:n 630:Y 616:) 611:n 607:e 603:( 600:f 590:Y 586:e 584:( 582:f 578:X 574:Y 570:e 566:e 564:( 562:g 558:g 542:n 538:e 529:1 523:n 519:X 508:f 504:e 502:- 500:Y 492:p 488:Y 484:e 480:p 476:X 456:n 452:e 443:1 437:n 433:X 422:f 414:n 410:k 406:e 404:( 402:f 398:Y 394:n 390:e 386:f 372:n 366:k 356:e 354:( 352:f 338:Y 330:k 326:e 315:Y 311:e 309:( 307:f 296:Y 292:f 288:e 284:X 276:e 268:X 264:n 260:e 256:X 252:n 248:f 241:f 237:Y 233:X 229:f 221:Y 213:X 209:f 205:n 189:A 185:X 181:A 177:f 169:Y 165:X 161:Y 157:X 153:f 149:n 133:n 129:Y 122:) 117:n 113:X 109:( 106:f 96:n 92:Y 88:n 84:X 78:n 73:f 65:f 61:Y 57:X 53:f 49:Y 45:X 20:)

Index

Cellular approximation
algebraic topology
map
CW-complexes
n-skeleton
homotopic
induction
path-component
image
closure
compact
intersects
non-trivially
restriction
homotoped relative
deformation retracts
homotopy extension property
homotopy groups
canonical
base-point preserving
CW-pairs
n-connected
weak homotopy equivalence
skeleta
Algebraic topology
Cambridge University Press
ISBN
978-0-521-79540-1
Category
Theorems in algebraic topology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.