Knowledge (XXG)

Chemical similarity

Source 📝

58: 128:. Molecular screens and fingerprints can contain both 2D- and 3D-information. However, the 2D-fingerprints, which are a kind of binary fragment descriptors, dominate in this area. Fragment-based structural keys, like MDL keys, are sufficiently good for handling small and medium-sized chemical databases, whereas processing of large databases is performed with fingerprints having much higher information density. Fragment-based Daylight, BCI, and UNITY 2D (Tripos) fingerprints are the best known examples. The most popular 120:(a kind of ligand-based virtual screening) assumes that all compounds in a database that are similar to a query compound have similar biological activity. Although this hypothesis is not always valid, quite often the set of retrieved compounds is considerably enriched with actives. To achieve high efficacy of similarity-based screening of databases containing millions of compounds, molecular structures are usually represented by 84:. It plays an important role in modern approaches to predicting the properties of chemical compounds, designing chemicals with a predefined set of properties and, especially, in conducting drug design studies by screening large databases containing structures of available (or potentially available) chemicals. These studies are based on the similar property principle of Johnson and Maggiora, which states: 626:— a Java-based software library for calculating Maximum Common Subgraph (MCS) between small molecules. This enables us to find similarity/distance between molecules. MCS is also used for screening drug like compounds by hitting molecules, which share common subgraph (substructure). 171:. Recently, 3D chemical similarity networks based on 3D ligand conformation have also been developed, which can be used to identify scaffold hopping ligands. 227: 46:
partners in inorganic or biological settings. Biological effects and thus also similarity of effects are usually quantified using the
245: 389:
Martin, Y. C.; Kofron, J. L.; Traphagen, L. M. (2002). "Do structurally similar molecules have similar biological activity?".
425:
Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G. (2002). "Reoptimization of MDL Keys for Use in Drug Discovery".
57: 272:
Ralaivola, Liva; Swamidass, Sanjay J.; Hiroto, Saigo; Baldi, Pierre (2005). "Graph kernels for chemical informatics".
427: 315: 274: 634: 650: 655: 579:
Bender, Andreas; Glen, Robert C. (2004). "Molecular similarity: a key technique in molecular informatics".
143:> 0.85 (for Daylight fingerprints). However, it is a common misunderstanding that a similarity of 486: 190: 47: 660: 612: 129: 39: 508: 465: 604: 596: 551: 443: 407: 344: 291: 223: 117: 51: 43: 35: 588: 543: 435: 399: 371: 334: 324: 283: 254: 195: 65: 27: 180: 105: 97: 81: 243:
N. Nikolova; J. Jaworska (2003). "Approaches to Measure Chemical Similarity - a Review".
339: 310: 164: 156: 644: 535: 391: 133: 616: 623: 309:
Rahman, S. A.; Bashton, M.; Holliday, G. L.; Schrader, R.; Thornton, J. M. (2009).
160: 155:
The concept of chemical similarity can be expanded to consider chemical similarity
530: 287: 362:
Kubinyi, H. (1998). "Similarity and Dissimilarity: A Medicinal Chemist's View".
185: 168: 61: 375: 132:
for comparing chemical structures represented by means of fingerprints is the
629: 600: 608: 555: 447: 411: 348: 329: 295: 258: 42:
or functional qualities, i.e. the effect that the chemical compound has on
637:— a similarity analysis tool based on molecular interaction fields. 101: 31: 147:> 0.85 reflects similar bioactivities in general ("the 0.85 myth"). 547: 439: 403: 592: 630:
Kernel-based Similarity for Clustering, regression and QSAR Modeling
56: 108:, that measure the structural similarity of chemical compounds. 104:
in descriptor space. Examples for inverse distance measures are
50:
of a compound. In general terms, function can be related to the
529:
Maggiora, G.; Vogt, M.; Stumpfe, D.; Bajorath, J. (2014).
461: 490: 504: 124:(structural keys) or by fixed-size or variable-size 139:. Two structures are usually considered similar if 587:(22). Royal Society of Chemistry (RSC): 3204–18. 311:"Small Molecule Subgraph Detector (SMSD) toolkit" 220:Concepts and Applications of Molecular Similarity 213: 211: 531:"Molecular Similarity in Medicinal Chemistry" 96:Chemical similarity is often described as an 8: 462:"Daylight Chemical Information Systems Inc" 159:, where descriptive network properties and 80:) is one of the most important concepts in 167:, estimate chemical diversity and predict 364:Perspectives in Drug Discovery and Design 338: 328: 86:similar compounds have similar properties 218:Johnson, A. M.; Maggiora, G. M. (1990). 624:Small Molecule Subgraph Detector (SMSD) 207: 112:Similarity search and virtual screening 7: 581:Organic & Biomolecular Chemistry 222:. New York: John Wiley & Sons. 487:"Barnard Chemical Information Ltd" 14: 134:Tanimoto (or Jaccard) coefficient 246:QSAR & Combinatorial Science 163:can be applied to analyze large 511:from the original on 2012-04-19 468:from the original on 2012-12-05 26:) refers to the similarity of 1: 54:of compounds (among others). 288:10.1016/j.neunet.2005.07.009 151:Chemical similarity network 677: 428:J. Chem. Inf. Comput. Sci. 316:Journal of Cheminformatics 376:10.1023/A:1027221424359 38:with respect to either 330:10.1186/1758-2946-1-12 259:10.1002/qsar.200330831 126:molecular fingerprints 69: 116:The similarity-based 60: 78:molecular similarity 24:molecular similarity 253:(9–10): 1006–1026. 191:Substructure search 102:measure of distance 92:Similarity measures 74:chemical similarity 48:biological activity 20:Chemical similarity 130:similarity measure 70: 36:chemical compounds 548:10.1021/jm401411z 440:10.1021/ci010132r 404:10.1021/jm020155c 398:(19): 4350–4358. 229:978-0-471-62175-1 122:molecular screens 118:virtual screening 52:chemical activity 28:chemical elements 668: 620: 593:10.1039/b409813g 566: 565: 563: 562: 542:(8): 3186–3204. 526: 520: 519: 517: 516: 501: 495: 494: 489:. Archived from 483: 477: 476: 474: 473: 458: 452: 451: 434:(6): 1273–1280. 422: 416: 415: 386: 380: 379: 359: 353: 352: 342: 332: 306: 300: 299: 282:(8): 1093–1110. 269: 263: 262: 240: 234: 233: 215: 196:Ternary compound 106:molecule kernels 66:Methylhexanamine 676: 675: 671: 670: 669: 667: 666: 665: 651:Cheminformatics 641: 640: 578: 575: 570: 569: 560: 558: 528: 527: 523: 514: 512: 503: 502: 498: 485: 484: 480: 471: 469: 460: 459: 455: 424: 423: 419: 388: 387: 383: 361: 360: 356: 308: 307: 303: 275:Neural Networks 271: 270: 266: 242: 241: 237: 230: 217: 216: 209: 204: 181:Me-too compound 177: 153: 114: 94: 82:cheminformatics 17: 12: 11: 5: 674: 672: 664: 663: 658: 656:Drug discovery 653: 643: 642: 639: 638: 632: 627: 621: 574: 573:External links 571: 568: 567: 521: 496: 493:on 2008-10-11. 478: 453: 417: 381: 354: 301: 264: 235: 228: 206: 205: 203: 200: 199: 198: 193: 188: 183: 176: 173: 165:chemical space 157:network theory 152: 149: 113: 110: 93: 90: 72:The notion of 15: 13: 10: 9: 6: 4: 3: 2: 673: 662: 659: 657: 654: 652: 649: 648: 646: 636: 633: 631: 628: 625: 622: 618: 614: 610: 606: 602: 598: 594: 590: 586: 582: 577: 576: 572: 557: 553: 549: 545: 541: 538: 537: 536:J. Med. Chem. 532: 525: 522: 510: 506: 500: 497: 492: 488: 482: 479: 467: 463: 457: 454: 449: 445: 441: 437: 433: 430: 429: 421: 418: 413: 409: 405: 401: 397: 394: 393: 392:J. Med. Chem. 385: 382: 377: 373: 369: 365: 358: 355: 350: 346: 341: 336: 331: 326: 322: 318: 317: 312: 305: 302: 297: 293: 289: 285: 281: 277: 276: 268: 265: 260: 256: 252: 248: 247: 239: 236: 231: 225: 221: 214: 212: 208: 201: 197: 194: 192: 189: 187: 184: 182: 179: 178: 174: 172: 170: 166: 162: 158: 150: 148: 146: 142: 138: 135: 131: 127: 123: 119: 111: 109: 107: 103: 99: 91: 89: 87: 83: 79: 75: 67: 63: 59: 55: 53: 49: 45: 41: 37: 33: 29: 25: 21: 16:Chemical term 584: 580: 559:. Retrieved 539: 534: 524: 513:. Retrieved 505:"Tripos Inc" 499: 491:the original 481: 470:. Retrieved 456: 431: 426: 420: 395: 390: 384: 367: 363: 357: 320: 314: 304: 279: 273: 267: 250: 244: 238: 219: 161:graph theory 154: 144: 140: 136: 125: 121: 115: 95: 85: 77: 73: 71: 23: 19: 18: 370:: 225–252. 186:Drug design 169:drug target 62:Amphetamine 645:Categories 561:2023-11-13 515:2022-07-19 472:2022-07-19 323:(12): 12. 202:References 68:similarity 40:structural 661:Chemistry 601:1477-0520 32:molecules 617:16399588 609:15534697 556:24151987 509:Archived 466:Archived 448:12444722 412:12213076 349:20298518 296:16157471 175:See also 44:reaction 340:2820491 98:inverse 635:Brutus 615:  607:  599:  554:  446:  410:  347:  337:  294:  226:  613:S2CID 100:of a 605:PMID 597:ISSN 552:PMID 444:PMID 408:PMID 368:9–11 345:PMID 292:PMID 224:ISBN 76:(or 64:and 22:(or 589:doi 544:doi 436:doi 400:doi 372:doi 335:PMC 325:doi 284:doi 255:doi 34:or 647:: 611:. 603:. 595:. 583:. 550:. 540:57 533:. 507:. 464:. 442:. 432:42 406:. 396:45 366:. 343:. 333:. 319:. 313:. 290:. 280:18 278:. 251:22 249:. 210:^ 88:. 30:, 619:. 591:: 585:2 564:. 546:: 518:. 475:. 450:. 438:: 414:. 402:: 378:. 374:: 351:. 327:: 321:1 298:. 286:: 261:. 257:: 232:. 145:T 141:T 137:T

Index

chemical elements
molecules
chemical compounds
structural
reaction
biological activity
chemical activity

Amphetamine
Methylhexanamine
cheminformatics
inverse
measure of distance
molecule kernels
virtual screening
similarity measure
Tanimoto (or Jaccard) coefficient
network theory
graph theory
chemical space
drug target
Me-too compound
Drug design
Substructure search
Ternary compound


ISBN
978-0-471-62175-1
QSAR & Combinatorial Science

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.