Knowledge (XXG)

Chlorophyll fluorescence

Source 📝

174:(heat dissipation). This is achieved by stopping photochemistry, which allows researchers to measure fluorescence in the presence of non-photochemical quenching alone. To reduce photochemical quenching to negligible levels, a high intensity, short flash of light is applied to the leaf. This transiently closes all PSII reaction centres, which prevents energy of PSII being passed to downstream electron carriers. Non-photochemical quenching will not be affected if the flash is short. During the flash, the fluorescence reaches the level reached in the absence of any photochemical quenching, known as maximum fluorescence 20: 40: 1765: 28: 127:
proportion of closed PSII reaction centres, so fluorescence levels increase for 1–2 seconds. Subsequently, fluorescence decreases over a few minutes. This is due to; 1. more "photochemical quenching" in which electrons are transported away from PSII due to enzymes involved in carbon fixation; and 2. more "non-photochemical quenching" in which more energy is converted to heat.
1789:’, or Y(II), is an effective and sensitive way to measure plant samples under ambient or artificial lighting conditions. However, since Y(II) values also change with light intensity, one should compare samples at the same light intensity unless light stress is the focus of the measurement. Y(II) can be more sensitive to some types of plant stress than F 1773:
chlorophyll fluorometer PAM-101 (Walz, Germany). By modulating the measuring light beam (microsecond-range pulses) and parallel detection of the excited fluorescence the relative fluorescence yield (Ft) can be determined in the presence of ambient light. Crucially, this means chlorophyll fluorescence can be measured in the field even in full sunlight.
1547:. Chlorophyll fluorescence can be used as a proxy of plant stress because environmental stresses, e.g. extremes of temperature, light and water availability, can reduce the ability of a plant to metabolise normally. This can mean an imbalance between the absorption of light energy by chlorophyll and the use of energy in photosynthesis. 1700:. The leaf chlorophyll fluorescence was not significantly affected by NaCl concentration when B concentration was low. When B was increased, leaf chlorophyll fluorescence was reduced under saline conditions. It could be concluded that the combined effect of B and NaCl on raspberries induces a toxic effect in photochemical parameters. 1800:
Other plant mechanism measuring protocols have also been developed. When a chloroplast absorbs light, some of the light energy goes to photochemistry, some goes to regulated heat dissipation, and some goes to unregulated heat dissipation. Various chlorophyll fluorescence measuring parameters exist to
1862:
also provide an opportunity of developing sufficiently compact and efficient sensors for photophysiological status and biomass assessments. Instead of measuring the evolution of the total fluorescence flux, such sensors record the spectral density of this flux excited by strong monochromatic laser
1735:
can be the indicators of nitrogen status of a plant. For instance, when a plant is under optimal conditions, it favours its primary metabolism and synthesises the proteins (nitrogen molecules) containing chlorophyll, and few flavonols (carbon-based secondary compounds). On the other hand, in case of
126:
downstream of PSII have not yet passed their electrons to a subsequent electron carrier, so are unable to accept another electron. Closed reaction centres reduce the overall photochemical efficiency, and so increases the level of fluorescence. Transferring a leaf from dark into light increases the
1895:
In 2011, Vieira et al. applied a compact low-cost LIF sensor (built around a frequency-doubled solid-state Q-switched Nd:YAG laser and a specially modified commercial miniature fiber optic spectrometer Ocean Optics USB4000) to study intertidal microphytobenthos communities. Chlorophyll emission
1772:
The development of fluorometers allowed chlorophyll fluorescence analysis to become a common method in plant research. Chlorophyll fluorescence analysis has been revolutionized by the invention of the Pulse-Amplitude-Modulation (PAM) technique and availability of the first commercial modulated
1355:
Chlorophyll fluorescence appears to be a measure of photosynthesis, but this is an over-simplification. Fluorescence can measure the efficiency of PSII photochemistry, which can be used to estimate the rate of linear electron transport by multiplying by the light intensity. However, researchers
1845:
knowledge about sample heterogeneities is important for correct interpretation of the photosynthetic performance of the plant sample. High performance imaging fluorometer systems provide options to analyze single cell/single chloroplast as well as sample areas covering whole leaves or plants.
1844:
Consistent further development into imaging fluorometers facilitate the visualization of spatial heterogeneities in photosynthetic activity of samples. These heterogeneities naturally occur in plant leaves for example during growths, various environmental stresses or pathogen infection. Thus
1598:
under full sun light in the late-successional species than in the pioneer species was observed. Overall, their results show that pioneer species perform better under high-sun light than late- successional species, suggesting that pioneer plants have more potential tolerance to photo-oxidative
1755:
Gitelson (1999) states, "The ratio between chlorophyll fluorescence at 735 nm and the wavelength range 700nm to 710 nm, F735/F700 was found to be linearly proportional to the chlorophyll content (with determination coefficient, r2, more than 0.95) and thus this ratio can be used as a precise
2362:
A. Cartelat; Z.G. Cerovic; Y. Goulas; S. Meyer; C. Lelarge; J.-L. Prioul; A. Barbottin; M.-H. Jeuffroy; P. Gate; G. Agati; I. Moya (2005). "Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.)".
1713: 1863:
light pulses of nanoseconds duration. Requiring no 15- 20 min dark adaptation period (as is the case for the Kautsky effect methods) and being capable to excite the sample from considerable distance, the LIF sensors can provide fast and remote evaluation.
2583:"Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/Oxygenase" 1995:
Zhu, X-G.; Govindjee, Baker N.R.; Ort, D.R.; Long, S.P. (2005). "Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II".
1889:
is described in Ref. Recently the LIF sensing technique was harnessed to address the role of pPLAIIα protein in the protection of the photosynthetic metabolism during drought stress using genetically modified Arabidopsis
1166: 2892:
Lichtenthaler, Hartmut K.; Babani, Fatbardha (2004). "Light Adaptation and Senescence of the Photosynthetic Apparatus. Changes in Pigment Composition, Chlorophyll Fluorescence Parameters and Photosynthetic Activity".
1784:
and OJIP measure the efficiency of Photosystem II samples at a common and known dark adapted state. These protocols are useful in measuring many types of plant stress. Bernard Genty's light adapted measuring protocol
1703:
Lu and Zhang (1999) studied heat stress in wheat plants and found that temperature stability in the Photosystem II of water-stressed leaves correlates positively to the resistance in metabolism during photosynthesis.
1534:) were measured using a fluorometer. The results showed that despite pioneer species and forest species occupying different habitats, both showed similar vulnerability to midday photoinhibition in sun-exposed leaves. 1049:. This parameter measures the proportion of light absorbed by PSII that is used in photochemistry. As such, it can give a measure of the rate of linear electron transport and so indicates overall photosynthesis. 3113: 92:
or by emission as fluorescence radiation. As these processes are complementary processes, the analysis of chlorophyll fluorescence is an important tool in plant research with a wide spectrum of applications.
1047: 317:. Heat dissipation cannot be totally stopped, so the yield of chlorophyll fluorescence in the absence of non-photochemical quenching cannot be measured. Therefore, researchers use a dark-adapted point ( 1813:
for nonphotochemical quenching of both regulated and unregulated heat dissipation and NPQ for an estimate of nonphotochemical quenching. NPQ has also been resurrected to the lake model mathematically.
1551:
Favaretto et al. (2010) investigated adaptation to a strong light environment in pioneer and late successional species, grown under 100% and 10% light. Numerous parameters, including chlorophyll
1805:
measures photochemical quenching, Y(NYO) measures plant regulated heat dissipation, and Y(NO) measures unregulated heat dissipation. An older quenching protocol, called the puddle model, uses q
2554:
Genty, Bernard; Briantais, Jean-Marie; Baker, Neil R. (1989). "The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence".
1858:
Techniques based on the Kautsky effect do not exhaust the variety of detection and evaluation methods based on the chlorophyll fluorescence. In particular, recent advances in the area of
858: 516:: Maximal fluorescence (arbitrary units). Fluorescence level of light-adapted sample when a high intensity pulse has been applied. All reaction centers of the photosystem II are closed. 414:: Maximal fluorescence (arbitrary units). Fluorescence level of dark-adapted sample when a high intensity pulse has been applied. All reaction centers of the photosystem II are closed. 2041:"Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II" 1596: 1340: 1273: 901: 802: 2429:
Schreiber U, Bilger W, Schliwa U (1986). "Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer".
2197:
Schreiber U, Schliwa U, Bilger W (1986). "Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer".
35:. Brightfield DIC image showing guard cells and pavement cells (above). Same region showing Chlorophyll A autofluorescence with 440 nm laser excitation and far red emission (below). 514: 449: 1206: 940: 451:: Minimal fluorescence (arbitrary units). Fluorescence level of light-adapted sample when all reaction centers of the photosystem II are open; it is lowered with respect to 115:, this is called the Kautsky Effect. This variable rise in chlorophyll fluorescence is due to photosystem II. Fluorescence from photosystem I is not variable, but constant. 2302:
Favaretto; et al. (2011). "Differential responses of antioxidant enzymes in pioneer and late-successional tropical tree species grown under sun and shade conditions".
977: 582: 347: 2170:
Genty B, Briantais J-M, Baker NR (1989). "The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence".
1698: 1670: 1642: 1532: 1504: 1476: 757: 729: 701: 673: 638: 610: 544: 477: 412: 382: 315: 287: 259: 231: 200: 161: 1444: 546:: Steady-state terminal fluorescence (arbitrary units). A steady-state fluorescence level decreased (= quenched) by photochemical and non-photochemical processes. 1297: 1230: 1073: 2617:
Kramer, D. M.; Johnson, G.; Kiirats, O.; Edwards, G. (2004). "New fluorescence parameters for determination of QA redox state and excitation energy fluxes".
2926: 2853:"Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis" 1275:
tell us which processes which have altered the efficiency. Closure of reaction centers as a result of a high intensity light will alter the value of
289:. The efficiency of non-photochemical quenching is altered by various internal and external factors. Alterations in heat dissipation mean changes in 1716:
Example of a portable multiparametric fluorometer that uses the ratio between chlorophyll and flavonols to detect the nitrogen deficiency of plants
1896:
enabled the researchers to adequately assess the surface biomass and track migratory rhythms of epipelic benthic microalgae in muddy sediments.
2040: 384:: Minimal fluorescence (arbitrary units). Fluorescence level of dark-adapted sample when all reaction centers of the photosystem II are open. 2910: 2538: 2135:
Kitajima M, Butler WL (1975). "Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone".
122:
being in a "closed" or chemically reduced state. Reaction centers are "closed" when unable to accept further electrons. This occurs when
1739:
The NBI (Nitrogen Balance Index) by Force-A, allows the assessment of nitrogen conditions of a culture by calculating the ratio between
1364:
fixation can correlate well, but may not correlate in the field due to processes such as photorespiration, nitrogen metabolism and the
3239:
Kalaji; et al. (2012). "Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker".
3023:
Utkin; et al. (2013). "Compact low-cost detector for in vivo assessment of microphytobenthos using laser induced fluorescence".
3007:
Contribution of pPLAIIα to drought tolerance using genetically modified arabidopsis plants: II. Effects on photosynthetic metabolism.
1396:
may be estimated. This has been used to explore the significance of photorespiration as a photoprotective mechanism during drought.
1078: 2242:"Leaf characteristics and diurnal variation of chlorophyll fluorescence in leaves of the 'bana' vegetation of the amazon region" 2805:
Ruban, A.V.; Johnson, M.P. (2009). "Dynamics of higher plant photosystem cross-section associated with state transitions".
982: 2281: 1912: 1776:
Today, chlorophyll fluorometers are designed for measuring many different plant mechanisms. The measuring protocols: F
1380:
to obtain a full picture of the response of plants to their environment. One technique is to simultaneously measure CO
171: 89: 2766:"Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: A new approach" 205:
The efficiency of photochemical quenching (which is a proxy of the efficiency of PSII) can be estimated by comparing
2394:(1999). "The Chlorophyll Fluorescence Ratio F735/F700 as an Accurate Measure of the Chlorophyll Content in Plants". 1859: 807: 19: 1384:
fixation and PSII photochemistry at different light intensities, in non-photorespiratory conditions. A plot of CO
2935: 166:
To use measurements of chlorophyll fluorescence to analyse photosynthesis, researchers must distinguish between
3355: 3067: 2521:
Baker, Neil R.; Oxborough, Kevin (2004). "Chlorophyll Fluorescence as a Probe of Photosynthetic Productivity".
2391: 1544: 2960: 2660:
van Kooten, O; Snel, J (1990). "The use of chlorophyll fluorescence nomenclature in plant stress physiology".
1558: 1302: 1235: 863: 764: 3360: 54: 50: 23:
A chlorophyll extract in alcohol shown under white light (above) and UV light inducing fluorescence (below).
3068:"Effects of intertidal microphytobenthos migration on biomass determination via laser-induced fluorescence" 2475:"Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer" 45: 39: 3006: 1906: 1764: 1412: 3104: 1968: 860:. This is a measure of the maximum efficiency of PSII (the efficiency if all PSII centres were open). 3313:"Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications" 3032: 2972: 2403: 1399:
Fluorescence analysis can also be applied to understanding the effects of low and high temperatures.
1724:
content in leaves, chlorophyll fluorometers can be used to detect nitrogen deficiency in plants, by
1174: 908: 3011:
Plant Symposium of the SEB: Oxidative stress and cell death in plants: mechanisms and implications
2331:"Effects of Water Stress on Photosystem II Photochemistry and Its Thermostability in Wheat Plants" 1933:"Effects of Water Stress on Photosystem II Photochemistry and Its Thermostability in Wheat Plants" 3264: 3194: 3048: 2988: 2830: 2685: 2642: 2503: 2474: 2454: 2263: 2222: 2096: 2071: 2021: 3167:"The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light" 945: 484: 419: 551: 320: 3334: 3299: 3256: 3227: 3186: 3153: 2906: 2874: 2822: 2787: 2746: 2677: 2634: 2534: 2495: 2446: 2214: 2152: 2063: 2013: 1725: 903:
can be used to estimate the potential efficiency of PSII by taking dark-adapted measurements.
123: 1932: 1675: 1647: 1619: 1509: 1481: 1453: 734: 706: 678: 650: 615: 587: 521: 454: 389: 359: 292: 264: 236: 208: 177: 138: 3324: 3289: 3248: 3219: 3178: 3143: 3082: 3040: 2980: 2898: 2864: 2814: 2777: 2736: 2728: 2669: 2626: 2594: 2563: 2526: 2487: 2438: 2411: 2372: 2342: 2311: 2253: 2206: 2179: 2144: 2055: 2005: 1947: 1393: 2961:"Water stress assessment of cork oak leaves and maritime pine needles based on LIF spectra" 1422: 1408: 1365: 1357: 1278: 1211: 1054: 119: 27: 16:
Light re-emitted by chlorophyll molecules during return from excited to non-excited states
2630: 3036: 2976: 2407: 1376:
A powerful research technique is to simultaneously measure chlorophyll fluorescence and
2741: 2716: 108: 102: 85: 3148: 2567: 2415: 2183: 3349: 3207: 3166: 3131: 3052: 2992: 2689: 2599: 2582: 2148: 1736:
lack of nitrogen, we will observe an increased production of flavonols by the plant.
1168:. This parameter approximates the proportion of PSII reaction centres that are open. 167: 107:
Upon illumination of a dark-adapted leaf, there is a rapid rise in fluorescence from
69: 3268: 3198: 2646: 2507: 2458: 2315: 2267: 2226: 2834: 2075: 2025: 1388:
fixation and PSII photochemistry indicates the electron requirement per molecule CO
1377: 1867:
Application of the LIF technique to the assessment of drought stress in cork oak (
1820:, and pNPQ have been developed to measure the photoprotective xanthophyll cycle. q 1712: 2902: 2782: 2765: 2347: 2330: 2039:
Zhu, X-G.; Govindjee; Baker, N.R.; de Sturler, E.; Ort, D.R.; Long, S.P. (2005).
57:
at the bottom. The red fluorescence is from the chlorophyll in the chloroplasts.
3294: 3277: 3223: 2530: 1740: 1732: 1299:. Changes in the efficiency of non-photochemical quenching will alter the ratio 65: 3252: 3044: 2984: 2897:. Advances in Photosynthesis and Respiration. Vol. 19. pp. 713–736. 2818: 2376: 2258: 2241: 2059: 2009: 1952: 804:
is the ratio of variable fluorescence to maximal fluorescence. Calculated as
2525:. Advances in Photosynthesis and Respiration. Vol. 19. pp. 65–82. 1744: 1605: 3338: 3303: 3260: 3231: 3190: 3157: 2878: 2826: 2791: 2750: 2681: 2638: 2499: 2450: 2218: 2067: 2017: 2732: 2702:
Klughammer C., and Schreiber U. (2008) PAM Application notes 2008 1:27 -35
2156: 3329: 3312: 1721: 81: 1841:
Some fluorometers are designed to be portable and operated in one hand.
2673: 2491: 2442: 2210: 3087: 2869: 2852: 1446:). In the same leaves used for gas exchange measurements, chlorophyll 135:
Usually the initial measurement is the minimal level of fluorescence,
84:. Excited chlorophyll dissipates the absorbed light energy by driving 1990: 1988: 261:
and the yield of fluorescence in the absence of photosynthetic light
3182: 349:) with which to compare estimations of non-photochemical quenching. 72:. It is used as an indicator of photosynthetic energy conversion in 163:. This is the fluorescence in the absence of photosynthetic light. 2851:
Cazzaniga, S; Osto, L.D.; Kong, S-G.; Wada, M.; Bassi, R. (2013).
1763: 1711: 1609: 1415:, which measured net photosynthetic rate, gs, and intercellular CO 1411:
and forest species. Midday leaf gas exchange was measured using a
77: 73: 38: 26: 18: 2934:. Norfolk: Hansatech Instruments. 2012. p. 2. Archived from 2717:"Non-Photochemical Quenching. A Response to Excess Light Energy" 1613: 1604:
Neocleous and Vasilakakis (2009) investigated the response of
2846: 2844: 1161:{\displaystyle \,{\frac {{F_{m}}'-F_{t}}{{F_{m}}'-{F_{0}}'}}} 1360:
when they refer to photosynthesis. Electron transport and CO
2120:"Effects of Boron and Salinity on Red Raspberry in Vitro". 2928:
Handy PEA: Continuous Excitation Plant Efficiency Analyser
1403:
Sobrado (2008) investigated gas exchange and chlorophyll
942:
measures the efficiency of Photosystem II. Calculated as
1731:
Based on several years of research and experimentation,
1909:
for gas exchange and chlorophyll fluorescence of leaves
1616:
stress. An chlorophyll fluorometer was used to measure
3114:
Advanced Continuous Excitation Chlorophyll Fluorimeter
2556:
Biochimica et Biophysica Acta (BBA) - General Subjects
1563: 1307: 1240: 868: 769: 111:(PSII), followed by a slow decline. First observed by 1768:
Fluorescence image (Ft value) of adaxial leaf surface
1678: 1650: 1622: 1561: 1512: 1484: 1456: 1425: 1305: 1281: 1238: 1214: 1177: 1081: 1057: 985: 948: 911: 866: 810: 767: 737: 709: 681: 653: 618: 590: 554: 524: 487: 457: 422: 392: 362: 323: 295: 267: 239: 211: 180: 141: 2612: 2610: 1967:
Lembrechts, JJ; Zinnert, JC; Mänd, P; De Boeck, HJ.
1720:
Because of the link between chlorophyll content and
3136:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
2770:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
1756:indicator of chlorophyll content in plant leaves." 1543:Chlorophyll fluorescence can measure most types of 1407:fluorescence responses to high intensity light, of 3208:"Parameters of photosynthetic energy partitioning" 2473: 1692: 1664: 1636: 1590: 1555:fluorescence, were measured. A greater decline in 1526: 1498: 1470: 1438: 1334: 1291: 1267: 1224: 1200: 1160: 1067: 1042:{\displaystyle {\frac {{F_{m}}'-F_{t}}{{F_{m}}'}}} 1041: 971: 934: 895: 852: 796: 751: 723: 695: 667: 632: 604: 576: 538: 508: 471: 443: 406: 376: 341: 309: 281: 253: 225: 194: 155: 2710: 2708: 1801:measure all of these events. In the lake model, q 233:to the steady yield of fluorescence in the light 31:Confocal microscope images of a tomato leaf from 2764:Ruban, Alexander V.; Murchie, Erik H. (2012). 2715:Muller, P.; Xiao-Ping, L.; Niyogi, K. (2001). 1835:At lower actinic light levels NPQ = qE+qT+qI 1372:Relating electron transport to carbon fixation 88:(photochemical energy conversion), as heat in 3278:"Chlorophyll fluorescence--a practical guide" 1875:) on the basis of chlorophyll emission ratio 1838:At high actinic light levels NPQ = qE+qM=qI 8: 2097:"Chlorophyll fluorescence—a practical guide" 1828:is a measure of chloroplast migration, and q 853:{\displaystyle {\frac {F_{m}-F_{0}}{F_{m}}}} 118:The increase in fluorescence is due to PSII 1392:fixed. From this estimation, the extent of 1931:Lu, Congming; Zhang, Jianhua (July 1999). 1747:(related to Nitrogen/Carbon allocation) . 3328: 3293: 3147: 3086: 2868: 2781: 2740: 2598: 2346: 2257: 1951: 1684: 1679: 1677: 1656: 1651: 1649: 1628: 1623: 1621: 1579: 1569: 1562: 1560: 1518: 1513: 1511: 1490: 1485: 1483: 1462: 1457: 1455: 1430: 1424: 1351:PSII yield as a measure of photosynthesis 1323: 1313: 1306: 1304: 1282: 1280: 1256: 1246: 1239: 1237: 1215: 1213: 1183: 1178: 1176: 1144: 1139: 1124: 1119: 1110: 1092: 1087: 1083: 1082: 1080: 1075:(photochemical quenching). Calculated as 1058: 1056: 1026: 1021: 1013: 995: 990: 986: 984: 954: 949: 947: 917: 912: 910: 884: 874: 867: 865: 842: 831: 818: 811: 809: 785: 775: 768: 766: 743: 738: 736: 715: 710: 708: 687: 682: 680: 659: 654: 652: 624: 619: 617: 596: 591: 589: 564: 560: 555: 553: 530: 525: 523: 495: 490: 488: 486: 463: 458: 456: 430: 425: 423: 421: 398: 393: 391: 368: 363: 361: 333: 328: 322: 301: 296: 294: 273: 268: 266: 245: 240: 238: 217: 212: 210: 186: 181: 179: 147: 142: 140: 3013:, Florence, Italy, 26–28 June 2013, p. 5 675:is variable fluorescence. Calculated as 2390:Gitelson, Anatoly A; Buschmann, Claus; 2091: 2089: 2087: 2085: 1923: 1832:is a measure of plant photoinhibition. 1591:{\displaystyle {\tfrac {F_{v}}{F_{m}}}} 1335:{\displaystyle {\tfrac {F_{v}}{F_{m}}}} 1268:{\displaystyle {\tfrac {F_{v}}{F_{m}}}} 1208:gives an estimation of the efficiency, 896:{\displaystyle {\tfrac {F_{v}}{F_{m}}}} 797:{\displaystyle {\tfrac {F_{v}}{F_{m}}}} 43:Microscopic images of a moss leaf from 3132:"Chlorophyll a fluorescence induction" 2122:International Journal of Fruit Science 2329:Lu, Congming; Zhang, Jianhua (1999). 2304:Environmental and Experimental Botany 2115: 2113: 1539:Measuring stress and stress tolerance 7: 2099:. Jxb.oxfordjournals.org. 2000-04-01 1824:is a measure of state transitions. q 2631:10.1023/b:pres.0000015391.99477.0d 2581:Haldimann, P.; Feller, U. (2004). 1450:fluorescence parameters (initial, 1180: 914: 14: 3276:Maxwell, K.; Johnson, GN (2000). 2600:10.1111/j.1365-3040.2004.01222.x 2284:. Personalpages.manchester.ac.uk 1860:laser-induced fluorescence (LIF) 479:by non-photochemical quenching. 2316:10.1016/j.envexpbot.2010.06.003 2124:. Informaworld.com. 2008-12-03. 3317:Journal of Experimental Botany 3282:Journal of Experimental Botany 3075:Marine Ecology Progress Series 2335:Journal of Experimental Botany 1969:"5.1 Chlorophyll fluorescence" 1940:Journal of Experimental Botany 1809:for photochemical quenching, q 1201:{\displaystyle \,\Phi _{PSII}} 964: 955: 935:{\displaystyle \,\Phi _{PSII}} 353:Common fluorescence parameters 1: 3149:10.1016/s0005-2728(99)00047-x 2568:10.1016/S0304-4165(89)80016-9 2416:10.1016/S0034-4257(99)00023-1 2396:Remote Sensing of Environment 2184:10.1016/s0304-4165(89)80016-9 1816:In addition, the parameters q 70:excited to non-excited states 68:molecules during return from 3066:Vieira; et al. (2011). 2959:Lavrov; et al. (2012). 2903:10.1007/978-1-4020-3218-9_28 2783:10.1016/j.bbabio.2012.03.026 2149:10.1016/0005-2728(75)90209-1 3311:Murchie and Lawson (2013). 3224:10.1016/j.jplph.2014.10.021 3212:Journal of Plant Physiology 2587:Plant, Cell and Environment 2531:10.1007/978-1-4020-3218-9_3 1913:Non-photochemical quenching 1751:Measure Chlorophyll Content 172:non-photochemical quenching 90:non-photochemical quenching 3377: 3105:Solar-induced fluorescence 2895:Chlorophyll a Fluorescence 2523:Chlorophyll a Fluorescence 2472:Schreiber, Ulrich (1986). 2348:10.1093/jexbot/50.336.1199 1346:Applications of the Theory 972:{\displaystyle \,Y_{(II)}} 509:{\displaystyle \,{F_{m}}'} 444:{\displaystyle \,{F_{0}}'} 100: 3295:10.1093/jexbot/51.345.659 3253:10.1007/s11120-012-9780-3 3045:10.1134/S0030400X13030259 2985:10.1134/S0030400X12020166 2819:10.1007/s11120-008-9387-x 2377:10.1016/j.fcr.2004.05.002 2259:10.1007/s11099-008-0033-9 2060:10.1007/s00425-005-0064-4 2010:10.1007/s00425-005-0064-4 577:{\displaystyle \,T_{1/2}} 342:{\displaystyle F_{m}^{0}} 3171:Functional Plant Biology 2392:Lichtenthaler, Hartmut K 1760:Chlorophyll fluorometers 62:Chlorophyll fluorescence 3241:Photosynthesis Research 3025:Optics and Spectroscopy 2965:Optics and Spectroscopy 2807:Photosynthesis Research 2619:Photosynthesis Research 1953:10.1093/jxb/50.336.1199 1797:, such as heat stress. 1693:{\displaystyle \,F_{v}} 1665:{\displaystyle \,F_{m}} 1637:{\displaystyle \,F_{0}} 1527:{\displaystyle \,F_{v}} 1499:{\displaystyle \,F_{m}} 1471:{\displaystyle \,F_{0}} 752:{\displaystyle \,F_{0}} 724:{\displaystyle \,F_{m}} 696:{\displaystyle \,F_{v}} 668:{\displaystyle \,F_{v}} 633:{\displaystyle \,F_{m}} 605:{\displaystyle \,F_{0}} 584:: Half rise time from 539:{\displaystyle \,F_{t}} 472:{\displaystyle \,F_{0}} 407:{\displaystyle \,F_{m}} 377:{\displaystyle \,F_{0}} 310:{\displaystyle \,F_{m}} 282:{\displaystyle \,F_{0}} 254:{\displaystyle \,F_{t}} 226:{\displaystyle \,F_{m}} 195:{\displaystyle \,F_{m}} 156:{\displaystyle \,F_{0}} 64:is light re-emitted by 55:fluorescence microscopy 51:Bright-field microscopy 2282:"Plant Stress Biology" 1907:Integrated fluorometer 1849:Alternative approaches 1769: 1717: 1708:Nitrogen Balance Index 1694: 1666: 1638: 1592: 1528: 1500: 1472: 1440: 1336: 1293: 1269: 1226: 1202: 1162: 1069: 1043: 973: 936: 897: 854: 798: 753: 725: 697: 669: 634: 606: 578: 540: 510: 473: 445: 408: 378: 343: 311: 283: 255: 227: 196: 157: 131:Measuring fluorescence 58: 36: 24: 2733:10.1104/pp.125.4.1558 1871:) and maritime pine ( 1767: 1715: 1695: 1667: 1639: 1593: 1529: 1501: 1473: 1441: 1439:{\displaystyle C_{i}} 1413:photosynthesis system 1337: 1294: 1270: 1227: 1203: 1163: 1070: 1044: 974: 937: 898: 855: 799: 754: 726: 698: 670: 644:Calculated parameters 635: 607: 579: 541: 511: 474: 446: 409: 379: 344: 312: 284: 256: 228: 197: 158: 46:Plagiomnium undulatum 42: 30: 22: 2365:Field Crops Research 2172:Biochim Biophys Acta 2137:Biochim Biophys Acta 1676: 1648: 1620: 1559: 1510: 1482: 1454: 1423: 1303: 1292:{\displaystyle \,qP} 1279: 1236: 1225:{\displaystyle \,qP} 1212: 1175: 1079: 1068:{\displaystyle \,qP} 1055: 983: 946: 909: 864: 808: 765: 735: 707: 679: 651: 616: 588: 552: 522: 485: 455: 420: 390: 360: 321: 293: 265: 237: 209: 178: 139: 113:Kautsky et al., 1932 33:Solanum lycopersicum 3037:2013OptSp.114..471U 3009:Int. Meeting Prog. 2977:2012OptSp.112..271L 2408:1999RSEnv..69..296G 338: 3330:10.1093/jxb/ert208 3005:Silvestre et al. 2674:10.1007/bf00033156 2492:10.1007/bf00029749 2443:10.1007/bf00024185 2341:(336): 1199–1206. 2211:10.1007/bf00024185 1946:(336): 1199–1206. 1770: 1718: 1690: 1662: 1634: 1588: 1586: 1524: 1496: 1468: 1436: 1332: 1330: 1289: 1265: 1263: 1222: 1198: 1158: 1065: 1039: 969: 932: 893: 891: 850: 794: 792: 749: 721: 693: 665: 630: 602: 574: 536: 506: 469: 441: 404: 374: 339: 324: 307: 279: 251: 223: 192: 153: 124:electron acceptors 97:The Kautsky effect 59: 37: 25: 3323:(13): 3983–3998. 3088:10.3354/meps09157 2912:978-1-4020-3217-2 2870:10.1111/tpj.12314 2857:The Plant Journal 2540:978-1-4020-3217-2 1585: 1329: 1262: 1156: 1037: 890: 848: 791: 3368: 3342: 3332: 3307: 3297: 3272: 3235: 3202: 3161: 3151: 3093: 3092: 3090: 3072: 3063: 3057: 3056: 3020: 3014: 3003: 2997: 2996: 2956: 2950: 2949: 2947: 2946: 2940: 2933: 2923: 2917: 2916: 2889: 2883: 2882: 2872: 2848: 2839: 2838: 2802: 2796: 2795: 2785: 2761: 2755: 2754: 2744: 2727:(4): 1558–1566. 2721:Plant Physiology 2712: 2703: 2700: 2694: 2693: 2657: 2651: 2650: 2614: 2605: 2604: 2602: 2593:(9): 1169–1183. 2578: 2572: 2571: 2551: 2545: 2544: 2518: 2512: 2511: 2486:(1–2): 261–272. 2477: 2469: 2463: 2462: 2426: 2420: 2419: 2387: 2381: 2380: 2359: 2353: 2352: 2350: 2326: 2320: 2319: 2299: 2293: 2292: 2290: 2289: 2278: 2272: 2271: 2261: 2240:Sobrado (2008). 2237: 2231: 2230: 2194: 2188: 2187: 2167: 2161: 2160: 2132: 2126: 2125: 2117: 2108: 2107: 2105: 2104: 2093: 2080: 2079: 2045: 2036: 2030: 2029: 1992: 1983: 1982: 1980: 1979: 1964: 1958: 1957: 1955: 1937: 1928: 1699: 1697: 1696: 1691: 1689: 1688: 1671: 1669: 1668: 1663: 1661: 1660: 1643: 1641: 1640: 1635: 1633: 1632: 1597: 1595: 1594: 1589: 1587: 1584: 1583: 1574: 1573: 1564: 1533: 1531: 1530: 1525: 1523: 1522: 1506:; and variable, 1505: 1503: 1502: 1497: 1495: 1494: 1477: 1475: 1474: 1469: 1467: 1466: 1445: 1443: 1442: 1437: 1435: 1434: 1394:photorespiration 1341: 1339: 1338: 1333: 1331: 1328: 1327: 1318: 1317: 1308: 1298: 1296: 1295: 1290: 1274: 1272: 1271: 1266: 1264: 1261: 1260: 1251: 1250: 1241: 1231: 1229: 1228: 1223: 1207: 1205: 1204: 1199: 1197: 1196: 1167: 1165: 1164: 1159: 1157: 1155: 1154: 1150: 1149: 1148: 1134: 1130: 1129: 1128: 1116: 1115: 1114: 1102: 1098: 1097: 1096: 1084: 1074: 1072: 1071: 1066: 1048: 1046: 1045: 1040: 1038: 1036: 1032: 1031: 1030: 1019: 1018: 1017: 1005: 1001: 1000: 999: 987: 978: 976: 975: 970: 968: 967: 941: 939: 938: 933: 931: 930: 902: 900: 899: 894: 892: 889: 888: 879: 878: 869: 859: 857: 856: 851: 849: 847: 846: 837: 836: 835: 823: 822: 812: 803: 801: 800: 795: 793: 790: 789: 780: 779: 770: 758: 756: 755: 750: 748: 747: 730: 728: 727: 722: 720: 719: 702: 700: 699: 694: 692: 691: 674: 672: 671: 666: 664: 663: 639: 637: 636: 631: 629: 628: 611: 609: 608: 603: 601: 600: 583: 581: 580: 575: 573: 572: 568: 545: 543: 542: 537: 535: 534: 515: 513: 512: 507: 505: 501: 500: 499: 478: 476: 475: 470: 468: 467: 450: 448: 447: 442: 440: 436: 435: 434: 413: 411: 410: 405: 403: 402: 383: 381: 380: 375: 373: 372: 348: 346: 345: 340: 337: 332: 316: 314: 313: 308: 306: 305: 288: 286: 285: 280: 278: 277: 260: 258: 257: 252: 250: 249: 232: 230: 229: 224: 222: 221: 201: 199: 198: 193: 191: 190: 162: 160: 159: 154: 152: 151: 120:reaction centers 3376: 3375: 3371: 3370: 3369: 3367: 3366: 3365: 3356:Light reactions 3346: 3345: 3310: 3288:(345): 659–68. 3275: 3238: 3205: 3183:10.1071/fp05095 3164: 3129: 3126: 3101: 3096: 3070: 3065: 3064: 3060: 3022: 3021: 3017: 3004: 3000: 2958: 2957: 2953: 2944: 2942: 2938: 2931: 2925: 2924: 2920: 2913: 2891: 2890: 2886: 2850: 2849: 2842: 2804: 2803: 2799: 2763: 2762: 2758: 2714: 2713: 2706: 2701: 2697: 2659: 2658: 2654: 2616: 2615: 2608: 2580: 2579: 2575: 2553: 2552: 2548: 2541: 2520: 2519: 2515: 2480:Photosynth. Res 2471: 2470: 2466: 2431:Photosynth. Res 2428: 2427: 2423: 2389: 2388: 2384: 2361: 2360: 2356: 2328: 2327: 2323: 2301: 2300: 2296: 2287: 2285: 2280: 2279: 2275: 2246:Photosynthetica 2239: 2238: 2234: 2196: 2195: 2191: 2169: 2168: 2164: 2134: 2133: 2129: 2119: 2118: 2111: 2102: 2100: 2095: 2094: 2083: 2043: 2038: 2037: 2033: 1994: 1993: 1986: 1977: 1975: 1973:ClimEx Handbook 1966: 1965: 1961: 1935: 1930: 1929: 1925: 1921: 1903: 1888: 1881: 1856: 1851: 1831: 1827: 1823: 1819: 1812: 1808: 1804: 1796: 1792: 1788: 1783: 1779: 1762: 1753: 1726:several methods 1710: 1680: 1674: 1673: 1652: 1646: 1645: 1624: 1618: 1617: 1575: 1565: 1557: 1556: 1541: 1514: 1508: 1507: 1486: 1480: 1479: 1458: 1452: 1451: 1426: 1421: 1420: 1419:concentration ( 1418: 1409:pioneer species 1391: 1387: 1383: 1374: 1366:Mehler reaction 1363: 1358:carbon fixation 1356:generally mean 1353: 1348: 1319: 1309: 1301: 1300: 1277: 1276: 1252: 1242: 1234: 1233: 1210: 1209: 1179: 1173: 1172: 1140: 1138: 1120: 1118: 1117: 1106: 1088: 1086: 1085: 1077: 1076: 1053: 1052: 1022: 1020: 1009: 991: 989: 988: 981: 980: 950: 944: 943: 913: 907: 906: 880: 870: 862: 861: 838: 827: 814: 813: 806: 805: 781: 771: 763: 762: 739: 733: 732: 711: 705: 704: 683: 677: 676: 655: 649: 648: 646: 620: 614: 613: 592: 586: 585: 556: 550: 549: 526: 520: 519: 491: 489: 483: 482: 459: 453: 452: 426: 424: 418: 417: 394: 388: 387: 364: 358: 357: 355: 319: 318: 297: 291: 290: 269: 263: 262: 241: 235: 234: 213: 207: 206: 182: 176: 175: 143: 137: 136: 133: 105: 99: 53:at the top and 17: 12: 11: 5: 3374: 3372: 3364: 3363: 3361:Photosynthesis 3358: 3348: 3347: 3344: 3343: 3308: 3273: 3236: 3206:Lazár (2015). 3203: 3165:Lazár (2006). 3162: 3130:Lazár (1999). 3125: 3122: 3121: 3120: 3118:nutechintl.com 3111: 3109:geog.ucl.ac.uk 3100: 3099:External links 3097: 3095: 3094: 3058: 3031:(3): 471–477. 3015: 2998: 2971:(2): 271–279. 2951: 2918: 2911: 2884: 2863:(4): 568–579. 2840: 2813:(3): 173–183. 2797: 2776:(7): 977–982. 2756: 2704: 2695: 2668:(3): 147–150. 2662:Photosynth Res 2652: 2625:(2): 209–218. 2606: 2573: 2546: 2539: 2513: 2464: 2437:(1–2): 51–62. 2421: 2402:(3): 296–302. 2382: 2354: 2321: 2294: 2273: 2252:(2): 202–207. 2232: 2205:(1–2): 51–62. 2199:Photosynth Res 2189: 2162: 2143:(1): 105–115. 2127: 2109: 2081: 2054:(1): 114–133. 2031: 2004:(1): 114–133. 1984: 1959: 1922: 1920: 1917: 1916: 1915: 1910: 1902: 1899: 1898: 1897: 1892: 1891: 1886: 1879: 1873:Pinus pinaster 1855: 1852: 1850: 1847: 1829: 1825: 1821: 1817: 1810: 1806: 1802: 1794: 1790: 1786: 1781: 1777: 1761: 1758: 1752: 1749: 1709: 1706: 1705: 1704: 1701: 1687: 1683: 1659: 1655: 1631: 1627: 1601: 1600: 1582: 1578: 1572: 1568: 1540: 1537: 1536: 1535: 1521: 1517: 1493: 1489: 1465: 1461: 1433: 1429: 1416: 1389: 1385: 1381: 1373: 1370: 1361: 1352: 1349: 1347: 1344: 1326: 1322: 1316: 1312: 1288: 1285: 1259: 1255: 1249: 1245: 1221: 1218: 1195: 1192: 1189: 1186: 1182: 1153: 1147: 1143: 1137: 1133: 1127: 1123: 1113: 1109: 1105: 1101: 1095: 1091: 1064: 1061: 1035: 1029: 1025: 1016: 1012: 1008: 1004: 998: 994: 966: 963: 960: 957: 953: 929: 926: 923: 920: 916: 887: 883: 877: 873: 845: 841: 834: 830: 826: 821: 817: 788: 784: 778: 774: 746: 742: 718: 714: 690: 686: 662: 658: 645: 642: 627: 623: 599: 595: 571: 567: 563: 559: 533: 529: 504: 498: 494: 466: 462: 439: 433: 429: 401: 397: 371: 367: 354: 351: 336: 331: 327: 304: 300: 276: 272: 248: 244: 220: 216: 189: 185: 170:quenching and 150: 146: 132: 129: 109:Photosystem II 103:Kautsky effect 101:Main article: 98: 95: 86:photosynthesis 15: 13: 10: 9: 6: 4: 3: 2: 3373: 3362: 3359: 3357: 3354: 3353: 3351: 3340: 3336: 3331: 3326: 3322: 3318: 3314: 3309: 3305: 3301: 3296: 3291: 3287: 3283: 3279: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3242: 3237: 3233: 3229: 3225: 3221: 3217: 3213: 3209: 3204: 3200: 3196: 3192: 3188: 3184: 3180: 3176: 3172: 3168: 3163: 3159: 3155: 3150: 3145: 3141: 3137: 3133: 3128: 3127: 3123: 3119: 3115: 3112: 3110: 3106: 3103: 3102: 3098: 3089: 3084: 3080: 3076: 3069: 3062: 3059: 3054: 3050: 3046: 3042: 3038: 3034: 3030: 3026: 3019: 3016: 3012: 3008: 3002: 2999: 2994: 2990: 2986: 2982: 2978: 2974: 2970: 2966: 2962: 2955: 2952: 2941:on 2016-04-07 2937: 2930: 2929: 2922: 2919: 2914: 2908: 2904: 2900: 2896: 2888: 2885: 2880: 2876: 2871: 2866: 2862: 2858: 2854: 2847: 2845: 2841: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2801: 2798: 2793: 2789: 2784: 2779: 2775: 2771: 2767: 2760: 2757: 2752: 2748: 2743: 2738: 2734: 2730: 2726: 2722: 2718: 2711: 2709: 2705: 2699: 2696: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2656: 2653: 2648: 2644: 2640: 2636: 2632: 2628: 2624: 2620: 2613: 2611: 2607: 2601: 2596: 2592: 2588: 2584: 2577: 2574: 2569: 2565: 2561: 2557: 2550: 2547: 2542: 2536: 2532: 2528: 2524: 2517: 2514: 2509: 2505: 2501: 2497: 2493: 2489: 2485: 2481: 2476: 2468: 2465: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2425: 2422: 2417: 2413: 2409: 2405: 2401: 2397: 2393: 2386: 2383: 2378: 2374: 2370: 2366: 2358: 2355: 2349: 2344: 2340: 2336: 2332: 2325: 2322: 2317: 2313: 2309: 2305: 2298: 2295: 2283: 2277: 2274: 2269: 2265: 2260: 2255: 2251: 2247: 2243: 2236: 2233: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2200: 2193: 2190: 2185: 2181: 2177: 2173: 2166: 2163: 2158: 2154: 2150: 2146: 2142: 2138: 2131: 2128: 2123: 2116: 2114: 2110: 2098: 2092: 2090: 2088: 2086: 2082: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2049: 2042: 2035: 2032: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1991: 1989: 1985: 1974: 1970: 1963: 1960: 1954: 1949: 1945: 1941: 1934: 1927: 1924: 1918: 1914: 1911: 1908: 1905: 1904: 1900: 1894: 1893: 1885: 1878: 1874: 1870: 1869:Quercus suber 1866: 1865: 1864: 1861: 1853: 1848: 1846: 1842: 1839: 1836: 1833: 1814: 1798: 1774: 1766: 1759: 1757: 1750: 1748: 1746: 1742: 1737: 1734: 1729: 1727: 1723: 1714: 1707: 1702: 1685: 1681: 1657: 1653: 1629: 1625: 1615: 1611: 1607: 1603: 1602: 1580: 1576: 1570: 1566: 1554: 1550: 1549: 1548: 1546: 1538: 1519: 1515: 1491: 1487: 1463: 1459: 1449: 1431: 1427: 1414: 1410: 1406: 1402: 1401: 1400: 1397: 1395: 1379: 1371: 1369: 1367: 1359: 1350: 1345: 1343: 1324: 1320: 1314: 1310: 1286: 1283: 1257: 1253: 1247: 1243: 1219: 1216: 1193: 1190: 1187: 1184: 1169: 1151: 1145: 1141: 1135: 1131: 1125: 1121: 1111: 1107: 1103: 1099: 1093: 1089: 1062: 1059: 1050: 1033: 1027: 1023: 1014: 1010: 1006: 1002: 996: 992: 961: 958: 951: 927: 924: 921: 918: 904: 885: 881: 875: 871: 843: 839: 832: 828: 824: 819: 815: 786: 782: 776: 772: 760: 744: 740: 716: 712: 688: 684: 660: 656: 643: 641: 625: 621: 597: 593: 569: 565: 561: 557: 547: 531: 527: 517: 502: 496: 492: 480: 464: 460: 437: 431: 427: 415: 399: 395: 385: 369: 365: 352: 350: 334: 329: 325: 302: 298: 274: 270: 246: 242: 218: 214: 203: 187: 183: 173: 169: 168:photochemical 164: 148: 144: 130: 128: 125: 121: 116: 114: 110: 104: 96: 94: 91: 87: 83: 79: 75: 71: 67: 63: 56: 52: 48: 47: 41: 34: 29: 21: 3320: 3316: 3285: 3281: 3247:(2): 69–96. 3244: 3240: 3215: 3211: 3174: 3170: 3139: 3135: 3117: 3108: 3078: 3074: 3061: 3028: 3024: 3018: 3010: 3001: 2968: 2964: 2954: 2943:. Retrieved 2936:the original 2927: 2921: 2894: 2887: 2860: 2856: 2810: 2806: 2800: 2773: 2769: 2759: 2724: 2720: 2698: 2665: 2661: 2655: 2622: 2618: 2590: 2586: 2576: 2559: 2555: 2549: 2522: 2516: 2483: 2479: 2467: 2434: 2430: 2424: 2399: 2395: 2385: 2368: 2364: 2357: 2338: 2334: 2324: 2307: 2303: 2297: 2286:. Retrieved 2276: 2249: 2245: 2235: 2202: 2198: 2192: 2175: 2171: 2165: 2140: 2136: 2130: 2121: 2101:. Retrieved 2051: 2047: 2034: 2001: 1997: 1976:. Retrieved 1972: 1962: 1943: 1939: 1926: 1883: 1876: 1872: 1868: 1857: 1843: 1840: 1837: 1834: 1815: 1799: 1775: 1771: 1754: 1738: 1730: 1719: 1552: 1545:plant stress 1542: 1447: 1404: 1398: 1378:gas exchange 1375: 1354: 1170: 1051: 905: 761: 647: 548: 518: 481: 416: 386: 356: 204: 165: 134: 117: 112: 106: 61: 60: 44: 32: 3218:: 131–147. 3177:(1): 9–30. 3142:(1): 1–28. 1854:LIF sensors 1741:Chlorophyll 1733:polyphenols 1478:; maximum, 66:chlorophyll 3350:Categories 3124:References 2945:2014-05-23 2288:2011-03-28 2103:2011-03-28 1978:2020-01-14 3081:: 45–52. 3053:124095431 2993:123049193 2690:206766959 2562:: 87–92. 2371:: 35–49. 2310:: 20–28. 2178:: 87–92. 1745:Flavonols 1606:raspberry 1181:Φ 1136:− 1104:− 1007:− 915:Φ 825:− 3339:23913954 3304:10938857 3269:10325911 3261:23065335 3232:25569797 3199:84343023 3191:32689211 3158:10354490 2879:24033721 2827:19037743 2792:22503831 2751:11299337 2682:24420345 2647:15860339 2639:16228395 2508:19087818 2500:24442302 2459:23021516 2451:24435276 2268:20907425 2227:23021516 2219:24435276 2068:16411287 2018:16411287 1901:See also 1722:nitrogen 1152:′ 1132:′ 1100:′ 1034:′ 1003:′ 503:′ 438:′ 82:bacteria 3033:Bibcode 2973:Bibcode 2835:6194519 2742:1539381 2404:Bibcode 2157:1125215 2076:9698923 2026:9698923 1890:plants. 1599:damage. 1171:Whilst 3337:  3302:  3267:  3259:  3230:  3197:  3189:  3156:  3051:  2991:  2909:  2877:  2833:  2825:  2790:  2749:  2739:  2688:  2680:  2645:  2637:  2537:  2506:  2498:  2457:  2449:  2266:  2225:  2217:  2155:  2074:  2066:  2048:Planta 2024:  2016:  1998:Planta 74:plants 3265:S2CID 3195:S2CID 3071:(PDF) 3049:S2CID 2989:S2CID 2939:(PDF) 2932:(PDF) 2831:S2CID 2686:S2CID 2643:S2CID 2504:S2CID 2455:S2CID 2264:S2CID 2223:S2CID 2072:S2CID 2044:(PDF) 2022:S2CID 1936:(PDF) 1919:Notes 1610:boron 78:algae 3335:PMID 3300:PMID 3257:PMID 3228:PMID 3187:PMID 3154:PMID 3140:1412 2907:ISBN 2875:PMID 2823:PMID 2788:PMID 2774:1817 2747:PMID 2678:PMID 2635:PMID 2535:ISBN 2496:PMID 2447:PMID 2215:PMID 2153:PMID 2064:PMID 2014:PMID 1785:ΔF/F 1743:and 1672:and 1614:salt 1612:and 1232:and 80:and 3325:doi 3290:doi 3249:doi 3245:114 3220:doi 3216:175 3179:doi 3144:doi 3083:doi 3079:432 3041:doi 3029:114 2981:doi 2969:112 2899:doi 2865:doi 2815:doi 2778:doi 2737:PMC 2729:doi 2725:125 2670:doi 2627:doi 2595:doi 2564:doi 2560:990 2527:doi 2488:doi 2439:doi 2412:doi 2373:doi 2343:doi 2312:doi 2254:doi 2207:doi 2180:doi 2176:990 2145:doi 2141:376 2056:doi 2052:223 2006:doi 2002:223 1948:doi 1887:740 1880:685 1608:to 612:to 3352:: 3333:. 3321:64 3319:. 3315:. 3298:. 3286:51 3284:. 3280:. 3263:. 3255:. 3243:. 3226:. 3214:. 3210:. 3193:. 3185:. 3175:33 3173:. 3169:. 3152:. 3138:. 3134:. 3116:, 3107:, 3077:. 3073:. 3047:. 3039:. 3027:. 2987:. 2979:. 2967:. 2963:. 2905:. 2873:. 2861:76 2859:. 2855:. 2843:^ 2829:. 2821:. 2811:99 2809:. 2786:. 2772:. 2768:. 2745:. 2735:. 2723:. 2719:. 2707:^ 2684:. 2676:. 2666:25 2664:. 2641:. 2633:. 2623:79 2621:. 2609:^ 2591:27 2589:. 2585:. 2558:. 2533:. 2502:. 2494:. 2482:. 2478:. 2453:. 2445:. 2435:10 2433:. 2410:. 2400:69 2398:. 2369:91 2367:. 2339:50 2337:. 2333:. 2308:70 2306:. 2262:. 2250:46 2248:. 2244:. 2221:. 2213:. 2203:10 2201:. 2174:. 2151:. 2139:. 2112:^ 2084:^ 2070:. 2062:. 2050:. 2046:. 2020:. 2012:. 2000:. 1987:^ 1971:. 1944:50 1942:. 1938:. 1793:/F 1780:/F 1728:. 1644:, 1368:. 1342:. 979:= 759:. 731:- 703:= 640:. 202:. 76:, 49:. 3341:. 3327:: 3306:. 3292:: 3271:. 3251:: 3234:. 3222:: 3201:. 3181:: 3160:. 3146:: 3091:. 3085:: 3055:. 3043:: 3035:: 2995:. 2983:: 2975:: 2948:. 2915:. 2901:: 2881:. 2867:: 2837:. 2817:: 2794:. 2780:: 2753:. 2731:: 2692:. 2672:: 2649:. 2629:: 2603:. 2597:: 2570:. 2566:: 2543:. 2529:: 2510:. 2490:: 2484:9 2461:. 2441:: 2418:. 2414:: 2406:: 2379:. 2375:: 2351:. 2345:: 2318:. 2314:: 2291:. 2270:. 2256:: 2229:. 2209:: 2186:. 2182:: 2159:. 2147:: 2106:. 2078:. 2058:: 2028:. 2008:: 1981:. 1956:. 1950:: 1884:I 1882:/ 1877:I 1830:I 1826:M 1822:T 1818:E 1811:N 1807:P 1803:L 1795:M 1791:V 1787:M 1782:M 1778:V 1686:v 1682:F 1658:m 1654:F 1630:0 1626:F 1581:m 1577:F 1571:v 1567:F 1553:a 1520:v 1516:F 1492:m 1488:F 1464:0 1460:F 1448:a 1432:i 1428:C 1417:2 1405:a 1390:2 1386:2 1382:2 1362:2 1325:m 1321:F 1315:v 1311:F 1287:P 1284:q 1258:m 1254:F 1248:v 1244:F 1220:P 1217:q 1194:I 1191:I 1188:S 1185:P 1146:0 1142:F 1126:m 1122:F 1112:t 1108:F 1094:m 1090:F 1063:P 1060:q 1028:m 1024:F 1015:t 1011:F 997:m 993:F 965:) 962:I 959:I 956:( 952:Y 928:I 925:I 922:S 919:P 886:m 882:F 876:v 872:F 844:m 840:F 833:0 829:F 820:m 816:F 787:m 783:F 777:v 773:F 745:0 741:F 717:m 713:F 689:v 685:F 661:v 657:F 626:m 622:F 598:0 594:F 570:2 566:/ 562:1 558:T 532:t 528:F 497:m 493:F 465:0 461:F 432:0 428:F 400:m 396:F 370:0 366:F 335:0 330:m 326:F 303:m 299:F 275:0 271:F 247:t 243:F 219:m 215:F 188:m 184:F 149:0 145:F

Index




Plagiomnium undulatum
Bright-field microscopy
fluorescence microscopy
chlorophyll
excited to non-excited states
plants
algae
bacteria
photosynthesis
non-photochemical quenching
Kautsky effect
Photosystem II
reaction centers
electron acceptors
photochemical
non-photochemical quenching
carbon fixation
Mehler reaction
gas exchange
photorespiration
pioneer species
photosynthesis system
plant stress
raspberry
boron
salt

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.