Knowledge (XXG)

Active transport

Source đź“ť

575:). The energy derived from the pumping of protons across a cell membrane is frequently used as the energy source in secondary active transport. In humans, sodium (Na) is a commonly cotransported ion across the plasma membrane, whose electrochemical gradient is then used to power the active transport of a second ion or molecule against its gradient. In bacteria and small yeast cells, a commonly cotransported ion is hydrogen. Hydrogen pumps are also used to create an electrochemical gradient to carry out processes within cells such as in the 500:) comprise a large and diverse protein family, often functioning as ATP-driven pumps. Usually, there are several domains involved in the overall transporter protein's structure, including two nucleotide-binding domains that constitute the ATP-binding motif and two hydrophobic transmembrane domains that create the "pore" component. In broad terms, ABC transporters are involved in the import or export of molecules across a cell membrane; yet within the protein family there is an extensive range of function. 324: 656:. But the ATPase exports calcium ions more slowly: only 30 per second versus 2000 per second by the exchanger. The exchanger comes into service when the calcium concentration rises steeply or "spikes" and enables rapid recovery. This shows that a single type of ion can be transported by several enzymes, which need not be active all the time (constitutively), but may exist to meet specific, intermittent needs. 511:), the ABC transporter PhABCG1 is involved in the active transport of volatile organic compounds. PhABCG1 is expressed in the petals of open flowers. In general, volatile compounds may promote the attraction of seed-dispersal organisms and pollinators, as well as aid in defense, signaling, allelopathy, and protection. To study the protein PhABCG1, transgenic petunia 2137: 238:. There are two forms of active transport, primary active transport and secondary active transport. In primary active transport, the proteins involved are pumps that normally use chemical energy in the form of ATP. Secondary active transport, however, makes use of potential energy, which is usually derived through exploitation of an 618: 974:
Story of Discovery: SGLT2 Inhibitors: Harnessing the Kidneys to Help Treat Diabetes.” National Institute of Diabetes and Digestive and Kidney Diseases, U.S. Department of Health and Human Services, www.niddk.nih.gov/news/research-updates/Pages/story-discovery-SGLT2-inhibitors-harnessing-kidneys-help-treat-diabetes.aspx.
250:. The difference between passive transport and active transport is that the active transport requires energy, and moves substances against their respective concentration gradient, whereas passive transport requires no cellular energy and moves substances in the direction of their respective concentration gradient. 201:
treatment is sodium-glucose cotransporters. These transporters were discovered by scientists at the National Health Institute. These scientists had noticed a discrepancy in the absorption of glucose at different points in the kidney tubule of a rat. The gene was then discovered for intestinal glucose
533:
BY2 cells and is expressed in the presence of microbial elicitors. NtPDR1 is localized in the root epidermis and aerial trichomes of the plant. Experiments using antibodies specifically targeting NtPDR1 followed by Western blotting allowed for this determination of localization. Furthermore, it is
528:
Additionally in plants, ABC transporters may be involved in the transport of cellular metabolites. Pleiotropic Drug Resistance ABC transporters are hypothesized to be involved in stress response and export antimicrobial metabolites. One example of this type of ABC transporter is the protein NtPDR1.
503:
In plants, ABC transporters are often found within cell and organelle membranes, such as the mitochondria, chloroplast, and plasma membrane. There is evidence to support that plant ABC transporters play a direct role in pathogen response, phytohormone transport, and detoxification. Furthermore,
756:
are then used to digest the molecules absorbed by this process. Substances that enter the cell via signal mediated electrolysis include proteins, hormones and growth and stabilization factors. Viruses enter cells through a form of endocytosis that involves their outer membrane fusing with the
83:
uses ATP to pump sodium ions out of the cell and potassium ions into the cell, maintaining a concentration gradient essential for cellular function. Active transport is highly selective and regulated, with different transporters specific to different molecules or ions. Dysregulation of active
1466:
et al. 1960). The key point here was 'flux coupling', the cotransport of sodium and glucose in the apical membrane of the small intestinal epithelial cell. Half a century later this idea has turned into one of the most studied of all transporter proteins (SGLT1), the sodium–glucose
315:) ions exist in the cytosol of plant cells, and need to be transported into the vacuole. While the vacuole has channels for these ions, transportation of them is against the concentration gradient, and thus movement of these ions is driven by hydrogen pumps, or proton pumps. 104:
of molecules moving down a gradient, active transport uses cellular energy to move them against a gradient, polar repulsion, or other resistance. Active transport is usually associated with accumulating high concentrations of molecules that the cell needs, such as
519:
expression levels. In these transgenic lines, a decrease in emission of volatile compounds was observed. Thus, PhABCG1 is likely involved in the export of volatile compounds. Subsequent experiments involved incubating control and transgenic lines that expressed
648:, which allows three sodium ions into the cell to transport one calcium out. This antiporter mechanism is important within the membranes of cardiac muscle cells in order to keep the calcium concentration in the cytoplasm low. Many cells also possess 335:
Primary active transport, also called direct active transport, directly uses metabolic energy to transport molecules across a membrane. Substances that are transported across the cell membrane by primary active transport include metal ions, such as
558:
created by pumping ions in/out of the cell. Permitting one ion or molecule to move down an electrochemical gradient, but possibly against the concentration gradient where it is more concentrated to that where it is less concentrated, increases
524:
to test for transport activity involving different substrates. Ultimately, PhABCG1 is responsible for the protein-mediated transport of volatile organic compounds, such as benzyl alcohol and methylbenzoate, across the plasma membrane.
1402:
in 1961 was the first to formulate the cotransport concept to explain active transport . Specifically, he proposed that the accumulation of glucose in the intestinal epithelium across the brush border membrane was coupled to downhill
779:
Exocytosis involves the removal of substances through the fusion of the outer cell membrane and a vesicle membrane. An example of exocytosis would be the transmission of neurotransmitters across a synapse between brain cells.
594:
presented for the first time his discovery of the sodium-glucose cotransport as the mechanism for intestinal glucose absorption. Crane's discovery of cotransport was the first ever proposal of flux coupling in biology.
269:, meaning that one of the two substances is transported against its concentration gradient, utilizing the energy derived from the transport of another ion (mostly Na, K or H ions) down its concentration gradient. 2021: 961:
Inzucchi, Silvio E et al. “SGLT-2 Inhibitors and Cardiovascular Risk: Proposed Pathways and Review of Ongoing Outcome Trials.” Diabetes & Vascular Disease Research 12.2 (2015): 90–100. PMC. Web. 11 Nov.
242:
gradient. The energy created from one ion moving down its electrochemical gradient is used to power the transport of another ion moving against its electrochemical gradient. This involves pore-forming
379:. The sodium-potassium pump maintains the membrane potential by moving three Na ions out of the cell for every two K ions moved into the cell. Other sources of energy for primary active transport are 633:
In an antiporter two species of ions or other solutes are pumped in opposite directions across a membrane. One of these species is allowed to flow from high to low concentration, which yields the
1414:
transport cross the brush border. This hypothesis was rapidly tested, refined and extended encompass the active transport of a diverse range of molecules and ions into virtually every cell type.
748:. In the case of endocytosis, the cellular membrane folds around the desired materials outside the cell. The ingested particle becomes trapped within a pouch, known as a vesicle, inside the 280:) and transport them across the cell membrane. Because energy is required in this process, it is known as 'active' transport. Examples of active transport include the transportation of 84:
transport can lead to various disorders, including cystic fibrosis, caused by a malfunctioning chloride channel, and diabetes, resulting from defects in glucose transport into cells.
399:
to move protons across the inner mitochondrial membrane against their concentration gradient. An example of primary active transport using light energy are the proteins involved in
711:
This mechanism uses the absorption of sugar through the walls of the intestine to pull water in along with it. Defects in SGLT2 prevent effective reabsorption of glucose, causing
1698:
Zhou, L; Cryan, EV; D'Andrea, MR; Belkowski, S; Conway, BR; Demarest, KT (1 October 2003). "Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT2)".
1567:"Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca entry, extrusion, ER/mitochondrial Ca uptake and release, and Ca buffering" 1614:
Wright, EM; Loo, DD; Panayotova-Heiermann, M; Lostao, MP; Hirayama, BH; Mackenzie, B; Boorer, K; Zampighi, G (November 1994). "'Active' sugar transport in eukaryotes".
2018: 79:
Active transport is essential for various physiological processes, such as nutrient uptake, hormone secretion, and nerve impulse transmission. For example, the
76:, which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area of low concentration, without energy. 2174: 276:
the concentration gradient), specific transmembrane carrier proteins are required. These proteins have receptors that bind to specific molecules (e.g.,
1351: 1346:; Miller, D.; Bihler, I. (1961). "The restrictions on possible mechanisms of intestinal transport of sugars". In Kleinzeller, A.; Kotyk, A. (eds.). 1292: 1047: 1522:
Strehler, EE; Zacharias, DA (January 2001). "Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps".
1479:
Yu, SP; Choi, DW (June 1997). "Na-Ca exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate".
2118: 1931: 1078: 272:
If substrate molecules are moving from areas of lower concentration to areas of higher concentration (i.e., in the opposite direction as, or
202:
transport protein and linked to these membrane sodium glucose cotransport systems. The first of these membrane transport proteins was named
2304: 983: 823: 772:
In pinocytosis, cells engulf liquid particles (in humans this process occurs in the small intestine, where cells engulf fat droplets).
534:
likely that the protein NtPDR1 actively transports out antimicrobial diterpene molecules, which are toxic to the cell at high levels.
1963: 1103: 680: 652:, which can operate at lower intracellular concentrations of calcium and sets the normal or resting concentration of this important 277: 2167: 789: 497: 2147: 175:
Rosenberg (1948) formulated the concept of active transport based on energetic considerations, but later it would be redefined.
745: 265:, two substrates are transported in the same direction across the membrane. Antiport and symport processes are associated with 804: 117:. Examples of active transport include the uptake of glucose in the intestines in humans and the uptake of mineral ions into 1029: 2324: 672:
from high to low concentration to move another molecule uphill from low concentration to high concentration (against its
1000:
Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 15.6,
438:
induce a conformational (shape) change that drives the hydrogen ions to transport against the electrochemical gradient.
49: 1958:
Paston, Ira; Willingham, Mark C. (1985). Endocytosis. Springer, Boston, MA. pp 1–44. doi: 10.1007/978-1-4615-6904-6_1.
2160: 1069:
Reese, Jane B.; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V.; Jackson, Robert B. (2014).
1013:
Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Chapter 15,
2141: 234:
of the membrane is impermeable to the substance moved or because the substance is moved against the direction of its
504:
certain plant ABC transporters may function in actively exporting volatile compounds and antimicrobial metabolites.
2373: 2272: 1329:
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.
1316:
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.
266: 80: 2368: 1741:
Poppe, R; Karbach, U; Gambaryan, S; Wiesinger, H; Lutzenburg, M; Kraemer, M; Witte, OW; Koepsell, H (July 1997).
555: 2267: 708: 641: 576: 547: 423: 392: 299:. Active transport enables these cells to take up salts from this dilute solution against the direction of the 187: 69: 56:. Active transport requires cellular energy to achieve this movement. There are two types of active transport: 1947:
Transport into the Cell from the Plasma Membrane: Endocytosis – Molecular Biology of the Cell – NCBI Bookshelf
288:
into the cell by the sodium-potassium pump. Active transport often takes place in the internal lining of the
794: 1946: 673: 551: 300: 235: 141: 61: 53: 852:
Berlin: Reimer. (Vol. 1, Part 1, 1848; Vol. 1, Part 2, 1849; Vol. 2, Part 1, 1860; Vol. 2, Part 2, 1884).
295:
Plants need to absorb mineral salts from the soil or other sources, but these salts exist in very dilute
2234: 2219: 1210: 459: 328: 223: 191: 1300: 1055: 1246:"NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport" 1841: 1187: 669: 580: 485: 296: 231: 134: 1922:
Reece, Jane; Urry, Lisa; Cain, Michael; Wasserman, Steven; Minorsky, Peter; Jackson, Robert (2014).
2193: 323: 179: 1176:"Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter" 695:
is located in the small intestines, heart, and brain. It is also located in the S3 segment of the
2213: 2183: 2049: 1772: 1723: 1547: 1504: 1390: 1273: 1223: 404: 376: 227: 1348:
Membrane Transport and Metabolism. Proceedings of a Symposium held in Prague, August 22–27, 1960
2201: 2114: 2079: 2001: 1993: 1959: 1927: 1904: 1869: 1807: 1764: 1715: 1680: 1631: 1596: 1539: 1496: 1449: 1382: 1265: 1215: 1153: 1099: 1074: 899: 799: 93: 73: 2101:
Lodish H.; Berk A.; Zipursky S.L.; Matsudaira P.; Baltimore D.; Darnell J.; LĂłpez D. (2000).
919:"On accumulation and active transport in biological systems. I. Thermodynamic considerations" 2209: 2071: 1985: 1896: 1859: 1849: 1799: 1754: 1707: 1670: 1662: 1623: 1586: 1578: 1531: 1488: 1439: 1374: 1257: 1205: 1195: 1143: 1135: 930: 889: 879: 653: 512: 149: 38: 2025: 1926:(Tenth Addition ed.). United States of America: Pearson Education, Inc. p. 137. 1463: 1459: 1399: 1343: 1245: 1033: 696: 637:
to drive the transport of the other solute from a low concentration region to a high one.
591: 443: 431: 427: 372: 353: 289: 239: 211: 157: 31: 230:
and allow it to move across the membrane when it otherwise would not, either because the
1845: 1759: 1742: 1191: 2037: 1887:
Wright EM, Hirayama BA, Loo DF (2007). "Active sugar transport in health and disease".
1675: 1650: 1591: 1566: 1492: 1148: 1123: 894: 863: 649: 419: 400: 169: 97: 2362: 2345: 2299: 2107: 2075: 1989: 1900: 1864: 1829: 1227: 598: 584: 543: 455: 257:, one substrate is transported in one direction across the membrane while another is 247: 153: 46: 1803: 1776: 1727: 1508: 1394: 1277: 952:"Jens C. Skou - Biographical". Nobelprize.org. Nobel Media AB 2014. Web. 11 Nov 2017 935: 918: 446:
and release of hydrogen ion then restores the carrier to its original conformation.
2329: 2309: 2019:
Cell : Two Major Process in Exchange Of Materials Between Cell And Environment
1551: 1458:
the insight from this time that remains in all current text books is the notion of
1444: 1427: 765: 741: 572: 546:, energy is used to transport molecules across a membrane; however, in contrast to 463: 435: 691:) molecule into the cell for every two sodium ions it imports into the cell. This 391:). An example of primary active transport using redox energy is the mitochondrial 197:
One category of cotransporters that is especially prominent in research regarding
1535: 1365:
Wright EM, Turk E (February 2004). "The sodium/glucose cotransport family SLC5".
2319: 2314: 2291: 2229: 1026: 761: 733: 724: 467: 357: 258: 2102: 1834:
Proceedings of the National Academy of Sciences of the United States of America
1330: 1317: 1014: 1001: 2339: 2262: 1651:"Nutrient regulation of human intestinal sugar transporter (SGLT2) expression" 1378: 1261: 737: 728: 712: 645: 626: 606: 568: 439: 254: 165: 137:
suggested the possibility of active transport of substances across membranes.
114: 1997: 1854: 864:"The influence of light, temperature, and other conditions on the ability of 609:
depending on whether the substances move in the same or opposite directions.
2257: 2252: 2062:
Jahn, Reinhard; SĂĽdhof, Thomas C. (1999). "Membrane Fusion and Exocytosis".
1976:
Jahn, Reinhard; SĂĽdhof, Thomas C. (1999). "Membrane Fusion and Exocytosis".
1462:
published originally as an appendix to a symposium paper published in 1960 (
1200: 1175: 749: 692: 688: 665: 622: 602: 345: 341: 285: 262: 183: 118: 30:
This article is about transport in cellular biology. For human systems, see
17: 2083: 2005: 1908: 1811: 1719: 1600: 1543: 1453: 1386: 1269: 1219: 1157: 903: 2136: 1873: 1768: 1684: 1635: 1627: 1582: 1500: 884: 753: 478: 472: 304: 243: 198: 50:
from a region of lower concentration to a region of higher concentration
1666: 27:
Cellular molecule transport mechanism against the concentration gradient
2282: 2224: 700: 684: 634: 560: 349: 308: 130: 110: 101: 1711: 403:
that use the energy of photons to create a proton gradient across the
2152: 1139: 1073:(Tenth ed.). United States: Pearson Education Inc. p. 135. 704: 564: 384: 368: 364: 337: 281: 203: 757:
membrane of the cell. This forces the viral DNA into the host cell.
617: 616: 408: 388: 380: 322: 207: 161: 145: 1743:"Expression of the Na+-D-glucose cotransporter SGLT1 in neurons" 489: 396: 2156: 1828:
Loo, DD; Zeuthen, T; Chandy, G; Wright, EM (12 November 1996).
106: 744:
that move materials into and out of cells, respectively, via
1949:. Ncbi.nlm.nih.gov (2011-10-03). Retrieved on 2011-12-05. 676:). Both molecules are transported in the same direction. 2103:"Section 15.6 Cotransport by Symporters and Antiporters" 2028:. Takdang Aralin (2009-10-26). Retrieved on 2011-12-05. 1830:"Cotransport of water by the Na+/glucose cotransporter" 371:. A primary ATPase universal to all animal life is the 760:
Biologists distinguish two main types of endocytosis:
496:
Adenosine triphosphate-binding cassette transporters (
475:: mitochondrial ATP synthase, chloroplast ATP synthase 367:
that perform this type of transport are transmembrane
1790:
Wright EM (2001). "Renal Na-glucose cotransporters".
1649:
Dyer, J; Hosie, KB; Shirazi-Beechey, SP (July 1997).
360:
to cross membranes and distribute through the body.
2338: 2290: 2281: 2243: 2200: 1428:"Facts, fantasies and fun in epithelial physiology" 986:. Buzzle.com (2010-05-14). Retrieved on 2011-12-05. 2106: 2052:. Courses.washington.edu. Retrieved on 2011-12-05. 1565:Patterson, M; Sneyd, J; Friel, DD (January 2007). 996: 994: 992: 407:and also to create reduction power in the form of 1312: 1310: 1122:Kang, Joohyun; Park, Jiyoung (December 6, 2011). 1331:Electron-Transport Chains and Their Proton Pumps 862:Hoagland, D R; Hibbard, P L; Davis, A R (1926). 970: 968: 426:(from low to high hydrogen ion concentration). 422:is used to transport hydrogen ions against the 1823: 1821: 1318:Carrier Proteins and Active Membrane Transport 868:cells to concentrate halogens in the cell sap" 775:In phagocytosis, cells engulf solid particles. 45:is the movement of molecules or ions across a 2168: 1036:. Biologycorner.com. Retrieved on 2011-12-05. 948: 946: 542:In secondary active transport, also known as 8: 1211:11245.1/2a6bd9dd-ea94-4c25-95b8-7b16bea44e92 214:also played a prominent role in this field. 850:Untersuchungen ĂĽber thierische Elektricität 2287: 2192:Mechanisms for chemical transport through 2175: 2161: 2153: 331:is an example of primary active transport. 172:under controlled experimental conditions. 156:gradient and discovered the dependence of 1863: 1853: 1758: 1674: 1590: 1443: 1209: 1199: 1147: 1098:. Washington, DC: ASK PRESS. p. 65. 1002:Cotransport by Symporters and Antiporters 934: 893: 883: 2113:(4th ed.). New York: W.H. Freeman. 529:This unique ABC transporter is found in 815: 1239: 1237: 1174:Adebesin, Funmilayo (June 30, 2017). 1169: 1167: 1117: 1115: 7: 2305:Non-specific, adsorptive pinocytosis 1481:The European Journal of Neuroscience 679:An example is the glucose symporter 556:electrochemical potential difference 450:Types of primary active transporters 88:Active cellular transportation (ACT) 1760:10.1046/j.1471-4159.1997.69010084.x 1616:The Journal of Experimental Biology 1493:10.1111/j.1460-9568.1997.tb01482.x 668:uses the downhill movement of one 515:lines were created with decreased 395:that uses the reduction energy of 352:. These charged particles require 25: 1571:The Journal of General Physiology 1244:Crouzet, Jerome (April 7, 2013). 1071:Tenth Edition, Campbell's Biology 707:. Its mechanism is exploited in 550:, there is no direct coupling of 261:in the opposite direction. In a 72:. This process is in contrast to 2135: 2076:10.1146/annurev.biochem.68.1.863 1990:10.1146/annurev.biochem.68.1.863 1901:10.1111/j.1365-2796.2006.01746.x 1700:Journal of Cellular Biochemistry 790:ATP-binding cassette transporter 544:cotransport or coupled transport 1924:Tenth Addition Campbell Biology 1804:10.1152/ajprenal.2001.280.1.F10 1015:Transport across Cell Membranes 936:10.3891/acta.chem.scand.02-0014 848:Du Bois-Reymond, E. (1848–84). 824:"The importance of homeostasis" 190:for his research regarding the 1445:10.1113/expphysiol.2007.037523 1297:Essentials of Human Physiology 1096:The Cell: A Molecular Approach 1052:Essentials of Human Physiology 554:. Instead, it relies upon the 375:, which helps to maintain the 246:that form channels across the 1: 2325:Receptor-mediated endocytosis 2064:Annual Review of Biochemistry 1978:Annual Review of Biochemistry 563:and can serve as a source of 206:followed by the discovery of 1889:Journal of Internal Medicine 1536:10.1152/physrev.2001.81.1.21 144:investigated the ability of 709:glucose rehydration therapy 590:In August 1960, in Prague, 579:, an important function of 2390: 2273:Secondary active transport 2148:Secondary Active Transport 1792:Am J Physiol Renal Physiol 1293:"Section 7/7ch05/7ch05p12" 1048:"Section 7/7ch05/7ch05p11" 722: 683:, which co-transports one 538:Secondary active transport 267:secondary active transport 66:secondary active transport 29: 2190: 1747:Journal of Neurochemistry 1379:10.1007/s00424-003-1063-6 1352:Czech Academy of Sciences 1280:– via SpringerLink. 1262:10.1007/s11103-013-0053-0 1094:Cooper, Geoffrey (2009). 713:familial renal glucosuria 415:Model of active transport 2268:Primary active transport 2024:August 11, 2010, at the 1855:10.1073/pnas.93.23.13367 1124:"Plant ABC Transporters" 1032:August 24, 2011, at the 984:Active Transport Process 642:sodium-calcium exchanger 577:electron transport chain 548:primary active transport 424:electrochemical gradient 393:electron transport chain 319:Primary active transport 188:Nobel Prize in Chemistry 70:electrochemical gradient 58:primary active transport 2038:Pinocytosis: Definition 1250:Plant Molecular Biology 1201:10.1126/science.aan0826 795:Countercurrent exchange 2109:Molecular Cell Biology 1426:Boyd CA (March 2008). 674:concentration gradient 630: 332: 301:concentration gradient 236:concentration gradient 224:transmembrane proteins 142:Dennis Robert Hoagland 62:adenosine triphosphate 54:concentration gradient 2220:Facilitated diffusion 1628:10.1242/jeb.196.1.197 1583:10.1085/jgp.200609660 1524:Physiological Reviews 917:Rosenberg, T (1948). 752:. Often enzymes from 620: 601:can be classified as 460:sodium potassium pump 434:and the binding of a 373:sodium-potassium pump 329:sodium-potassium pump 326: 192:sodium-potassium pump 81:sodium-potassium pump 2194:biological membranes 2144:at Wikimedia Commons 2040:. biology-online.org 1128:The Arabidopsis Book 885:10.1085/jgp.10.1.121 583:that happens in the 581:cellular respiration 507:In petunia flowers ( 488:) transporter: MDR, 486:ATP binding cassette 284:out of the cell and 232:phospholipid bilayer 135:Emil du Bois-Reymond 1846:1996PNAS...9313367L 1667:10.1136/gut.41.1.56 1438:(3): 303–14 (304). 1354:. pp. 439–449. 1192:2017Sci...356.1386A 1186:(6345): 1386–1388. 180:Jens Christian Skou 2214:mediated transport 2184:Membrane transport 740:are both forms of 640:An example is the 631: 405:thylakoid membrane 333: 327:The action of the 2374:Biological matter 2356: 2355: 2352: 2351: 2202:Passive transport 2140:Media related to 2120:978-0-7167-3136-8 1933:978-0-321-77565-8 1712:10.1002/jcb.10631 1291:Nosek, Thomas M. 1080:978-0-321-77565-8 1046:Nosek, Thomas M. 800:Protein targeting 531:Nicotiana tabacum 481:: vacuolar ATPase 168:using innovative 121:cells of plants. 96:, which uses the 94:passive transport 74:passive transport 16:(Redirected from 2381: 2369:Membrane biology 2288: 2245:Active transport 2210:Simple diffusion 2177: 2170: 2163: 2154: 2142:Active transport 2139: 2124: 2112: 2088: 2087: 2059: 2053: 2047: 2041: 2035: 2029: 2016: 2010: 2009: 1973: 1967: 1956: 1950: 1944: 1938: 1937: 1919: 1913: 1912: 1884: 1878: 1877: 1867: 1857: 1840:(23): 13367–70. 1825: 1816: 1815: 1787: 1781: 1780: 1762: 1738: 1732: 1731: 1695: 1689: 1688: 1678: 1646: 1640: 1639: 1611: 1605: 1604: 1594: 1562: 1556: 1555: 1519: 1513: 1512: 1476: 1470: 1469: 1447: 1423: 1417: 1416: 1413: 1412: 1411: 1362: 1356: 1355: 1344:Crane, Robert K. 1340: 1334: 1327: 1321: 1314: 1305: 1304: 1299:. Archived from 1288: 1282: 1281: 1256:(1–2): 181–192. 1241: 1232: 1231: 1213: 1203: 1171: 1162: 1161: 1151: 1140:10.1199/tab.0153 1119: 1110: 1109: 1091: 1085: 1084: 1066: 1060: 1059: 1054:. Archived from 1043: 1037: 1027:Active Transport 1024: 1018: 1011: 1005: 998: 987: 981: 975: 972: 963: 959: 953: 950: 941: 940: 938: 923:Acta Chem. Scand 914: 908: 907: 897: 887: 859: 853: 846: 840: 839: 837: 835: 820: 654:second messenger 513:RNA interference 498:ABC transporters 166:metabolic energy 39:cellular biology 21: 2389: 2388: 2384: 2383: 2382: 2380: 2379: 2378: 2359: 2358: 2357: 2348: 2334: 2277: 2239: 2196: 2186: 2181: 2132: 2127: 2121: 2100: 2097: 2091: 2061: 2060: 2056: 2048: 2044: 2036: 2032: 2026:Wayback Machine 2017: 2013: 1975: 1974: 1970: 1957: 1953: 1945: 1941: 1934: 1921: 1920: 1916: 1886: 1885: 1881: 1827: 1826: 1819: 1789: 1788: 1784: 1740: 1739: 1735: 1697: 1696: 1692: 1648: 1647: 1643: 1613: 1612: 1608: 1564: 1563: 1559: 1521: 1520: 1516: 1478: 1477: 1473: 1425: 1424: 1420: 1410: 1408: 1407: 1406: 1404: 1364: 1363: 1359: 1342: 1341: 1337: 1328: 1324: 1315: 1308: 1290: 1289: 1285: 1243: 1242: 1235: 1173: 1172: 1165: 1121: 1120: 1113: 1106: 1093: 1092: 1088: 1081: 1068: 1067: 1063: 1045: 1044: 1040: 1034:Wayback Machine 1025: 1021: 1012: 1008: 999: 990: 982: 978: 973: 966: 960: 956: 951: 944: 916: 915: 911: 872:J. Gen. Physiol 861: 860: 856: 847: 843: 833: 831: 822: 821: 817: 813: 786: 731: 723:Main articles: 721: 697:proximal tubule 662: 650:calcium ATPases 635:entropic energy 615: 592:Robert K. Crane 540: 509:Petunia hybrida 452: 444:phosphate group 432:carrier protein 428:Phosphorylation 417: 321: 314: 303:. For example, 290:small intestine 240:electrochemical 220: 160:absorption and 127: 90: 35: 32:active mobility 28: 23: 22: 15: 12: 11: 5: 2387: 2385: 2377: 2376: 2371: 2361: 2360: 2354: 2353: 2350: 2349: 2344: 2342: 2336: 2335: 2333: 2332: 2327: 2322: 2317: 2312: 2307: 2302: 2296: 2294: 2285: 2279: 2278: 2276: 2275: 2270: 2265: 2260: 2255: 2249: 2247: 2241: 2240: 2238: 2237: 2232: 2227: 2222: 2217: 2206: 2204: 2198: 2197: 2191: 2188: 2187: 2182: 2180: 2179: 2172: 2165: 2157: 2151: 2150: 2145: 2131: 2130:External links 2128: 2126: 2125: 2119: 2096: 2093: 2092: 2090: 2089: 2054: 2042: 2030: 2011: 1984:(1): 863–911. 1968: 1951: 1939: 1932: 1914: 1879: 1817: 1782: 1733: 1690: 1641: 1606: 1557: 1514: 1487:(6): 1273–81. 1471: 1467:cotransporter. 1418: 1409: 1357: 1335: 1322: 1306: 1303:on 2016-03-24. 1283: 1233: 1163: 1111: 1104: 1086: 1079: 1061: 1058:on 2016-03-24. 1038: 1019: 1006: 988: 976: 964: 954: 942: 909: 878:(1): 121–126. 854: 841: 814: 812: 809: 808: 807: 802: 797: 792: 785: 782: 777: 776: 773: 742:bulk transport 720: 719:Bulk transport 717: 670:solute species 661: 658: 614: 611: 599:Cotransporters 539: 536: 494: 493: 482: 476: 470: 451: 448: 420:ATP hydrolysis 416: 413: 401:photosynthesis 377:cell potential 320: 317: 312: 226:recognize the 219: 216: 126: 123: 98:kinetic energy 89: 86: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2386: 2375: 2372: 2370: 2367: 2366: 2364: 2347: 2346:Degranulation 2343: 2341: 2337: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2301: 2300:Efferocytosis 2298: 2297: 2295: 2293: 2289: 2286: 2284: 2280: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2250: 2248: 2246: 2242: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2215: 2211: 2208: 2207: 2205: 2203: 2199: 2195: 2189: 2185: 2178: 2173: 2171: 2166: 2164: 2159: 2158: 2155: 2149: 2146: 2143: 2138: 2134: 2133: 2129: 2122: 2116: 2111: 2110: 2104: 2099: 2098: 2094: 2085: 2081: 2077: 2073: 2069: 2065: 2058: 2055: 2051: 2046: 2043: 2039: 2034: 2031: 2027: 2023: 2020: 2015: 2012: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1972: 1969: 1965: 1964:9781461569060 1961: 1955: 1952: 1948: 1943: 1940: 1935: 1929: 1925: 1918: 1915: 1910: 1906: 1902: 1898: 1894: 1890: 1883: 1880: 1875: 1871: 1866: 1861: 1856: 1851: 1847: 1843: 1839: 1835: 1831: 1824: 1822: 1818: 1813: 1809: 1805: 1801: 1797: 1793: 1786: 1783: 1778: 1774: 1770: 1766: 1761: 1756: 1752: 1748: 1744: 1737: 1734: 1729: 1725: 1721: 1717: 1713: 1709: 1706:(2): 339–46. 1705: 1701: 1694: 1691: 1686: 1682: 1677: 1672: 1668: 1664: 1660: 1656: 1652: 1645: 1642: 1637: 1633: 1629: 1625: 1621: 1617: 1610: 1607: 1602: 1598: 1593: 1588: 1584: 1580: 1576: 1572: 1568: 1561: 1558: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1518: 1515: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1475: 1472: 1468: 1465: 1461: 1455: 1451: 1446: 1441: 1437: 1433: 1429: 1422: 1419: 1415: 1401: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1367:PflĂĽgers Arch 1361: 1358: 1353: 1349: 1345: 1339: 1336: 1332: 1326: 1323: 1319: 1313: 1311: 1307: 1302: 1298: 1294: 1287: 1284: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1240: 1238: 1234: 1229: 1225: 1221: 1217: 1212: 1207: 1202: 1197: 1193: 1189: 1185: 1181: 1180:Plant Science 1177: 1170: 1168: 1164: 1159: 1155: 1150: 1145: 1141: 1137: 1133: 1129: 1125: 1118: 1116: 1112: 1107: 1105:9780878933006 1101: 1097: 1090: 1087: 1082: 1076: 1072: 1065: 1062: 1057: 1053: 1049: 1042: 1039: 1035: 1031: 1028: 1023: 1020: 1016: 1010: 1007: 1003: 997: 995: 993: 989: 985: 980: 977: 971: 969: 965: 958: 955: 949: 947: 943: 937: 932: 928: 924: 920: 913: 910: 905: 901: 896: 891: 886: 881: 877: 873: 869: 867: 858: 855: 851: 845: 842: 829: 825: 819: 816: 810: 806: 805:Translocation 803: 801: 798: 796: 793: 791: 788: 787: 783: 781: 774: 771: 770: 769: 767: 763: 758: 755: 751: 747: 743: 739: 735: 730: 726: 718: 716: 714: 710: 706: 702: 698: 694: 690: 686: 682: 677: 675: 671: 667: 659: 657: 655: 651: 647: 643: 638: 636: 628: 624: 619: 612: 610: 608: 604: 600: 596: 593: 588: 587:of the cell. 586: 585:mitochondrion 582: 578: 574: 570: 566: 562: 557: 553: 549: 545: 537: 535: 532: 526: 523: 518: 514: 510: 505: 501: 499: 491: 487: 483: 480: 477: 474: 471: 469: 465: 461: 457: 456:P-type ATPase 454: 453: 449: 447: 445: 442:of the bound 441: 437: 433: 429: 425: 421: 414: 412: 410: 406: 402: 398: 394: 390: 386: 382: 378: 374: 370: 366: 361: 359: 355: 351: 347: 343: 339: 330: 325: 318: 316: 310: 306: 302: 298: 293: 291: 287: 283: 279: 275: 270: 268: 264: 260: 259:cotransported 256: 251: 249: 248:cell membrane 245: 241: 237: 233: 229: 225: 217: 215: 213: 209: 205: 200: 195: 193: 189: 186:received the 185: 181: 176: 173: 171: 170:model systems 167: 163: 162:translocation 159: 155: 154:concentration 151: 147: 143: 138: 136: 133:physiologist 132: 129:In 1848, the 124: 122: 120: 116: 112: 108: 103: 99: 95: 87: 85: 82: 77: 75: 71: 68:that uses an 67: 63: 59: 55: 52:—against the 51: 48: 47:cell membrane 44: 40: 33: 19: 2330:Transcytosis 2310:Phagocytosis 2244: 2108: 2067: 2063: 2057: 2050:Phagocytosis 2045: 2033: 2014: 1981: 1977: 1971: 1954: 1942: 1923: 1917: 1895:(1): 32–43. 1892: 1888: 1882: 1837: 1833: 1798:(1): F10–8. 1795: 1791: 1785: 1753:(1): 84–94. 1750: 1746: 1736: 1703: 1699: 1693: 1658: 1654: 1644: 1619: 1615: 1609: 1577:(1): 29–56. 1574: 1570: 1560: 1530:(1): 21–50. 1527: 1523: 1517: 1484: 1480: 1474: 1460:Robert Crane 1457: 1435: 1432:Exp. Physiol 1431: 1421: 1398: 1373:(5): 510–8. 1370: 1366: 1360: 1347: 1338: 1325: 1301:the original 1296: 1286: 1253: 1249: 1183: 1179: 1131: 1127: 1095: 1089: 1070: 1064: 1056:the original 1051: 1041: 1022: 1009: 979: 957: 926: 922: 912: 875: 871: 865: 857: 849: 844: 832:. Retrieved 827: 818: 778: 766:phagocytosis 759: 732: 678: 663: 639: 632: 621:Function of 597: 589: 573:ATP synthase 541: 530: 527: 521: 516: 508: 506: 502: 495: 464:calcium pump 436:hydrogen ion 418: 363:Most of the 362: 358:ion channels 334: 294: 273: 271: 252: 222:Specialized 221: 212:Robert Krane 196: 177: 174: 139: 128: 100:and natural 91: 78: 65: 57: 42: 36: 18:Co-transport 2320:Potocytosis 2315:Pinocytosis 2292:Endocytosis 2070:: 863–911. 1661:(1): 56–9. 1622:: 197–212. 762:pinocytosis 734:Endocytosis 725:Endocytosis 627:antiporters 607:antiporters 468:proton pump 383:energy and 182:, a Danish 115:amino acids 64:(ATP), and 2363:Categories 2340:Exocytosis 2263:Antiporter 1350:. Prague: 811:References 738:exocytosis 729:Exocytosis 646:antiporter 623:symporters 613:Antiporter 603:symporters 569:metabolism 440:Hydrolysis 255:antiporter 218:Background 152:against a 148:to absorb 60:that uses 2258:Symporter 2253:Uniporter 1998:0066-4154 1228:206658803 1134:: e0153. 929:: 14–33. 754:lysosomes 750:cytoplasm 693:symporter 689:galactose 666:symporter 660:Symporter 571:(e.g. in 354:ion pumps 307:(Cl) and 286:potassium 263:symporter 228:substance 184:physician 178:In 1997, 140:In 1926, 119:root hair 2235:Carriers 2230:Channels 2212:(or non- 2084:10872468 2022:Archived 2006:10872468 1909:17222166 1812:11133510 1777:34558770 1728:21908010 1720:14505350 1601:17190902 1544:11152753 1509:23146698 1454:18192340 1395:41985805 1387:12748858 1278:12276939 1270:23564360 1220:28663500 1158:22303277 1030:Archived 904:19872303 834:23 April 784:See also 746:vesicles 699:in each 479:V-ATPase 473:F-ATPase 387:energy ( 305:chloride 297:solution 244:proteins 199:diabetes 158:nutrient 2283:Cytosis 2225:Osmosis 1874:8917597 1842:Bibcode 1769:9202297 1685:9274472 1676:1027228 1636:7823022 1592:2151609 1552:9062253 1501:9215711 1188:Bibcode 1149:3268509 895:2140878 866:Nitella 828:Science 705:kidneys 703:in the 701:nephron 685:glucose 561:entropy 522:PhABCG1 517:PhABCG1 430:of the 369:ATPases 365:enzymes 309:nitrate 278:glucose 274:against 125:History 111:glucose 102:entropy 92:Unlike 43:active 2117:  2082:  2004:  1996:  1962:  1930:  1907:  1872:  1862:  1810:  1775:  1767:  1726:  1718:  1683:  1673:  1634:  1599:  1589:  1550:  1542:  1507:  1499:  1452:  1393:  1385:  1276:  1268:  1226:  1218:  1156:  1146:  1102:  1077:  902:  892:  565:energy 492:, etc. 385:photon 348:, and 282:sodium 253:In an 146:plants 131:German 2095:Notes 1865:24099 1773:S2CID 1724:S2CID 1548:S2CID 1505:S2CID 1464:Crane 1400:Crane 1391:S2CID 1274:S2CID 1224:S2CID 681:SGLT1 484:ABC ( 409:NADPH 389:light 381:redox 208:SGLT2 204:SGLT1 150:salts 2115:ISBN 2080:PMID 2002:PMID 1994:ISSN 1960:ISBN 1928:ISBN 1905:PMID 1870:PMID 1808:PMID 1765:PMID 1716:PMID 1681:PMID 1632:PMID 1597:PMID 1540:PMID 1497:PMID 1450:PMID 1383:PMID 1266:PMID 1216:PMID 1154:PMID 1100:ISBN 1075:ISBN 962:2017 900:PMID 836:2013 830:. me 764:and 736:and 727:and 687:(or 625:and 605:and 567:for 490:CFTR 397:NADH 113:and 107:ions 2072:doi 1986:doi 1897:doi 1893:261 1860:PMC 1850:doi 1800:doi 1796:280 1755:doi 1708:doi 1671:PMC 1663:doi 1655:Gut 1624:doi 1620:196 1587:PMC 1579:doi 1575:129 1532:doi 1489:doi 1440:doi 1375:doi 1371:447 1258:doi 1206:hdl 1196:doi 1184:356 1144:PMC 1136:doi 931:doi 890:PMC 880:doi 644:or 552:ATP 356:or 311:(NO 164:on 37:In 2365:: 2105:. 2078:. 2068:68 2066:. 2000:. 1992:. 1982:68 1980:. 1903:. 1891:. 1868:. 1858:. 1848:. 1838:93 1836:. 1832:. 1820:^ 1806:. 1794:. 1771:. 1763:. 1751:69 1749:. 1745:. 1722:. 1714:. 1704:90 1702:. 1679:. 1669:. 1659:41 1657:. 1653:. 1630:. 1618:. 1595:. 1585:. 1573:. 1569:. 1546:. 1538:. 1528:81 1526:. 1503:. 1495:. 1483:. 1456:. 1448:. 1436:93 1434:. 1430:. 1405:Na 1397:. 1389:. 1381:. 1369:. 1309:^ 1295:. 1272:. 1264:. 1254:82 1252:. 1248:. 1236:^ 1222:. 1214:. 1204:. 1194:. 1182:. 1178:. 1166:^ 1152:. 1142:. 1130:. 1126:. 1114:^ 1050:. 991:^ 967:^ 945:^ 925:. 921:. 898:. 888:. 876:10 874:. 870:. 826:. 768:. 715:. 664:A 466:, 462:, 458:: 411:. 350:Ca 346:Mg 344:, 340:, 338:Na 292:. 210:. 194:. 109:, 41:, 2216:) 2176:e 2169:t 2162:v 2123:. 2086:. 2074:: 2008:. 1988:: 1966:. 1936:. 1911:. 1899:: 1876:. 1852:: 1844:: 1814:. 1802:: 1779:. 1757:: 1730:. 1710:: 1687:. 1665:: 1638:. 1626:: 1603:. 1581:: 1554:. 1534:: 1511:. 1491:: 1485:9 1442:: 1377:: 1333:. 1320:. 1260:: 1230:. 1208:: 1198:: 1190:: 1160:. 1138:: 1132:9 1108:. 1083:. 1017:. 1004:. 939:. 933:: 927:2 906:. 882:: 838:. 629:. 342:K 313:3 34:. 20:)

Index

Co-transport
active mobility
cellular biology
cell membrane
from a region of lower concentration to a region of higher concentration
concentration gradient
adenosine triphosphate
electrochemical gradient
passive transport
sodium-potassium pump
passive transport
kinetic energy
entropy
ions
glucose
amino acids
root hair
German
Emil du Bois-Reymond
Dennis Robert Hoagland
plants
salts
concentration
nutrient
translocation
metabolic energy
model systems
Jens Christian Skou
physician
Nobel Prize in Chemistry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑