Knowledge (XXG)

Computer-generated holography

Source 📝

160:
reported by Waters whose major assumption originated with Rogers who recognized that a Fresnel zone plate could be considered a special case of the hologram proposed by Gabor. But, as far as most of the object points were non-zero, the computational complexity of the point-source concept was much higher than in the Fourier transformation concept. Some researchers tried to overcome this drawback by predefining and storing all the possible elementary holograms using special data storage techniques because of the huge capacity that is needed in this case, others by using special hardware.
144:
images. Brown and Lohmann introduced a technique to calculate computer generated holograms of 3D objects. Calculation of the light propagation from three-dimensional objects is performed according to the usual parabolic approximation to the Fresnel-Kirchhoff diffraction integral. The wavefront to be reconstructed by the hologram is, therefore, the superposition of the Fourier transforms of each object plane in depth, modified by a quadratic phase factor.
115:
equipment, real-time computation is tricky. There are many different methods for calculating the interference pattern for a CGH. In the following 25 years, many methods for computer-generated holograms were proposed in the fields of holographic information and computational reduction as well as in computational and quantization techniques. The algorithms can be categorized in two main concepts: Fourier transform holograms and point source holograms.
187:(SLM), abusing this term to include not only LCD displays or similar devices, but also films and masks. Basically, there are different types of SLMs available: Pure phase modulators (retarding the illuminating wave), pure amplitude modulators (blocking the illumination light), polarization modulators (influencing the polarization state of light) and SLMs which have the capability of combined phase/amplitude modulation. 203:
reasonable. So far two different approaches for amplitude-phase-modulation have been implemented. One is based on phase-only or amplitude-only modulation and consecutive spatial filtering, the other one is based on polarization holograms with variable orientation and magnitude of local birefringence. Holograms with a constraint, such as phase-only or amplitude-only, may be computed via algorithms such as the
271: 75:(1900–1979) to improve the resolving power on electron microscopes. An object is illuminated with a coherent (usually monochromatic) light beam; the scattered light is brought to interference with a reference beam of the same source, recording the interference pattern. CGH as defined in the introduction has broadly three tasks: 153: 171:. Ray tracing is perhaps the simplest method of computer generated holography to visualize. Essentially, the path length difference between the distance a virtual "reference beam" and a virtual "object beam" have to travel is calculated; this will give the relative phase of the scattered object beam. 159:
The second computational strategy is based on the point source concept, where the object is broken down in self-luminous points. An elementary hologram is calculated for every point source and the final hologram is synthesized by superimposing all the elementary holograms. This concept has been first
331:
Recently computer-generated holography has been extended in its usage beyond light optics, and applied in generating structured electron wavefunctions with a desired amplitude and phase profile. The computer generated holograms are designed by the interference of a target wave with a reference wave,
220:
exposure. Holographic displays are currently yet a challenge (as of 2008), although successful prototypes have been built. An ideal display for computer generated holograms would consist of pixels smaller than a wavelength of light with adjustable phase and brightness. Such displays have been called
130:
In the first one, the Fourier transformation is used to simulate the propagation of each plane of depth of the object to the hologram plane. The Fourier transformation concept was first introduced by Byron R. Brown and Adolf W. Lohmann with the detour phase method leading to cell oriented holograms.
202:
Even if a fully complex phase/amplitude modulation would be ideal, a pure phase or pure amplitude solution is normally preferred because it is much easier to implement technologically. Nevertheless, for the creation of complicated light distribution simultaneous modulation of amplitude and phase is
143:
for reconstruction. So there are two steps in this process: computing the light field in the far observer plane, and then Fourier transforming this field back to the lens plane. These holograms are called Fourier Based Holograms. First CGHs based on the Fourier transform could reconstruct only 2D
174:
Over the last three decades, both concepts have made remarkable progress improving computational speed and image quality. However, some technical restraints, like computation and storage capacity, still burden digital holography which makes real-time applications almost impossible with current
163:
In the point-source concept the major problem is the trade-off between data storage capacity and computational speed. In particular, algorithms that increase computational speed usually have much greater data storage requirements while algorithms that reduce data storage requirements have high
114:
Unfortunately, the researchers soon realized that there are noticeable lower and upper bounds in terms of computational speed and image quality and fidelity respectively. Wavefront calculations are computationally very intensive; even with modern mathematical techniques and high-end computing
34:. A computer-generated hologram can be displayed on a dynamic holographic display, or it can be printed onto a mask or film using lithography. When a hologram is printed onto a mask or film, it is then illuminated by a coherent light source to display the holographic images. 190:
In the case of pure phase or amplitude modulation, clearly quality losses are unavoidable. Early forms of pure amplitude holograms were simply printed in black and white, meaning that the amplitude had to be encoded with one bit of depth only. Similarly, the
215:
The third (technical) issue is beam modulation and actual wavefront reconstruction. Masks may be printed, resulting often in a grained pattern structure since most printers can make only dots (although very small ones). Films may be developed by
110:
Computer generated holograms offer important advantages over optical holograms since there is no need for a real object. Because of this breakthrough, a three-dimensional display was expected when the first algorithms were reported at 1966.
44:
Compared to classical holograms, computer-generated holograms have the advantage that the objects that one wants to show do not have to possess any physical reality, and can be completely synthetically generated.
332:
which could be, e.g. a plane-like wave slightly tilted in one direction. The holographic diffractive optical elements used are usually constructed out of thin membranes of materials such as silicon nitride.
781:
Clark, Matthew (1 September 1999). "Two-dimensional, three-dimensional, and gray-scale images reconstructed from computer-generated holograms designed by use of a direct-search method".
41:
suitable for observation. If holographic data of existing objects is generated optically and recorded and processed digitally, and subsequently displayed, this is termed CGH as well.
1703:
Ekberg M., Larsson M., Hård S. (1990). "Multilevel Phase Holograms Manufactured by Electron-Beam Lithography". Opt. Lett. (OSA) 15 (10): 568-569. 0146-9592/90/100568-02$ 2.00/0
1992: 1315:
M. Nakajima; H. Komatsu; Y. Mitsuhashi; T. Morikawa (1976). "Computer generated polarization holograms: phase recording by polarization effect in photodichroic materials".
2285: 988: 131:
A coding technique suggested by Burch replaced the cell oriented holograms by point holograms and made this kind of computer generated holograms more attractive. In a
1384: 292: 1728: 824:
Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Paciello, Antonio; Embrione, Valerio; Fusco, Sabato; Ferraro, Pietro; Antonio Netti, Paolo (2014-01-01).
1939: 433:
Yaraş, Fahri; Kang, Hoonjong; Onural, Levent (29 September 2009). "Real-time phase-only color holographic video display system using LED illumination".
102:
Note that it is not always justified to make a strict distinction between these steps; however it helps the discussion to structure it in this way.
241:
VividQ provides software for real-time CGH devices, allowing for the generation of images with over 200 depth layers using standard computing power
207:
or more general optimisation algorithms such as direct search, simulated annealing or stochastic gradient descent using, for example, TensorFlow.
1912: 1629: 1367: 1518:
P. J. Christopher; A. Kadis; G. S. D. Gordon; T. D. Wilkinson (2022). "HoloGen: An open-source toolbox for high-speed hologram generation".
2211: 1986: 2060: 37:
The term "computer-generated holography" has become used to denote the whole process chain of synthetically preparing holographic light
1152:
H. Yang; E. S. Kim (1996). "Waveform-decomposition-based algorithm for horizontal parallax-only-display computer-generated holograms".
2259: 1195:
J. L. Juárez-Peréz; A. Olivares- Peréz & L. R. Berriel-Valdos (1997). "Nonredundant calculations for creating Fresnel holograms".
1974: 1933: 318: 940: 2296: 1979: 1721: 98:
the interference pattern onto a coherent light beam by technological means, to transport it to the user observing the hologram.
31: 703:
F. Wyrowski; R. Hauck & O. Bryngdahl (1987). "Computer-generated holography: hologram repetition and phase manipulation".
1998: 1968: 1795: 296: 48:
Ultimately, computer-generated holography might expand upon all the roles of current computer-generated imagery. Holographic
350: 256:
Cortical Cafe CGH Kit is a CGH related hobbyist site with instructions, source code, and a web-application for CGH creation.
2269: 2264: 2254: 1871: 183:
Once it is known what the scattered wavefront of the object looks like or how it may be computed, it must be fixed on a
1714: 738:
D. Leseberg & C. Frère (1988). "Computer-generated holograms of 3-D objects composed of tilted planar segments".
281: 2054: 1784: 1778: 204: 119: 300: 285: 2190: 1901: 1117:
T. Ito; K. Yoshida; S. Takahashi; T. Yabe; et al. (1996). "Special-purpose computer for holography HORN-2".
399:
Ch. Slinger; C. Cameron; M. Stanley (Aug 2005), "Computer-Generated Holography as a Generic Display Technology",
2092: 1895: 1266: 2098: 1230:
H. Yoshikawa; S. Iwase & T. Oneda (2001). "Fast Computation of Fresnel Holograms employing Difference".
184: 1416:"Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators" 2195: 1945: 1860: 1089: 2082: 2076: 53: 825: 2087: 1961: 1537: 1476: 1427: 1324: 1278: 1239: 1161: 1126: 1081: 1033: 837: 790: 747: 712: 669: 508: 442: 250: 237:
Currently, several companies and university departments are researching on the field of CGH devices:
2315: 2233: 2137: 2044: 1927: 1888: 1815: 1094: 222: 2275: 2149: 2071: 2066: 2029: 1561: 1527: 1500: 642: 565: 476: 416: 381: 2228: 2024: 1956: 1625: 1553: 1492: 1445: 1363: 1340: 1212: 1177: 1051: 894: 873:"Optimization of Phase-Only Computer-Generated Holograms Based on the Gradient Descent Method" 853: 806: 763: 685: 634: 524: 468: 373: 132: 1687: 2280: 2019: 1821: 1767: 1621: 1610: 1580: 1545: 1484: 1435: 1396: 1332: 1286: 1247: 1204: 1169: 1134: 1099: 1041: 1000: 955: 921: 884: 845: 798: 755: 720: 677: 626: 599: 555: 516: 458: 450: 408: 365: 1669: 118:
One of the more prevalent methods that can be used to generate phase-only holograms is the
2185: 2175: 2122: 1883: 912:
J.J. Burch (1967). "A Computer Algorithm for the Synthesis of Spatial Frequency Filters".
499:
Brown, Byron R.; Lohmann, Adolf W. (1966). "Complex spatial filtering with binary masks".
1541: 1480: 1431: 1328: 1282: 1243: 1165: 1130: 1085: 1037: 841: 794: 751: 716: 673: 512: 446: 1789: 1745: 1737: 1464: 963: 584: 226: 2309: 1605: 1565: 1138: 385: 244: 140: 849: 646: 569: 2039: 1504: 480: 420: 72: 1072:
M. Lucente (1993). "Interactive computation of holograms using a look-up table".
2154: 2117: 1838: 270: 660:
D. Leseberg & O. Bryngdahl (1984). "Computer-generated rainbow holograms".
2132: 2127: 2109: 2049: 1601: 1549: 1251: 64: 1557: 898: 857: 617:
W.H. Lee (1970). "Sampled Fourier Transform Hologram Generated by Computer".
377: 139:. This is usually achieved by using the Fourier transforming properties of a 2249: 2223: 2180: 2170: 1876: 1773: 1617: 349:
Sahin, Erdem; Stoykova, Elena; Mäkinen, Jani; Gotchev, Atanas (2020-03-20).
136: 38: 1496: 1449: 1440: 1415: 1344: 1216: 1181: 1055: 925: 810: 767: 724: 689: 638: 528: 472: 560: 543: 1951: 1922: 1762: 1488: 1336: 1208: 1173: 802: 759: 681: 454: 192: 49: 27: 1400: 1022:"Gabor diffraction microscopy: the hologram as a generalized zone-plate" 959: 889: 872: 630: 603: 520: 412: 2216: 1866: 1831: 463: 68: 1103: 1005: 1850: 1706: 1290: 1046: 1021: 52:
displays might be used for a wide range of applications, for example
369: 1532: 1465:"Full phase and amplitude control in computer-generated holography" 826:"Investigation on specific solutions of Gerchberg–Saxton algorithm" 164:
computational complexity (though some optimizations are possible).
1826: 1294: 217: 152: 1267:"Computer-generated holograms: A simplified ray-tracing approach" 1844: 1710: 264: 196: 151: 989:"Holographic Image synthesis utilizing theoretical methods" 26:) is a technique that uses computer algorithms to generate 1651: 167:
Another concept which leads to point source CGHs is the
351:"Computer-Generated Holograms for 3D Imaging: A Survey" 135:
hologram the reconstruction of the image occurs in the
1414:
V. Arrizon; G. Mendez; D. Sanchez-de-La-Llave (2005).
1385:"The Kinoform: A New Wavefront Reconstruction Device" 1383:
L. B. Lesem; P. M. Hirsch; J. A. Jordan, Jr. (1969).
585:"The Kinοform: A New Wavefront Reconstruction Device" 2242: 2204: 2163: 2108: 2012: 1993:
Thick-film dielectric electroluminescent technology
1911: 1806: 1753: 1744: 1609: 583:L.B. Lesem; P.M. Hirsch & J.A. Jordan (1969). 542:L.B. Lesem; P.M. Hirsch & J.A. Jordan (1968). 494: 492: 490: 2286:Comparison of CRT, LCD, plasma, and OLED displays 544:"Computer synthesis of holograms for 3-D display" 1265:A. D. Stein; Z. Wang; J. S. Leigh, Jr. (1992). 871:Liu, Shujian; Takaki, Yasuhiro (January 2020). 1722: 8: 88:the wavefront data, preparing it for display 1940:Surface-conduction electron-emitter display 299:. Unsourced material may be challenged and 1851:Active-Matrix Organic light-emitting diode 1750: 1729: 1715: 1707: 1612:Molecular Speculations on Global Abundance 1067: 1065: 1531: 1463:M. Fratz; P. Fischer; D. M. Giel (2009). 1439: 1093: 1045: 1004: 888: 559: 462: 319:Learn how and when to remove this message 247:has developed the "Holovideo" CGH display 1389:IBM Journal of Research and Development 948:IBM Journal of Research and Development 592:IBM Journal of Research and Development 341: 1582:gsdgordon/hologramGenerationTensorflow 939:B.R. Brown & A.W. Lohmann (1969). 67:is a technique originally invented by 56:(CAD), gaming, and holographic video. 941:"Computer-generated Binary Holograms" 195:is a pure-phase encoding invented at 30:. It involves generating holographic 7: 1987:Ferroelectric liquid crystal display 1688:"CorticalCafe Free Desktop Software" 1670:"The Holovideo Page by Mark Lucente" 297:adding citations to reliable sources 2061:Light-emitting electrochemical cell 16:Three-dimensional imaging technique 2260:Large-screen television technology 82:of the virtual scattered wavefront 14: 1934:Organic light-emitting transistor 2297:Comparison of display technology 830:Optics and Lasers in Engineering 269: 1928:Electroluminescent Quantum Dots 1520:Computer Physics Communications 1358:W. Lauterborn; T. Kurz (2002). 850:10.1016/j.optlaseng.2013.06.008 120:Gerchberg-Saxton (GS) algorithm 1999:Laser-powered phosphor display 1579:G. S. D. Gordon (2020-04-21), 1: 2265:Optimum HDTV viewing distance 2255:History of display technology 2143:Computer-generated holography 1074:Journal of Electronic Imaging 253:have prototyped a CGH display 20:Computer-generated holography 1845:Organic light-emitting diode 1839:Light-emitting diode display 1139:10.1016/0010-4655(95)00125-5 175:standard computer hardware. 229:is required to build them. 2332: 2055:Vacuum fluorescent display 1779:Electroluminescent display 1362:(2nd ed.). Springer. 205:Gerchberg-Saxton algorithm 199:in the early days of CGH. 2294: 1902:Liquid crystal on silicon 1550:10.1016/j.cpc.2021.108139 1252:10.1007/s10043-001-0331-y 548:Communications of the ACM 2093:Fourteen-segment display 1896:Digital Light Processing 1608:. In BC Crandall (ed.). 126:Fourier transform method 2099:Sixteen-segment display 1785:Rear-projection display 914:Proceedings of the IEEE 185:spatial light modulator 1946:Field-emission display 1861:Liquid-crystal display 1441:10.1364/opex.13.007913 926:10.1109/PROC.1967.5620 725:10.1364/JOSAA.4.000694 225:. Further progress in 156: 148:Point source holograms 2083:Eight-segment display 2077:Seven-segment display 1606:"Phased Array Optics" 561:10.1145/364096.364111 358:ACM Computing Surveys 155: 106:Wavefront computation 54:computer-aided design 32:interference patterns 2205:Display capabilities 2088:Nine-segment display 1790:Plasma display panel 1489:10.1364/ol.34.003659 1337:10.1364/ao.15.001030 1271:Computers in Physics 1209:10.1364/AO.36.007437 1174:10.1364/OL.21.000510 1119:Comput. Phys. Commun 1020:G.L. Rogers (1950). 803:10.1364/ao.38.005331 760:10.1364/AO.27.003020 682:10.1364/AO.23.002441 455:10.1364/AO.48.000H48 293:improve this section 251:SeeReal Technologies 179:Generated Holography 2234:See-through display 2138:Holographic display 1816:Quantum dot display 1542:2022CoPhC.27008139C 1481:2009OptL...34.3659F 1432:2005OExpr..13.7913A 1401:10.1147/rd.132.0150 1329:1976ApOpt..15.1030N 1283:1992ComPh...6..389S 1244:2001OptRv...8..331Y 1166:1996OptL...21..510Y 1131:1996CoPhC..93...13I 1086:1993JEI.....2...28L 1038:1950Natur.166..237R 987:J.P.Waters (1968). 960:10.1147/rd.132.0160 890:10.3390/app10124283 842:2014OptLE..52..206M 795:1999ApOpt..38.5331C 752:1988ApOpt..27.3020L 717:1987JOSAA...4..694W 674:1984ApOpt..23.2441L 631:10.1364/AO.9.000639 604:10.1147/rd.132.0150 521:10.1364/AO.5.000967 513:1966ApOpt...5..967B 447:2009ApOpt..48H..48Y 413:10.1109/mc.2005.260 223:phased array optics 2276:Color Light Output 2270:High Dynamic Range 2072:Dot-matrix display 2067:Lightguide display 1738:Display technology 1526:(108139): 108139. 705:J. Opt. Soc. Am. A 261:In electron optics 169:ray tracing method 157: 2303: 2302: 2229:Always-on display 2020:Electromechanical 2008: 2007: 1631:978-0-262-03237-7 1475:(23): 3659–3661. 1426:(20): 7913–7927. 1369:978-3-540-43933-2 1203:(29): 7437–7443. 1104:10.1117/12.133376 1006:10.1063/1.1754630 789:(25): 5331–5337. 746:(14): 3020–3024. 668:(14): 2441–2447. 364:(2): 32:1–32:35. 329: 328: 321: 133:Fourier Transform 2323: 2281:Flexible display 2243:Related articles 2123:Autostereoscopic 1822:Electronic paper 1768:Cathode-ray tube 1751: 1731: 1724: 1717: 1708: 1696: 1695: 1692:corticalcafe.com 1684: 1678: 1677: 1666: 1660: 1659: 1648: 1642: 1641: 1639: 1638: 1615: 1598: 1592: 1591: 1590: 1589: 1576: 1570: 1569: 1535: 1515: 1509: 1508: 1460: 1454: 1453: 1443: 1411: 1405: 1404: 1380: 1374: 1373: 1355: 1349: 1348: 1323:(4): 1030–1033. 1312: 1306: 1305: 1303: 1302: 1293:. Archived from 1291:10.1063/1.168429 1262: 1256: 1255: 1227: 1221: 1220: 1192: 1186: 1185: 1149: 1143: 1142: 1114: 1108: 1107: 1097: 1069: 1060: 1059: 1049: 1047:10.1038/166237a0 1017: 1011: 1010: 1008: 993:Appl. Phys. Lett 984: 978: 977: 975: 974: 968: 962:. Archived from 945: 936: 930: 929: 909: 903: 902: 892: 877:Applied Sciences 868: 862: 861: 821: 815: 814: 778: 772: 771: 735: 729: 728: 700: 694: 693: 657: 651: 650: 614: 608: 607: 589: 580: 574: 573: 563: 539: 533: 532: 496: 485: 484: 466: 430: 424: 423: 396: 390: 389: 355: 346: 324: 317: 313: 310: 304: 273: 265: 2331: 2330: 2326: 2325: 2324: 2322: 2321: 2320: 2306: 2305: 2304: 2299: 2290: 2238: 2200: 2186:Slide projector 2176:Movie projector 2159: 2104: 2004: 1914: 1907: 1808: 1802: 1755: 1740: 1735: 1700: 1699: 1686: 1685: 1681: 1668: 1667: 1663: 1650: 1649: 1645: 1636: 1634: 1632: 1600: 1599: 1595: 1587: 1585: 1578: 1577: 1573: 1517: 1516: 1512: 1462: 1461: 1457: 1413: 1412: 1408: 1382: 1381: 1377: 1370: 1360:Coherent Optics 1357: 1356: 1352: 1314: 1313: 1309: 1300: 1298: 1264: 1263: 1259: 1229: 1228: 1224: 1194: 1193: 1189: 1151: 1150: 1146: 1116: 1115: 1111: 1071: 1070: 1063: 1019: 1018: 1014: 999:(11): 405–407. 986: 985: 981: 972: 970: 966: 943: 938: 937: 933: 911: 910: 906: 870: 869: 865: 823: 822: 818: 780: 779: 775: 737: 736: 732: 702: 701: 697: 659: 658: 654: 616: 615: 611: 587: 582: 581: 577: 554:(10): 661–674. 541: 540: 536: 498: 497: 488: 432: 431: 427: 398: 397: 393: 370:10.1145/3378444 353: 348: 347: 343: 338: 325: 314: 308: 305: 290: 274: 263: 235: 213: 181: 150: 128: 108: 62: 17: 12: 11: 5: 2329: 2327: 2319: 2318: 2308: 2307: 2301: 2300: 2295: 2292: 2291: 2289: 2288: 2283: 2278: 2273: 2267: 2262: 2257: 2252: 2246: 2244: 2240: 2239: 2237: 2236: 2231: 2226: 2221: 2220: 2219: 2208: 2206: 2202: 2201: 2199: 2198: 2193: 2188: 2183: 2178: 2173: 2167: 2165: 2161: 2160: 2158: 2157: 2152: 2147: 2146: 2145: 2140: 2130: 2125: 2120: 2114: 2112: 2106: 2105: 2103: 2102: 2096: 2090: 2085: 2080: 2074: 2069: 2064: 2058: 2052: 2047: 2042: 2037: 2036: 2035: 2032: 2027: 2016: 2014: 2010: 2009: 2006: 2005: 2003: 2002: 1996: 1990: 1984: 1983: 1982: 1977: 1966: 1965: 1964: 1962:Liquid crystal 1959: 1949: 1943: 1937: 1931: 1925: 1919: 1917: 1909: 1908: 1906: 1905: 1899: 1893: 1892: 1891: 1886: 1881: 1880: 1879: 1874: 1858: 1857: 1856: 1855: 1854: 1836: 1835: 1834: 1829: 1819: 1812: 1810: 1804: 1803: 1801: 1800: 1799: 1798: 1787: 1782: 1776: 1771: 1765: 1759: 1757: 1748: 1746:Video displays 1742: 1741: 1736: 1734: 1733: 1726: 1719: 1711: 1705: 1704: 1698: 1697: 1679: 1661: 1643: 1630: 1593: 1571: 1510: 1455: 1406: 1395:(2): 150–155. 1375: 1368: 1350: 1307: 1277:(4): 389–393. 1257: 1238:(5): 331–335. 1232:Optical Review 1222: 1187: 1160:(7): 510–512. 1144: 1109: 1095:10.1.1.51.4513 1061: 1012: 979: 954:(2): 160–168. 931: 920:(4): 599–601. 904: 863: 816: 783:Applied Optics 773: 730: 711:(4): 694–698. 695: 652: 625:(3): 639–643. 609: 598:(2): 150–155. 575: 534: 501:Applied Optics 486: 441:(34): H48-53. 435:Applied Optics 425: 391: 340: 339: 337: 334: 327: 326: 309:September 2018 277: 275: 268: 262: 259: 258: 257: 254: 248: 242: 234: 231: 227:nanotechnology 212: 211:Reconstruction 209: 180: 177: 149: 146: 127: 124: 107: 104: 100: 99: 92:Reconstruction 89: 83: 61: 58: 15: 13: 10: 9: 6: 4: 3: 2: 2328: 2317: 2314: 2313: 2311: 2298: 2293: 2287: 2284: 2282: 2279: 2277: 2274: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2247: 2245: 2241: 2235: 2232: 2230: 2227: 2225: 2222: 2218: 2215: 2214: 2213: 2210: 2209: 2207: 2203: 2197: 2194: 2192: 2189: 2187: 2184: 2182: 2179: 2177: 2174: 2172: 2169: 2168: 2166: 2162: 2156: 2153: 2151: 2148: 2144: 2141: 2139: 2136: 2135: 2134: 2131: 2129: 2126: 2124: 2121: 2119: 2116: 2115: 2113: 2111: 2107: 2100: 2097: 2094: 2091: 2089: 2086: 2084: 2081: 2078: 2075: 2073: 2070: 2068: 2065: 2062: 2059: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2033: 2031: 2028: 2026: 2023: 2022: 2021: 2018: 2017: 2015: 2011: 2000: 1997: 1994: 1991: 1988: 1985: 1981: 1978: 1976: 1973: 1972: 1970: 1967: 1963: 1960: 1958: 1955: 1954: 1953: 1950: 1947: 1944: 1941: 1938: 1935: 1932: 1930:(ELQD/QD-LED) 1929: 1926: 1924: 1921: 1920: 1918: 1916: 1910: 1903: 1900: 1897: 1894: 1890: 1887: 1885: 1882: 1878: 1875: 1873: 1870: 1869: 1868: 1865: 1864: 1862: 1859: 1852: 1849: 1848: 1846: 1843: 1842: 1840: 1837: 1833: 1830: 1828: 1825: 1824: 1823: 1820: 1817: 1814: 1813: 1811: 1805: 1797: 1794: 1793: 1791: 1788: 1786: 1783: 1780: 1777: 1775: 1772: 1769: 1766: 1764: 1761: 1760: 1758: 1752: 1749: 1747: 1743: 1739: 1732: 1727: 1725: 1720: 1718: 1713: 1712: 1709: 1702: 1701: 1693: 1689: 1683: 1680: 1675: 1671: 1665: 1662: 1657: 1653: 1652:"VividQ Home" 1647: 1644: 1633: 1627: 1623: 1619: 1614: 1613: 1607: 1603: 1597: 1594: 1584: 1583: 1575: 1572: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1534: 1529: 1525: 1521: 1514: 1511: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1466: 1459: 1456: 1451: 1447: 1442: 1437: 1433: 1429: 1425: 1421: 1417: 1410: 1407: 1402: 1398: 1394: 1390: 1386: 1379: 1376: 1371: 1365: 1361: 1354: 1351: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1311: 1308: 1297:on 2010-02-01 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1261: 1258: 1253: 1249: 1245: 1241: 1237: 1233: 1226: 1223: 1218: 1214: 1210: 1206: 1202: 1198: 1191: 1188: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1148: 1145: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1110: 1105: 1101: 1096: 1091: 1087: 1083: 1079: 1075: 1068: 1066: 1062: 1057: 1053: 1048: 1043: 1039: 1035: 1032:(4214): 237. 1031: 1027: 1023: 1016: 1013: 1007: 1002: 998: 994: 990: 983: 980: 969:on 2012-02-24 965: 961: 957: 953: 949: 942: 935: 932: 927: 923: 919: 915: 908: 905: 900: 896: 891: 886: 882: 878: 874: 867: 864: 859: 855: 851: 847: 843: 839: 835: 831: 827: 820: 817: 812: 808: 804: 800: 796: 792: 788: 784: 777: 774: 769: 765: 761: 757: 753: 749: 745: 741: 734: 731: 726: 722: 718: 714: 710: 706: 699: 696: 691: 687: 683: 679: 675: 671: 667: 663: 656: 653: 648: 644: 640: 636: 632: 628: 624: 620: 613: 610: 605: 601: 597: 593: 586: 579: 576: 571: 567: 562: 557: 553: 549: 545: 538: 535: 530: 526: 522: 518: 514: 510: 506: 502: 495: 493: 491: 487: 482: 478: 474: 470: 465: 460: 456: 452: 448: 444: 440: 436: 429: 426: 422: 418: 414: 410: 406: 402: 395: 392: 387: 383: 379: 375: 371: 367: 363: 359: 352: 345: 342: 335: 333: 323: 320: 312: 302: 298: 294: 288: 287: 283: 278:This section 276: 272: 267: 266: 260: 255: 252: 249: 246: 245:MIT Media Lab 243: 240: 239: 238: 232: 230: 228: 224: 219: 210: 208: 206: 200: 198: 194: 188: 186: 178: 176: 172: 170: 165: 161: 154: 147: 145: 142: 141:positive lens 138: 134: 125: 123: 121: 116: 112: 105: 103: 97: 93: 90: 87: 84: 81: 78: 77: 76: 74: 70: 66: 59: 57: 55: 51: 46: 42: 40: 35: 33: 29: 25: 21: 2191:Transparency 2164:Static media 2142: 2118:Stereoscopic 1691: 1682: 1673: 1664: 1655: 1646: 1635:. Retrieved 1611: 1596: 1586:, retrieved 1581: 1574: 1523: 1519: 1513: 1472: 1468: 1458: 1423: 1420:Opt. Express 1419: 1409: 1392: 1388: 1378: 1359: 1353: 1320: 1316: 1310: 1299:. Retrieved 1295:the original 1274: 1270: 1260: 1235: 1231: 1225: 1200: 1196: 1190: 1157: 1153: 1147: 1125:(1): 13–20. 1122: 1118: 1112: 1077: 1073: 1029: 1025: 1015: 996: 992: 982: 971:. Retrieved 964:the original 951: 947: 934: 917: 913: 907: 883:(12): 4283. 880: 876: 866: 833: 829: 819: 786: 782: 776: 743: 739: 733: 708: 704: 698: 665: 661: 655: 622: 618: 612: 595: 591: 578: 551: 547: 537: 507:(6): 967–9. 504: 500: 438: 434: 428: 407:(8): 46–53, 404: 400: 394: 361: 357: 344: 330: 315: 306: 291:Please help 279: 236: 233:Applications 214: 201: 189: 182: 173: 168: 166: 162: 158: 129: 117: 113: 109: 101: 95: 91: 85: 79: 73:Dennis Gabor 63: 47: 43: 36: 23: 19: 18: 2155:Fog display 2128:Multiscopic 2045:Fiber-optic 1957:Quantum dot 1656:vivid-q.com 1620:. pp.  836:: 206–211. 464:11693/22545 80:Computation 2316:Holography 2196:Laser beam 2150:Volumetric 2110:3D display 2050:Nixie tube 2030:Split-flap 1915:generation 1889:Blue Phase 1809:generation 1756:generation 1637:2007-02-18 1588:2024-01-20 1533:2008.12214 1301:2010-09-14 973:2009-06-17 336:References 96:Modulating 71:physicist 65:Holography 39:wavefronts 2250:Scan line 2224:DisplayID 2181:Neon sign 2171:Monoscope 2013:Non-video 1774:Jumbotron 1618:MIT Press 1566:221340546 1558:0010-4655 1469:Opt. Lett 1317:Appl. Opt 1197:Appl. Opt 1154:Opt. Lett 1090:CiteSeerX 1080:: 28–34. 899:2076-3417 858:0143-8166 740:Appl. Opt 662:Appl. Opt 619:Appl. Opt 386:215854874 378:0360-0300 280:does not 137:far field 69:Hungarian 28:holograms 2310:Category 2133:Hologram 2040:Eggcrate 2025:Flip-dot 1971:display 1952:Laser TV 1923:microLED 1853:(AMOLED) 1807:Current 1763:Eidophor 1604:(1996). 1497:19953153 1450:19498821 1345:20165114 1217:18264254 1182:19865455 1056:15439257 811:18324035 768:20531880 690:18213016 647:15902468 639:20076253 570:18707299 529:20048989 473:19956301 401:Computer 193:kinoform 86:Encoding 60:Overview 50:computer 2217:CEA-861 1847:(OLED) 1832:Gyricon 1674:mit.edu 1622:147–160 1538:Bibcode 1505:5726900 1477:Bibcode 1428:Bibcode 1325:Bibcode 1279:Bibcode 1240:Bibcode 1162:Bibcode 1127:Bibcode 1082:Bibcode 1034:Bibcode 838:Bibcode 791:Bibcode 748:Bibcode 713:Bibcode 670:Bibcode 509:Bibcode 481:5890199 443:Bibcode 421:7394380 301:removed 286:sources 2101:(SISD) 1995:(TDEL) 1989:(FLCD) 1936:(OLET) 1904:(LCoS) 1863:(LCD) 1841:(LED) 1818:(QLED) 1792:(PDP) 1628:  1602:Wowk B 1564:  1556:  1503:  1495:  1448:  1366:  1343:  1215:  1180:  1092:  1054:  1026:Nature 897:  856:  809:  766:  688:  645:  637:  568:  527:  479:  471:  419:  384:  376:  2272:(HDR) 2095:(FSD) 2079:(SSD) 2063:(LEC) 2057:(VFD) 2001:(LPD) 1948:(FED) 1942:(SED) 1913:Next 1898:(DLP) 1827:E Ink 1781:(ELD) 1770:(CRT) 1562:S2CID 1528:arXiv 1501:S2CID 967:(PDF) 944:(PDF) 643:S2CID 588:(PDF) 566:S2CID 477:S2CID 417:S2CID 382:S2CID 354:(PDF) 218:laser 2212:EDID 2034:Vane 1980:TMOS 1975:IMoD 1969:MEMS 1796:ALiS 1754:Past 1626:ISBN 1554:ISSN 1493:PMID 1446:PMID 1364:ISBN 1341:PMID 1213:PMID 1178:PMID 1052:PMID 895:ISSN 854:ISSN 807:PMID 764:PMID 686:PMID 635:PMID 525:PMID 469:PMID 374:ISSN 284:any 282:cite 1884:LED 1877:IPS 1867:TFT 1546:doi 1524:270 1485:doi 1436:doi 1397:doi 1333:doi 1287:doi 1248:doi 1205:doi 1170:doi 1135:doi 1100:doi 1042:doi 1030:166 1001:doi 956:doi 922:doi 885:doi 846:doi 799:doi 756:doi 721:doi 678:doi 627:doi 600:doi 556:doi 517:doi 459:hdl 451:doi 409:doi 366:doi 295:by 197:IBM 24:CGH 2312:: 1872:TN 1690:. 1672:. 1654:. 1624:. 1616:. 1560:. 1552:. 1544:. 1536:. 1522:. 1499:. 1491:. 1483:. 1473:34 1471:. 1467:. 1444:. 1434:. 1424:13 1422:. 1418:. 1393:13 1391:. 1387:. 1339:. 1331:. 1321:15 1319:. 1285:. 1273:. 1269:. 1246:. 1234:. 1211:. 1201:36 1199:. 1176:. 1168:. 1158:21 1156:. 1133:. 1123:93 1121:. 1098:. 1088:. 1076:. 1064:^ 1050:. 1040:. 1028:. 1024:. 995:. 991:. 952:13 950:. 946:. 918:55 916:. 893:. 881:10 879:. 875:. 852:. 844:. 834:52 832:. 828:. 805:. 797:. 787:38 785:. 762:. 754:. 744:27 742:. 719:. 707:. 684:. 676:. 666:23 664:. 641:. 633:. 621:. 596:13 594:. 590:. 564:. 552:11 550:. 546:. 523:. 515:. 503:. 489:^ 475:. 467:. 457:. 449:. 439:48 437:. 415:, 405:38 403:, 380:. 372:. 362:53 360:. 356:. 122:. 94:: 1730:e 1723:t 1716:v 1694:. 1676:. 1658:. 1640:. 1568:. 1548:: 1540:: 1530:: 1507:. 1487:: 1479:: 1452:. 1438:: 1430:: 1403:. 1399:: 1372:. 1347:. 1335:: 1327:: 1304:. 1289:: 1281:: 1275:6 1254:. 1250:: 1242:: 1236:8 1219:. 1207:: 1184:. 1172:: 1164:: 1141:. 1137:: 1129:: 1106:. 1102:: 1084:: 1078:2 1058:. 1044:: 1036:: 1009:. 1003:: 997:9 976:. 958:: 928:. 924:: 901:. 887:: 860:. 848:: 840:: 813:. 801:: 793:: 770:. 758:: 750:: 727:. 723:: 715:: 709:4 692:. 680:: 672:: 649:. 629:: 623:9 606:. 602:: 572:. 558:: 531:. 519:: 511:: 505:5 483:. 461:: 453:: 445:: 411:: 388:. 368:: 322:) 316:( 311:) 307:( 303:. 289:. 22:(

Index

holograms
interference patterns
wavefronts
computer
computer-aided design
Holography
Hungarian
Dennis Gabor
Gerchberg-Saxton (GS) algorithm
Fourier Transform
far field
positive lens

spatial light modulator
kinoform
IBM
Gerchberg-Saxton algorithm
laser
phased array optics
nanotechnology
MIT Media Lab
SeeReal Technologies

cite
sources
improve this section
adding citations to reliable sources
removed
Learn how and when to remove this message
"Computer-Generated Holograms for 3D Imaging: A Survey"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.