Knowledge (XXG)

Completely metrizable space

Source šŸ“

285:
However, no confusion can arise when talking about an abelian topological group or a topological vector space being completely metrizable: it can be proven that every abelian topological group (and thus also every topological vector space) that is completely metrizable as a topological space (i. e.,
129:(the latter would yield the definition of complete metric space). Once we make the choice of the metric on a completely metrizable space (out of all the complete metrics compatible with the topology), we get a complete metric space. In other words, the 137:
of that of topological spaces, while the category of complete metric spaces is not (instead, it is a subcategory of the category of metric spaces). Complete metrizability is a topological property while completeness is a property of the metric.
253:
if and only if each factor is completely metrizable. Hence, a product of nonempty metrizable spaces is completely metrizable if and only if at most countably many factors have more than one point and each factor is completely
261:. In general, there are many such completely metrizable spaces, since completions of a topological space with respect to different metrics compatible with its topology can give topologically different completions. 274:, the natural meaning of the words ā€œcompletely metrizableā€ would arguably be the existence of a complete metric that is also compatible with that extra structure, in addition to inducing its topology. For 293:(induced by its topology and addition operation) is complete; the uniformity induced by a translation-invariant metric that induces the topology coincides with the original uniformity. 423:
Because a product of nonempty metrizable spaces is metrizable if and only if at most countably many factors have more than one point (Willard, Chapter 22).
289:
This implies e. g. that every completely metrizable topological vector space is complete. Indeed, a topological vector space is called complete iff its
545: 522: 443: 257:
For every metrizable space there exists a completely metrizable space containing it as a dense subspace, since every metric space has a
219: 494: 307: 91: 286:
admits a complete metric that induces its topology) also admits an invariant complete metric that induces its topology.
513: 565: 279: 508: 130: 95: 302: 290: 52: 282:, ā€œcompatible with the extra structureā€ might mean that the metric is invariant under translations. 541: 518: 504: 490: 271: 154:, the open unit interval, is not a complete metric space with its usual metric inherited from 40: 458: 312: 250: 180: 482: 71: 534: 463: 559: 275: 17: 258: 161: 249:
A countable product of nonempty metrizable spaces is completely metrizable in the
235: 212: 134: 28: 208: 125:
in the definition of completely metrizable space, which is not the same as
90:, but sometimes also used for other classes of topological spaces, like 270:
When talking about spaces with more structure than just topology, like
444:"Invariant metrics in groups (solution of a problem of Banach)" 348:
e. g. Steen and Seebach, I Ā§5: Complete Metric Spaces
533: 266:Completely metrizable abelian topological groups 233:is completely metrizable if and only if it is 160:, but it is completely metrizable since it is 86:is employed by some authors as a synonym for 8: 229:A subspace of a completely metrizable space 189:is metrizable but not completely metrizable. 183:with the subspace topology inherited from 462: 203:is completely metrizable if and only if 366: 323: 37:metrically topologically complete space 51:) for which there exists at least one 540:. Addison-Wesley Publishing Company. 133:of completely metrizable spaces is a 7: 517:. Holt, Rinehart and Winston, Inc. 25: 464:10.1090/s0002-9939-1952-0047250-4 123:there exists at least one metric 92:completely uniformizable spaces 308:Completely uniformizable space 1: 84:topologically complete space 514:Counterexamples in Topology 357:Kelley, Problem 6.L, p. 208 339:Kelley, Problem 6.K, p. 207 220:Stoneā€“ÄŒech compactification 115:completely metrizable space 108:completely metrizable space 88:completely metrizable space 33:completely metrizable space 582: 113:The distinction between a 532:Willard, Stephen (1970). 280:topological vector spaces 330:Willard, Definition 24.2 278:topological groups and 127:there is given a metric 509:Seebach, J. Arthur Jr. 396:Willard, Theorem 24.13 451:Proc. Amer. Math. Soc 387:Willard, Exercise 25A 303:Complete metric space 119:complete metric space 104:complete metric space 78:induces the topology 72:complete metric space 18:Completely metrizable 442:Klee, V. L. (1952). 199:A topological space 96:Čech-complete spaces 432:Willard, Chapter 24 414:Willard, Chapter 24 405:Willard, Chapter 24 378:Willard, Chapter 24 102:Difference between 505:Steen, Lynn Arthur 272:topological groups 121:lies in the words 547:978-0-201-08707-9 524:978-0-03-079485-8 41:topological space 16:(Redirected from 573: 566:General topology 551: 539: 536:General Topology 528: 500: 487:General Topology 469: 468: 466: 448: 439: 433: 430: 424: 421: 415: 412: 406: 403: 397: 394: 388: 385: 379: 376: 370: 364: 358: 355: 349: 346: 340: 337: 331: 328: 313:Metrizable space 251:product topology 245: 241: 232: 188: 181:rational numbers 178: 169: 159: 153: 21: 581: 580: 576: 575: 574: 572: 571: 570: 556: 555: 554: 548: 531: 525: 503: 497: 483:Kelley, John L. 481: 477: 472: 446: 441: 440: 436: 431: 427: 422: 418: 413: 409: 404: 400: 395: 391: 386: 382: 377: 373: 365: 361: 356: 352: 347: 343: 338: 334: 329: 325: 321: 299: 268: 243: 239: 234: 230: 216: 196: 184: 174: 165: 155: 148: 144: 111: 23: 22: 15: 12: 11: 5: 579: 577: 569: 568: 558: 557: 553: 552: 546: 529: 523: 501: 495: 478: 476: 473: 471: 470: 457:(3): 484ā€“487. 434: 425: 416: 407: 398: 389: 380: 371: 359: 350: 341: 332: 322: 320: 317: 316: 315: 310: 305: 298: 295: 267: 264: 263: 262: 255: 247: 237: 227: 214: 195: 192: 191: 190: 171: 143: 140: 110: 100: 24: 14: 13: 10: 9: 6: 4: 3: 2: 578: 567: 564: 563: 561: 549: 543: 538: 537: 530: 526: 520: 516: 515: 510: 506: 502: 498: 496:0-387-90125-6 492: 488: 484: 480: 479: 474: 465: 460: 456: 452: 445: 438: 435: 429: 426: 420: 417: 411: 408: 402: 399: 393: 390: 384: 381: 375: 372: 368: 363: 360: 354: 351: 345: 342: 336: 333: 327: 324: 318: 314: 311: 309: 306: 304: 301: 300: 296: 294: 292: 287: 283: 281: 277: 273: 265: 260: 256: 252: 248: 240: 228: 225: 221: 217: 210: 206: 202: 198: 197: 193: 187: 182: 177: 172: 168: 163: 158: 152: 146: 145: 141: 139: 136: 132: 128: 124: 120: 116: 109: 105: 101: 99: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 54: 50: 46: 42: 38: 34: 30: 19: 535: 512: 489:. Springer. 486: 454: 450: 437: 428: 419: 410: 401: 392: 383: 374: 367:Willard 1970 362: 353: 344: 335: 326: 288: 284: 269: 223: 204: 200: 185: 175: 166: 162:homeomorphic 156: 150: 126: 122: 118: 114: 112: 107: 103: 87: 83: 79: 75: 67: 63: 59: 55: 48: 44: 36: 32: 26: 369:Section 24. 254:metrizable. 135:subcategory 82:. The term 62:such that ( 29:mathematics 475:References 291:uniformity 259:completion 209:metrizable 194:Properties 173:The space 147:The space 560:Category 511:(1970). 485:(1975). 297:See also 149:(0,1) āŠ‚ 142:Examples 131:category 276:abelian 218:in its 70:) is a 39:) is a 544:  521:  493:  211:and a 117:and a 53:metric 447:(PDF) 319:Notes 542:ISBN 519:ISBN 491:ISBN 106:and 74:and 31:, a 459:doi 242:in 207:is 179:of 164:to 94:or 58:on 27:In 562:: 507:; 453:. 449:. 98:. 66:, 47:, 550:. 527:. 499:. 467:. 461:: 455:3 246:. 244:X 238:Ī“ 236:G 231:X 226:. 224:X 222:Ī² 215:Ī“ 213:G 205:X 201:X 186:R 176:Q 170:. 167:R 157:R 151:R 80:T 76:d 68:d 64:X 60:X 56:d 49:T 45:X 43:( 35:( 20:)

Index

Completely metrizable
mathematics
topological space
metric
complete metric space
completely uniformizable spaces
Čech-complete spaces
category
subcategory
homeomorphic
rational numbers
metrizable
GĪ“
Stoneā€“ÄŒech compactification
GĪ“
product topology
completion
topological groups
abelian
topological vector spaces
uniformity
Complete metric space
Completely uniformizable space
Metrizable space
Willard 1970
"Invariant metrics in groups (solution of a problem of Banach)"
doi
10.1090/s0002-9939-1952-0047250-4
Kelley, John L.
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘