Knowledge (XXG)

Connective constant

Source đź“ť

2811: 3467: 2509: 3201: 4467: 1111:
among others. The argument relies on the existence of a parafermionic observable that satisfies half of the discrete Cauchy–Riemann equations for the hexagonal lattice. We modify slightly the definition of a self-avoiding walk by having it start and end on mid-edges between vertices. Let H be the set
2103:. This lemma establishes that the parafermionic observable is divergence-free. It has not been shown to be curl-free, but this would solve several open problems (see conjectures). The proof of this lemma is a clever computation that relies heavily on the geometry of the hexagonal lattice. 2806:{\displaystyle A_{T,L}^{x}:=\sum _{\gamma \in S_{T,L}:a\to \alpha \setminus \{a\}}x^{\ell (\gamma )},\quad B_{T,L}^{x}:=\sum _{\gamma \in S_{T,L}:a\to \beta }x^{\ell (\gamma )},\quad E_{T,L}^{x}:=\sum _{\gamma \in S_{T,L}:a\to \epsilon \cup {\bar {\epsilon }}}x^{\ell (\gamma )}.} 4741: 3462:{\displaystyle A_{T}^{x}:=\sum _{\gamma \in S_{T}:a\to \alpha \setminus \{a\}}x^{\ell (\gamma )},\quad B_{T}^{x}:=\sum _{\gamma \in S_{T}:a\to \beta }x^{\ell (\gamma )},\quad E_{T}^{x}:=\sum _{\gamma \in S_{T}:a\to \epsilon \cup {\bar {\epsilon }}}x^{\ell (\gamma )}.} 2389: 4231: 1793: 1421: 3137: 1107:) models using renormalization techniques. The rigorous proof of this fact came from a program of applying tools from complex analysis to discrete probabilistic models that has also produced impressive results about the 51:), it is nonetheless an important quantity that appears in conjectures for universal laws. Furthermore, the mathematical techniques used to understand the connective constant, for example in the recent rigorous proof by 3763: 4154: 1042: 93:, may provide clues to a possible approach for attacking other important open problems in the study of self-avoiding walks, notably the conjecture that self-avoiding walks converge in the scaling limit to the 3888: 2170:. (Picture needed.) We embed the hexagonal lattice in the complex plane so that the edge lengths are 1 and the mid-edge in the center of the left hand side is positioned at −1/2. Then the vertices in 3632: 268: 4579: 4223: 566: 411: 1856: 4574: 4462:{\displaystyle Z(x)\leq \sum _{T_{-I}<\cdots <T_{-1},\;T_{0}>\cdots >T_{j}}2\left(\prod _{k=-I}^{j}B_{T_{k}}^{x}\right)=2\left(\prod _{T>0}(1+B_{T}^{x})\right)^{2}<\infty .} 3928: 2046: 3933:
For the reverse inequality, for an arbitrary self avoiding walk on the honeycomb lattice, we perform a canonical decomposition due to Hammersley and Welsh of the walk into bridges of widths
2927: 2209: 1545: 4510: 1585: 1101: 3983: 4029: 4954: 91: 202: 640: 2501: 3521: 1675: 1241: 1199: 5210:
Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin (2004). "On the scaling limit of planar self-avoiding walk". In Lapidus, Michel L.; van Frankenhuijsen, Machiel (eds.).
5155: 3805: 863: 505: 3166: 796: 4861: 1890: 703: 2972: 2168: 1490: 1457: 901: 774: 738: 603: 2472: 832: 4775: 2432: 2201: 2137: 1930: 1668: 1608: 1261: 1130: 903:
lattice, since each step on the hexagonal lattice corresponds to either two or three steps in it, can be expressed exactly as the largest real root of the polynomial
668: 471: 2452: 4823: 3193: 2081: 315: 130: 4795: 1309: 431: 355: 335: 288: 2980: 2412: 2101: 1910: 1648: 1628: 1301: 1281: 1170: 1150: 451: 870:
These values are taken from the 1998 Jensen–Guttmann paper and a more recent paper by Jacobsen, Scullard and Guttmann. The connective constant of the
3644: 4037: 5212:
Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2: Multifractals, Probability and Statistical Mechanics, Applications
4901: 909: 3810: 5245: 3529: 1047:
given the exact expression for the hexagonal lattice connective constant. More information about these lattices can be found in the
2974:
and noting that the winding is fixed depending on which part of the boundary the path terminates at, we can arrive at the relation
211: 4736:{\displaystyle \langle |\gamma (n)|^{2}\rangle ={\frac {1}{c_{n}}}\sum _{n\;\mathrm {step\;SAW} }|\gamma (n)|^{2}=n^{2\nu +o(1)}} 44: 4162: 4826: 94: 2384:{\displaystyle V(S_{T,L})=\{z\in V(\mathbb {H} ):0\leq Re(z)\leq {\frac {3T+1}{2}},\;|{\sqrt {3}}Im(z)-Re(z)|\leq 3L\}.} 531: 360: 1800: 4527: 3893: 1938: 2822: 1495: 5309: 4475: 1550: 1066: 4825:
could be computed if the self-avoiding walk possesses a conformally invariant scaling limit, conjectured to be a
4521: 3936: 3988: 4925: 62: 5127:
Smirnov, Stanislav (2014). "The critical fugacity for surface adsorption of SAW on the honeycomb lattice is
151: 5045:
Jesper Lykke Jacobsen, Christian R Scullard and Anthony J Guttmann, 2016 J. Phys. A: Math. Theor. 49 494004
290:
is called the connective constant, and clearly depends on the particular lattice chosen for the walk since
1788:{\displaystyle F(z)=\sum _{\gamma \subset \Omega :a\to z}e^{-i\sigma W_{\gamma }(a,z)}x^{\ell (\gamma )}.} 5285: 4922:
Duminil-Copin, Hugo; Smirnov, Stanislav (2010). "The connective constant of the honeycomb lattice equals
616: 4872: 2477: 1103:
for the hexagonal lattice. This had been conjectured by Nienhuis in 1982 as part of a larger study of O(
1048: 473:, which is believed to be universal and dependent on the dimension of the lattice, is conjectured to be 48: 3475: 1204: 5225: 5176: 5109: 5068: 5020: 1175: 5130: 3771: 2139:
with 2L cells forming the left hand side, T cells across, and upper and lower sides at an angle of
839: 646: 476: 40: 28: 3145: 781: 5259: 5215: 5192: 5166: 5099: 4957: 4832: 1861: 679: 52: 36: 2935: 2142: 1462: 1429: 873: 746: 714: 579: 2457: 804: 5282: 5241: 4897: 4746: 1060: 572: 205: 56: 4225:. Finally, it is possible to bound the partition function by the bridge partition functions 2417: 2173: 2109: 1915: 1653: 1593: 1416:{\displaystyle Z(x)=\sum _{\gamma :a\to H}x^{\ell (\gamma )}=\sum _{n=0}^{\infty }c_{n}x^{n}} 1246: 1115: 653: 456: 5233: 5184: 5076: 5028: 5005: 4986: 2437: 5255: 4800: 3171: 2054: 293: 108: 5251: 4780: 3132:{\displaystyle 1=\cos(3\pi /8)A_{T,L}^{x_{c}}+B_{T,L}^{x_{c}}+\cos(\pi /4)E_{T,L}^{x_{c}}} 416: 340: 320: 273: 32: 136:-step self-avoiding walks starting from a fixed origin point in the lattice. Since every 5229: 5180: 5113: 5072: 5024: 43:
models. While the connective constant depends on the choice of lattice so itself is not
2397: 2086: 1895: 1633: 1613: 1286: 1266: 1155: 1135: 609: 436: 5032: 4990: 5303: 4977:
Vöge, Markus; Guttmann, Anthony J. (2003). "On the number of hexagonal polyominoes".
5263: 5237: 5196: 5096:
Proceedings of the International Congress of Mathematicians (Hyderabad, India) 2010
5006:"Self-avoiding walks, neighbor-avoiding walks and trails on semi-regular lattices" 5080: 1108: 20: 5214:. Proceedings of Symposia in Pure Mathematics. Vol. 72. pp. 339–364. 5188: 5290: 5055:
Nienhuis, Bernard (1982). "Exact critical point and critical exponents of O(
3758:{\displaystyle A_{T+1}^{x_{c}}-A_{T}^{x_{c}}\leq x_{c}(B_{T+1}^{x_{c}})^{2}} 59:
that the connective constant of the hexagonal lattice has the precise value
148:-step self-avoiding walk and an m-step self-avoiding walk, it follows that 4149:{\displaystyle B_{T}^{x}\leq (x/x_{c})^{T}B_{T}^{x_{c}}\leq (x/x_{c})^{T}} 514: 337:
is precisely known only for two lattices, see below. For other lattices,
5094:
Smirnov, Stanislav (2010). "Discrete Complex Analysis and Probability".
3523:, but we do not need this for the proof. We are left with the relation 2394:
We now define partition functions for self-avoiding walks starting at
1037:{\displaystyle x^{12}-4x^{8}-8x^{7}-4x^{6}+2x^{4}+8x^{3}+12x^{2}+8x+2} 5220: 1112:
of all mid-edges of the hexagonal lattice. For a self-avoiding walk
5171: 5104: 4962: 453:, the critical amplitude, depend on the lattice, and the exponent 3883:{\displaystyle Z(x_{c})\geq \sum _{T>0}B_{T}^{x_{c}}=\infty } 3768:
And arrive by induction at a strictly positive lower bound for
1303:. The aim of the proof is to show that the partition function 357:
has only been approximated numerically. It is conjectured that
3627:{\displaystyle 1=\cos(3\pi /8)A_{T,L}^{x_{c}}+B_{T,L}^{x_{c}}} 47:(similarly to other lattice-dependent quantities such as the 263:{\displaystyle \mu =\lim _{n\rightarrow \infty }c_{n}^{1/n}} 4520:
Nienhuis argued in favor of Flory's prediction that the
4218:{\displaystyle \prod _{T>0}(1+B_{T}^{x})<\infty } 1243:
as the total rotation of the direction in radians when
5133: 4928: 4835: 4803: 4783: 4749: 4582: 4530: 4478: 4234: 4165: 4040: 3991: 3939: 3896: 3813: 3774: 3647: 3532: 3478: 3204: 3174: 3148: 2983: 2938: 2825: 2512: 2480: 2460: 2440: 2420: 2400: 2212: 2176: 2145: 2112: 2089: 2057: 1941: 1918: 1898: 1864: 1803: 1678: 1656: 1636: 1616: 1596: 1553: 1498: 1465: 1432: 1312: 1289: 1269: 1249: 1207: 1201:
to be the number of vertices visited and its winding
1178: 1158: 1138: 1118: 1069: 912: 876: 842: 807: 784: 749: 717: 682: 656: 619: 582: 534: 479: 459: 439: 419: 363: 343: 323: 296: 276: 214: 154: 111: 65: 1063:
published the first rigorous proof of the fact that
105:
The connective constant is defined as follows. Let
2414:and ending on different parts of the boundary. Let 5149: 4948: 4855: 4817: 4789: 4769: 4735: 4568: 4504: 4461: 4217: 4148: 4023: 3977: 3922: 3882: 3799: 3757: 3626: 3515: 3461: 3187: 3160: 3131: 2966: 2921: 2805: 2495: 2466: 2446: 2426: 2406: 2383: 2195: 2162: 2131: 2095: 2075: 2040: 1924: 1904: 1884: 1850: 1787: 1662: 1642: 1622: 1602: 1579: 1539: 1484: 1451: 1415: 1295: 1275: 1255: 1235: 1193: 1164: 1144: 1124: 1095: 1036: 895: 857: 826: 790: 768: 732: 697: 662: 634: 597: 561:{\displaystyle {\sqrt {2+{\sqrt {2}}}}\simeq 1.85} 560: 499: 465: 445: 425: 406:{\displaystyle c_{n}\approx \mu ^{n}n^{\gamma -1}} 405: 349: 329: 309: 282: 262: 208:to the logarithm of the above relation, the limit 196: 144:step self avoiding walk can be decomposed into an 124: 85: 1851:{\displaystyle x=x_{c}=1/{\sqrt {2+{\sqrt {2}}}}} 35:. It is studied in connection with the notion of 4569:{\displaystyle \langle |\gamma (n)|^{2}\rangle } 3923:{\displaystyle \mu \geq {\sqrt {2+{\sqrt {2}}}}} 2041:{\displaystyle (p-v)F(p)+(q-v)F(q)+(r-v)F(r)=0,} 222: 2922:{\displaystyle (p-v)F(p)+(q-v)F(q)+(r-v)F(r)=0} 1540:{\displaystyle x_{c}=1/{\sqrt {2+{\sqrt {2}}}}} 2106:Next, we focus on a finite trapezoidal domain 1610:in the hexagonal lattice, a starting mid-edge 49:critical probability threshold for percolation 8: 4615: 4583: 4563: 4531: 4505:{\displaystyle \mu ={\sqrt {2+{\sqrt {2}}}}} 3265: 3259: 2585: 2579: 2375: 2241: 1580:{\displaystyle \mu ={\sqrt {2+{\sqrt {2}}}}} 1096:{\displaystyle \mu ={\sqrt {2+{\sqrt {2}}}}} 3978:{\displaystyle T_{-I}<\cdots <T_{-1}} 4660: 4646: 4293: 3142:after another clever computation. Letting 2315: 5219: 5170: 5140: 5132: 5103: 4961: 4937: 4929: 4927: 4845: 4834: 4807: 4802: 4782: 4759: 4748: 4709: 4696: 4691: 4673: 4647: 4642: 4630: 4621: 4609: 4604: 4586: 4581: 4557: 4552: 4534: 4529: 4493: 4485: 4477: 4444: 4430: 4425: 4400: 4373: 4366: 4361: 4351: 4337: 4317: 4298: 4281: 4259: 4254: 4233: 4200: 4195: 4170: 4164: 4140: 4130: 4121: 4104: 4099: 4094: 4084: 4074: 4065: 4050: 4045: 4039: 4024:{\displaystyle T_{0}>\cdots >T_{j}} 4015: 3996: 3990: 3966: 3944: 3938: 3911: 3903: 3895: 3866: 3861: 3856: 3840: 3824: 3812: 3789: 3784: 3779: 3773: 3749: 3737: 3732: 3721: 3708: 3693: 3688: 3683: 3668: 3663: 3652: 3646: 3616: 3611: 3600: 3585: 3580: 3569: 3554: 3531: 3499: 3494: 3483: 3477: 3441: 3424: 3423: 3402: 3391: 3378: 3373: 3350: 3326: 3315: 3302: 3297: 3274: 3238: 3227: 3214: 3209: 3203: 3179: 3173: 3147: 3121: 3116: 3105: 3090: 3067: 3062: 3051: 3036: 3031: 3020: 3005: 2982: 2949: 2937: 2824: 2785: 2768: 2767: 2740: 2729: 2716: 2705: 2682: 2652: 2641: 2628: 2617: 2594: 2552: 2541: 2528: 2517: 2511: 2482: 2481: 2479: 2459: 2439: 2419: 2399: 2361: 2321: 2316: 2291: 2257: 2256: 2223: 2211: 2181: 2175: 2152: 2144: 2117: 2111: 2088: 2056: 1940: 1917: 1897: 1874: 1863: 1839: 1831: 1826: 1814: 1802: 1767: 1740: 1726: 1698: 1677: 1670:, we define the parafermionic observable 1655: 1635: 1615: 1595: 1568: 1560: 1552: 1528: 1520: 1515: 1503: 1497: 1492:where the critical parameter is given by 1476: 1464: 1443: 1431: 1407: 1397: 1387: 1376: 1354: 1332: 1311: 1288: 1268: 1248: 1212: 1206: 1177: 1157: 1137: 1117: 1084: 1076: 1068: 1013: 997: 981: 965: 949: 933: 917: 911: 884: 875: 841: 815: 806: 783: 757: 748: 716: 681: 655: 618: 581: 543: 535: 533: 489: 478: 458: 438: 418: 391: 381: 368: 362: 342: 322: 301: 295: 275: 250: 246: 241: 225: 213: 188: 178: 159: 153: 116: 110: 74: 66: 64: 5286:"Self-Avoiding Walk Connective Constant" 3638:From here, we can derive the inequality 27:is a numerical quantity associated with 4949:{\displaystyle {\sqrt {2+{\sqrt {2}}}}} 4884: 3256: 2576: 86:{\displaystyle {\sqrt {2+{\sqrt {2}}}}} 5159:Communications in Mathematical Physics 197:{\displaystyle c_{n+m}\leq c_{n}c_{m}} 4917: 4915: 4913: 7: 5004:Jensen, I.; Guttmann, A. J. (1998). 635:{\displaystyle 2.63815853032790(3)} 270:can be shown to exist. This number 4667: 4664: 4661: 4657: 4654: 4651: 4648: 4453: 4212: 3877: 3155: 2496:{\displaystyle {\bar {\epsilon }}} 1919: 1705: 1597: 1388: 232: 14: 4524:of the self-avoiding random walk 3516:{\displaystyle E_{T,L}^{x_{c}}=0} 2083:are the mid-edges emanating from 1547:. This immediately implies that 1236:{\displaystyle W_{\gamma }(a,b)} 1059:In 2010, Hugo Duminil-Copin and 4576:satisfies the scaling relation 3368: 3292: 2700: 2612: 2434:denote the left hand boundary, 4892:Madras, N.; Slade, G. (1996). 4728: 4722: 4692: 4687: 4681: 4674: 4605: 4600: 4594: 4587: 4553: 4548: 4542: 4535: 4436: 4412: 4244: 4238: 4206: 4182: 4137: 4115: 4081: 4059: 3830: 3817: 3746: 3714: 3562: 3545: 3451: 3445: 3429: 3414: 3360: 3354: 3338: 3284: 3278: 3250: 3152: 3098: 3084: 3013: 2996: 2961: 2942: 2910: 2904: 2898: 2886: 2880: 2874: 2868: 2856: 2850: 2844: 2838: 2826: 2795: 2789: 2773: 2758: 2692: 2686: 2670: 2604: 2598: 2570: 2487: 2362: 2358: 2352: 2340: 2334: 2317: 2285: 2279: 2261: 2253: 2235: 2216: 2026: 2020: 2014: 2002: 1996: 1990: 1984: 1972: 1966: 1960: 1954: 1942: 1777: 1771: 1758: 1746: 1714: 1688: 1682: 1364: 1358: 1342: 1322: 1316: 1230: 1218: 1194:{\displaystyle \ell (\gamma )} 1188: 1182: 890: 877: 852: 846: 821: 808: 763: 750: 727: 721: 692: 686: 629: 623: 592: 586: 229: 1: 5150:{\displaystyle 1+{\sqrt {2}}} 5059:) models in two dimensions". 4991:10.1016/S0304-3975(03)00229-9 3800:{\displaystyle B_{T}^{x_{c}}} 858:{\displaystyle 1.80883001(6)} 500:{\displaystyle \gamma =43/32} 413:as n goes to infinity, where 4979:Theoretical Computer Science 3161:{\displaystyle L\to \infty } 791:{\displaystyle 1.7110412...} 5238:10.1090/pspum/072.2/2112127 5081:10.1103/PhysRevLett.49.1062 5033:10.1088/0305-4470/31/40/008 4856:{\displaystyle \kappa =8/3} 4797:and the universal constant 3890:, we have established that 1885:{\displaystyle \sigma =5/8} 1055:Duminil-Copin–Smirnov proof 698:{\displaystyle 1.733535(3)} 5326: 2967:{\displaystyle V(S_{T,L})} 2163:{\displaystyle \pm \pi /3} 1485:{\displaystyle x>x_{c}} 1452:{\displaystyle x<x_{c}} 896:{\displaystyle (3.12^{2})} 769:{\displaystyle (3.12^{2})} 733:{\displaystyle 1.5657(15)} 598:{\displaystyle 4.15079(4)} 5189:10.1007/s00220-014-1896-1 4827:Schramm–Loewner evolution 4522:mean squared displacement 4031:. Note that we can bound 2467:{\displaystyle \epsilon } 2454:the right hand boundary, 827:{\displaystyle (4.8^{2})} 520: 517: 95:Schramm–Loewner evolution 4770:{\displaystyle \nu =3/4} 3472:It was later shown that 3195:and partition functions 3168:, we get a strip domain 2816:By summing the identity 2503:the lower boundary. Let 2474:the upper boundary, and 5061:Physical Review Letters 4777:. The scaling exponent 2427:{\displaystyle \alpha } 2196:{\displaystyle S_{T,L}} 2132:{\displaystyle S_{T,L}} 1925:{\displaystyle \Omega } 1663:{\displaystyle \sigma } 1603:{\displaystyle \Omega } 1256:{\displaystyle \gamma } 1125:{\displaystyle \gamma } 663:{\displaystyle 2.56062} 466:{\displaystyle \gamma } 5151: 4950: 4894:The Self-Avoiding Walk 4857: 4819: 4791: 4771: 4737: 4570: 4506: 4463: 4356: 4219: 4150: 4025: 3979: 3924: 3884: 3801: 3759: 3628: 3517: 3463: 3189: 3162: 3133: 2968: 2923: 2807: 2497: 2468: 2448: 2447:{\displaystyle \beta } 2428: 2408: 2385: 2197: 2164: 2133: 2097: 2077: 2042: 1926: 1906: 1892:, then for any vertex 1886: 1852: 1789: 1664: 1644: 1624: 1604: 1581: 1541: 1486: 1453: 1417: 1392: 1297: 1277: 1257: 1237: 1195: 1166: 1146: 1132:between two mid-edges 1126: 1097: 1038: 897: 859: 828: 792: 770: 734: 699: 664: 636: 599: 562: 501: 467: 447: 427: 407: 351: 331: 311: 284: 264: 198: 126: 87: 16:Concept in mathematics 5152: 4951: 4873:Percolation threshold 4858: 4820: 4818:{\displaystyle 11/32} 4792: 4772: 4738: 4571: 4507: 4472:And so, we have that 4464: 4333: 4220: 4151: 4026: 3980: 3925: 3885: 3802: 3760: 3629: 3518: 3464: 3190: 3188:{\displaystyle S_{T}} 3163: 3134: 2969: 2932:over all vertices in 2924: 2808: 2498: 2469: 2449: 2429: 2409: 2386: 2198: 2165: 2134: 2098: 2078: 2076:{\displaystyle p,q,r} 2043: 1927: 1907: 1887: 1853: 1790: 1665: 1645: 1630:, and two parameters 1625: 1605: 1582: 1542: 1487: 1454: 1418: 1372: 1298: 1278: 1258: 1238: 1196: 1167: 1147: 1127: 1098: 1049:percolation threshold 1039: 898: 860: 829: 793: 771: 735: 700: 665: 637: 600: 563: 502: 468: 448: 428: 408: 352: 332: 312: 310:{\displaystyle c_{n}} 285: 265: 199: 132:denote the number of 127: 125:{\displaystyle c_{n}} 88: 5131: 5098:. pp. 565–621. 5013:Journal of Physics A 4926: 4833: 4801: 4790:{\displaystyle \nu } 4781: 4747: 4580: 4528: 4476: 4232: 4163: 4038: 3989: 3937: 3894: 3811: 3772: 3645: 3530: 3476: 3202: 3172: 3146: 2981: 2936: 2823: 2510: 2478: 2458: 2438: 2418: 2398: 2210: 2174: 2143: 2110: 2087: 2055: 1939: 1916: 1896: 1862: 1801: 1676: 1654: 1634: 1614: 1594: 1551: 1496: 1463: 1430: 1310: 1287: 1267: 1247: 1205: 1176: 1156: 1136: 1116: 1067: 910: 874: 840: 805: 782: 747: 715: 680: 654: 617: 580: 532: 521:Connective constant 477: 457: 437: 426:{\displaystyle \mu } 417: 361: 350:{\displaystyle \mu } 341: 330:{\displaystyle \mu } 321: 294: 283:{\displaystyle \mu } 274: 212: 152: 109: 63: 5230:2002math......4277L 5181:2014CMaPh.326..727B 5114:2010arXiv1009.6077S 5073:1982PhRvL..49.1062N 5025:1998JPhA...31.8137J 4435: 4378: 4205: 4111: 4055: 3873: 3796: 3744: 3700: 3675: 3623: 3592: 3506: 3383: 3307: 3219: 3128: 3074: 3043: 2721: 2633: 2533: 317:does. The value of 259: 204:. Then by applying 41:statistical physics 39:in two-dimensional 29:self-avoiding walks 25:connective constant 5283:Weisstein, Eric W. 5147: 4946: 4853: 4815: 4787: 4767: 4733: 4672: 4566: 4502: 4459: 4421: 4411: 4357: 4324: 4215: 4191: 4181: 4146: 4090: 4041: 4021: 3975: 3920: 3880: 3852: 3851: 3797: 3775: 3755: 3717: 3679: 3648: 3624: 3596: 3565: 3513: 3479: 3459: 3436: 3369: 3345: 3293: 3269: 3205: 3185: 3158: 3129: 3101: 3047: 3016: 2964: 2919: 2803: 2780: 2701: 2677: 2613: 2589: 2513: 2493: 2464: 2444: 2424: 2404: 2381: 2193: 2160: 2129: 2093: 2073: 2038: 1922: 1902: 1882: 1848: 1785: 1721: 1660: 1640: 1620: 1600: 1577: 1537: 1482: 1449: 1413: 1349: 1293: 1273: 1263:is traversed from 1253: 1233: 1191: 1162: 1142: 1122: 1093: 1034: 893: 855: 824: 788: 766: 730: 695: 660: 632: 595: 558: 497: 463: 443: 423: 403: 347: 327: 307: 280: 260: 237: 236: 194: 122: 83: 5310:Discrete geometry 5145: 5067:(15): 1062–1065. 4944: 4942: 4903:978-0-8176-3891-7 4638: 4636: 4500: 4498: 4396: 4250: 4166: 3918: 3916: 3836: 3432: 3387: 3311: 3223: 2776: 2725: 2637: 2537: 2490: 2407:{\displaystyle a} 2326: 2310: 2096:{\displaystyle v} 1905:{\displaystyle v} 1846: 1844: 1694: 1643:{\displaystyle x} 1623:{\displaystyle a} 1575: 1573: 1535: 1533: 1459:and diverges for 1328: 1296:{\displaystyle b} 1276:{\displaystyle a} 1165:{\displaystyle b} 1145:{\displaystyle a} 1091: 1089: 1061:Stanislav Smirnov 868: 867: 550: 548: 446:{\displaystyle A} 221: 81: 79: 5317: 5296: 5295: 5268: 5267: 5223: 5207: 5201: 5200: 5174: 5156: 5154: 5153: 5148: 5146: 5141: 5124: 5118: 5117: 5107: 5091: 5085: 5084: 5052: 5046: 5043: 5037: 5036: 5010: 5001: 4995: 4994: 4974: 4968: 4967: 4965: 4955: 4953: 4952: 4947: 4945: 4943: 4938: 4930: 4919: 4908: 4907: 4889: 4862: 4860: 4859: 4854: 4849: 4824: 4822: 4821: 4816: 4811: 4796: 4794: 4793: 4788: 4776: 4774: 4773: 4768: 4763: 4742: 4740: 4739: 4734: 4732: 4731: 4701: 4700: 4695: 4677: 4671: 4670: 4637: 4635: 4634: 4622: 4614: 4613: 4608: 4590: 4575: 4573: 4572: 4567: 4562: 4561: 4556: 4538: 4511: 4509: 4508: 4503: 4501: 4499: 4494: 4486: 4468: 4466: 4465: 4460: 4449: 4448: 4443: 4439: 4434: 4429: 4410: 4383: 4379: 4377: 4372: 4371: 4370: 4355: 4350: 4323: 4322: 4321: 4303: 4302: 4289: 4288: 4267: 4266: 4224: 4222: 4221: 4216: 4204: 4199: 4180: 4155: 4153: 4152: 4147: 4145: 4144: 4135: 4134: 4125: 4110: 4109: 4108: 4098: 4089: 4088: 4079: 4078: 4069: 4054: 4049: 4030: 4028: 4027: 4022: 4020: 4019: 4001: 4000: 3984: 3982: 3981: 3976: 3974: 3973: 3952: 3951: 3929: 3927: 3926: 3921: 3919: 3917: 3912: 3904: 3889: 3887: 3886: 3881: 3872: 3871: 3870: 3860: 3850: 3829: 3828: 3806: 3804: 3803: 3798: 3795: 3794: 3793: 3783: 3764: 3762: 3761: 3756: 3754: 3753: 3743: 3742: 3741: 3731: 3713: 3712: 3699: 3698: 3697: 3687: 3674: 3673: 3672: 3662: 3633: 3631: 3630: 3625: 3622: 3621: 3620: 3610: 3591: 3590: 3589: 3579: 3558: 3522: 3520: 3519: 3514: 3505: 3504: 3503: 3493: 3468: 3466: 3465: 3460: 3455: 3454: 3435: 3434: 3433: 3425: 3407: 3406: 3382: 3377: 3364: 3363: 3344: 3331: 3330: 3306: 3301: 3288: 3287: 3268: 3243: 3242: 3218: 3213: 3194: 3192: 3191: 3186: 3184: 3183: 3167: 3165: 3164: 3159: 3138: 3136: 3135: 3130: 3127: 3126: 3125: 3115: 3094: 3073: 3072: 3071: 3061: 3042: 3041: 3040: 3030: 3009: 2973: 2971: 2970: 2965: 2960: 2959: 2928: 2926: 2925: 2920: 2812: 2810: 2809: 2804: 2799: 2798: 2779: 2778: 2777: 2769: 2751: 2750: 2720: 2715: 2696: 2695: 2676: 2663: 2662: 2632: 2627: 2608: 2607: 2588: 2563: 2562: 2532: 2527: 2502: 2500: 2499: 2494: 2492: 2491: 2483: 2473: 2471: 2470: 2465: 2453: 2451: 2450: 2445: 2433: 2431: 2430: 2425: 2413: 2411: 2410: 2405: 2390: 2388: 2387: 2382: 2365: 2327: 2322: 2320: 2311: 2306: 2292: 2260: 2234: 2233: 2202: 2200: 2199: 2194: 2192: 2191: 2169: 2167: 2166: 2161: 2156: 2138: 2136: 2135: 2130: 2128: 2127: 2102: 2100: 2099: 2094: 2082: 2080: 2079: 2074: 2047: 2045: 2044: 2039: 1931: 1929: 1928: 1923: 1911: 1909: 1908: 1903: 1891: 1889: 1888: 1883: 1878: 1857: 1855: 1854: 1849: 1847: 1845: 1840: 1832: 1830: 1819: 1818: 1794: 1792: 1791: 1786: 1781: 1780: 1762: 1761: 1745: 1744: 1720: 1669: 1667: 1666: 1661: 1649: 1647: 1646: 1641: 1629: 1627: 1626: 1621: 1609: 1607: 1606: 1601: 1586: 1584: 1583: 1578: 1576: 1574: 1569: 1561: 1546: 1544: 1543: 1538: 1536: 1534: 1529: 1521: 1519: 1508: 1507: 1491: 1489: 1488: 1483: 1481: 1480: 1458: 1456: 1455: 1450: 1448: 1447: 1422: 1420: 1419: 1414: 1412: 1411: 1402: 1401: 1391: 1386: 1368: 1367: 1348: 1302: 1300: 1299: 1294: 1282: 1280: 1279: 1274: 1262: 1260: 1259: 1254: 1242: 1240: 1239: 1234: 1217: 1216: 1200: 1198: 1197: 1192: 1171: 1169: 1168: 1163: 1151: 1149: 1148: 1143: 1131: 1129: 1128: 1123: 1102: 1100: 1099: 1094: 1092: 1090: 1085: 1077: 1043: 1041: 1040: 1035: 1018: 1017: 1002: 1001: 986: 985: 970: 969: 954: 953: 938: 937: 922: 921: 902: 900: 899: 894: 889: 888: 864: 862: 861: 856: 833: 831: 830: 825: 820: 819: 797: 795: 794: 789: 775: 773: 772: 767: 762: 761: 739: 737: 736: 731: 704: 702: 701: 696: 669: 667: 666: 661: 641: 639: 638: 633: 621:2.63815853032790 604: 602: 601: 596: 567: 565: 564: 559: 551: 549: 544: 536: 515: 506: 504: 503: 498: 493: 472: 470: 469: 464: 452: 450: 449: 444: 432: 430: 429: 424: 412: 410: 409: 404: 402: 401: 386: 385: 373: 372: 356: 354: 353: 348: 336: 334: 333: 328: 316: 314: 313: 308: 306: 305: 289: 287: 286: 281: 269: 267: 266: 261: 258: 254: 245: 235: 203: 201: 200: 195: 193: 192: 183: 182: 170: 169: 131: 129: 128: 123: 121: 120: 92: 90: 89: 84: 82: 80: 75: 67: 5325: 5324: 5320: 5319: 5318: 5316: 5315: 5314: 5300: 5299: 5281: 5280: 5277: 5272: 5271: 5248: 5209: 5208: 5204: 5129: 5128: 5126: 5125: 5121: 5093: 5092: 5088: 5054: 5053: 5049: 5044: 5040: 5019:(40): 8137–45. 5008: 5003: 5002: 4998: 4976: 4975: 4971: 4924: 4923: 4921: 4920: 4911: 4904: 4891: 4890: 4886: 4881: 4869: 4831: 4830: 4799: 4798: 4779: 4778: 4745: 4744: 4705: 4690: 4626: 4603: 4578: 4577: 4551: 4526: 4525: 4518: 4474: 4473: 4395: 4391: 4390: 4362: 4332: 4328: 4313: 4294: 4277: 4255: 4230: 4229: 4161: 4160: 4136: 4126: 4100: 4080: 4070: 4036: 4035: 4011: 3992: 3987: 3986: 3962: 3940: 3935: 3934: 3892: 3891: 3862: 3820: 3809: 3808: 3785: 3770: 3769: 3745: 3733: 3704: 3689: 3664: 3643: 3642: 3612: 3581: 3528: 3527: 3495: 3474: 3473: 3437: 3398: 3346: 3322: 3270: 3234: 3200: 3199: 3175: 3170: 3169: 3144: 3143: 3117: 3063: 3032: 2979: 2978: 2945: 2934: 2933: 2821: 2820: 2781: 2736: 2678: 2648: 2590: 2548: 2508: 2507: 2476: 2475: 2456: 2455: 2436: 2435: 2416: 2415: 2396: 2395: 2293: 2219: 2208: 2207: 2177: 2172: 2171: 2141: 2140: 2113: 2108: 2107: 2085: 2084: 2053: 2052: 1937: 1936: 1914: 1913: 1894: 1893: 1860: 1859: 1810: 1799: 1798: 1763: 1736: 1722: 1674: 1673: 1652: 1651: 1632: 1631: 1612: 1611: 1592: 1591: 1590:Given a domain 1549: 1548: 1499: 1494: 1493: 1472: 1461: 1460: 1439: 1428: 1427: 1403: 1393: 1350: 1308: 1307: 1285: 1284: 1265: 1264: 1245: 1244: 1208: 1203: 1202: 1174: 1173: 1154: 1153: 1134: 1133: 1114: 1113: 1065: 1064: 1057: 1009: 993: 977: 961: 945: 929: 913: 908: 907: 880: 872: 871: 838: 837: 811: 803: 802: 780: 779: 753: 745: 744: 713: 712: 678: 677: 652: 651: 615: 614: 578: 577: 530: 529: 513: 475: 474: 455: 454: 435: 434: 415: 414: 387: 377: 364: 359: 358: 339: 338: 319: 318: 297: 292: 291: 272: 271: 210: 209: 184: 174: 155: 150: 149: 112: 107: 106: 103: 61: 60: 17: 12: 11: 5: 5323: 5321: 5313: 5312: 5302: 5301: 5298: 5297: 5276: 5275:External links 5273: 5270: 5269: 5246: 5202: 5165:(3): 727–754. 5144: 5139: 5136: 5119: 5086: 5047: 5038: 4996: 4985:(2): 433–453. 4969: 4941: 4936: 4933: 4909: 4902: 4896:. Birkhäuser. 4883: 4882: 4880: 4877: 4876: 4875: 4868: 4865: 4852: 4848: 4844: 4841: 4838: 4814: 4810: 4806: 4786: 4766: 4762: 4758: 4755: 4752: 4730: 4727: 4724: 4721: 4718: 4715: 4712: 4708: 4704: 4699: 4694: 4689: 4686: 4683: 4680: 4676: 4669: 4666: 4663: 4659: 4656: 4653: 4650: 4645: 4641: 4633: 4629: 4625: 4620: 4617: 4612: 4607: 4602: 4599: 4596: 4593: 4589: 4585: 4565: 4560: 4555: 4550: 4547: 4544: 4541: 4537: 4533: 4517: 4514: 4497: 4492: 4489: 4484: 4481: 4470: 4469: 4458: 4455: 4452: 4447: 4442: 4438: 4433: 4428: 4424: 4420: 4417: 4414: 4409: 4406: 4403: 4399: 4394: 4389: 4386: 4382: 4376: 4369: 4365: 4360: 4354: 4349: 4346: 4343: 4340: 4336: 4331: 4327: 4320: 4316: 4312: 4309: 4306: 4301: 4297: 4292: 4287: 4284: 4280: 4276: 4273: 4270: 4265: 4262: 4258: 4253: 4249: 4246: 4243: 4240: 4237: 4214: 4211: 4208: 4203: 4198: 4194: 4190: 4187: 4184: 4179: 4176: 4173: 4169: 4159:which implies 4157: 4156: 4143: 4139: 4133: 4129: 4124: 4120: 4117: 4114: 4107: 4103: 4097: 4093: 4087: 4083: 4077: 4073: 4068: 4064: 4061: 4058: 4053: 4048: 4044: 4018: 4014: 4010: 4007: 4004: 3999: 3995: 3972: 3969: 3965: 3961: 3958: 3955: 3950: 3947: 3943: 3915: 3910: 3907: 3902: 3899: 3879: 3876: 3869: 3865: 3859: 3855: 3849: 3846: 3843: 3839: 3835: 3832: 3827: 3823: 3819: 3816: 3792: 3788: 3782: 3778: 3766: 3765: 3752: 3748: 3740: 3736: 3730: 3727: 3724: 3720: 3716: 3711: 3707: 3703: 3696: 3692: 3686: 3682: 3678: 3671: 3667: 3661: 3658: 3655: 3651: 3636: 3635: 3619: 3615: 3609: 3606: 3603: 3599: 3595: 3588: 3584: 3578: 3575: 3572: 3568: 3564: 3561: 3557: 3553: 3550: 3547: 3544: 3541: 3538: 3535: 3512: 3509: 3502: 3498: 3492: 3489: 3486: 3482: 3470: 3469: 3458: 3453: 3450: 3447: 3444: 3440: 3431: 3428: 3422: 3419: 3416: 3413: 3410: 3405: 3401: 3397: 3394: 3390: 3386: 3381: 3376: 3372: 3367: 3362: 3359: 3356: 3353: 3349: 3343: 3340: 3337: 3334: 3329: 3325: 3321: 3318: 3314: 3310: 3305: 3300: 3296: 3291: 3286: 3283: 3280: 3277: 3273: 3267: 3264: 3261: 3258: 3255: 3252: 3249: 3246: 3241: 3237: 3233: 3230: 3226: 3222: 3217: 3212: 3208: 3182: 3178: 3157: 3154: 3151: 3140: 3139: 3124: 3120: 3114: 3111: 3108: 3104: 3100: 3097: 3093: 3089: 3086: 3083: 3080: 3077: 3070: 3066: 3060: 3057: 3054: 3050: 3046: 3039: 3035: 3029: 3026: 3023: 3019: 3015: 3012: 3008: 3004: 3001: 2998: 2995: 2992: 2989: 2986: 2963: 2958: 2955: 2952: 2948: 2944: 2941: 2930: 2929: 2918: 2915: 2912: 2909: 2906: 2903: 2900: 2897: 2894: 2891: 2888: 2885: 2882: 2879: 2876: 2873: 2870: 2867: 2864: 2861: 2858: 2855: 2852: 2849: 2846: 2843: 2840: 2837: 2834: 2831: 2828: 2814: 2813: 2802: 2797: 2794: 2791: 2788: 2784: 2775: 2772: 2766: 2763: 2760: 2757: 2754: 2749: 2746: 2743: 2739: 2735: 2732: 2728: 2724: 2719: 2714: 2711: 2708: 2704: 2699: 2694: 2691: 2688: 2685: 2681: 2675: 2672: 2669: 2666: 2661: 2658: 2655: 2651: 2647: 2644: 2640: 2636: 2631: 2626: 2623: 2620: 2616: 2611: 2606: 2603: 2600: 2597: 2593: 2587: 2584: 2581: 2578: 2575: 2572: 2569: 2566: 2561: 2558: 2555: 2551: 2547: 2544: 2540: 2536: 2531: 2526: 2523: 2520: 2516: 2489: 2486: 2463: 2443: 2423: 2403: 2392: 2391: 2380: 2377: 2374: 2371: 2368: 2364: 2360: 2357: 2354: 2351: 2348: 2345: 2342: 2339: 2336: 2333: 2330: 2325: 2319: 2314: 2309: 2305: 2302: 2299: 2296: 2290: 2287: 2284: 2281: 2278: 2275: 2272: 2269: 2266: 2263: 2259: 2255: 2252: 2249: 2246: 2243: 2240: 2237: 2232: 2229: 2226: 2222: 2218: 2215: 2190: 2187: 2184: 2180: 2159: 2155: 2151: 2148: 2126: 2123: 2120: 2116: 2092: 2072: 2069: 2066: 2063: 2060: 2049: 2048: 2037: 2034: 2031: 2028: 2025: 2022: 2019: 2016: 2013: 2010: 2007: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1980: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1947: 1944: 1921: 1901: 1881: 1877: 1873: 1870: 1867: 1843: 1838: 1835: 1829: 1825: 1822: 1817: 1813: 1809: 1806: 1784: 1779: 1776: 1773: 1770: 1766: 1760: 1757: 1754: 1751: 1748: 1743: 1739: 1735: 1732: 1729: 1725: 1719: 1716: 1713: 1710: 1707: 1704: 1701: 1697: 1693: 1690: 1687: 1684: 1681: 1659: 1639: 1619: 1599: 1572: 1567: 1564: 1559: 1556: 1532: 1527: 1524: 1518: 1514: 1511: 1506: 1502: 1479: 1475: 1471: 1468: 1446: 1442: 1438: 1435: 1426:converges for 1424: 1423: 1410: 1406: 1400: 1396: 1390: 1385: 1382: 1379: 1375: 1371: 1366: 1363: 1360: 1357: 1353: 1347: 1344: 1341: 1338: 1335: 1331: 1327: 1324: 1321: 1318: 1315: 1292: 1272: 1252: 1232: 1229: 1226: 1223: 1220: 1215: 1211: 1190: 1187: 1184: 1181: 1161: 1141: 1121: 1088: 1083: 1080: 1075: 1072: 1056: 1053: 1045: 1044: 1033: 1030: 1027: 1024: 1021: 1016: 1012: 1008: 1005: 1000: 996: 992: 989: 984: 980: 976: 973: 968: 964: 960: 957: 952: 948: 944: 941: 936: 932: 928: 925: 920: 916: 892: 887: 883: 879: 866: 865: 854: 851: 848: 845: 835: 823: 818: 814: 810: 799: 798: 787: 777: 765: 760: 756: 752: 741: 740: 729: 726: 723: 720: 710: 706: 705: 694: 691: 688: 685: 675: 671: 670: 659: 649: 643: 642: 631: 628: 625: 622: 612: 606: 605: 594: 591: 588: 585: 575: 569: 568: 557: 554: 547: 542: 539: 527: 523: 522: 519: 512: 509: 496: 492: 488: 485: 482: 462: 442: 422: 400: 397: 394: 390: 384: 380: 376: 371: 367: 346: 326: 304: 300: 279: 257: 253: 249: 244: 240: 234: 231: 228: 224: 220: 217: 206:Fekete's lemma 191: 187: 181: 177: 173: 168: 165: 162: 158: 119: 115: 102: 99: 78: 73: 70: 15: 13: 10: 9: 6: 4: 3: 2: 5322: 5311: 5308: 5307: 5305: 5293: 5292: 5287: 5284: 5279: 5278: 5274: 5265: 5261: 5257: 5253: 5249: 5247:9780821836385 5243: 5239: 5235: 5231: 5227: 5222: 5217: 5213: 5206: 5203: 5198: 5194: 5190: 5186: 5182: 5178: 5173: 5168: 5164: 5160: 5142: 5137: 5134: 5123: 5120: 5115: 5111: 5106: 5101: 5097: 5090: 5087: 5082: 5078: 5074: 5070: 5066: 5062: 5058: 5051: 5048: 5042: 5039: 5034: 5030: 5026: 5022: 5018: 5014: 5007: 5000: 4997: 4992: 4988: 4984: 4980: 4973: 4970: 4964: 4959: 4939: 4934: 4931: 4918: 4916: 4914: 4910: 4905: 4899: 4895: 4888: 4885: 4878: 4874: 4871: 4870: 4866: 4864: 4850: 4846: 4842: 4839: 4836: 4828: 4812: 4808: 4804: 4784: 4764: 4760: 4756: 4753: 4750: 4725: 4719: 4716: 4713: 4710: 4706: 4702: 4697: 4684: 4678: 4643: 4639: 4631: 4627: 4623: 4618: 4610: 4597: 4591: 4558: 4545: 4539: 4523: 4515: 4513: 4495: 4490: 4487: 4482: 4479: 4456: 4450: 4445: 4440: 4431: 4426: 4422: 4418: 4415: 4407: 4404: 4401: 4397: 4392: 4387: 4384: 4380: 4374: 4367: 4363: 4358: 4352: 4347: 4344: 4341: 4338: 4334: 4329: 4325: 4318: 4314: 4310: 4307: 4304: 4299: 4295: 4290: 4285: 4282: 4278: 4274: 4271: 4268: 4263: 4260: 4256: 4251: 4247: 4241: 4235: 4228: 4227: 4226: 4209: 4201: 4196: 4192: 4188: 4185: 4177: 4174: 4171: 4167: 4141: 4131: 4127: 4122: 4118: 4112: 4105: 4101: 4095: 4091: 4085: 4075: 4071: 4066: 4062: 4056: 4051: 4046: 4042: 4034: 4033: 4032: 4016: 4012: 4008: 4005: 4002: 3997: 3993: 3970: 3967: 3963: 3959: 3956: 3953: 3948: 3945: 3941: 3931: 3913: 3908: 3905: 3900: 3897: 3874: 3867: 3863: 3857: 3853: 3847: 3844: 3841: 3837: 3833: 3825: 3821: 3814: 3790: 3786: 3780: 3776: 3750: 3738: 3734: 3728: 3725: 3722: 3718: 3709: 3705: 3701: 3694: 3690: 3684: 3680: 3676: 3669: 3665: 3659: 3656: 3653: 3649: 3641: 3640: 3639: 3617: 3613: 3607: 3604: 3601: 3597: 3593: 3586: 3582: 3576: 3573: 3570: 3566: 3559: 3555: 3551: 3548: 3542: 3539: 3536: 3533: 3526: 3525: 3524: 3510: 3507: 3500: 3496: 3490: 3487: 3484: 3480: 3456: 3448: 3442: 3438: 3426: 3420: 3417: 3411: 3408: 3403: 3399: 3395: 3392: 3388: 3384: 3379: 3374: 3370: 3365: 3357: 3351: 3347: 3341: 3335: 3332: 3327: 3323: 3319: 3316: 3312: 3308: 3303: 3298: 3294: 3289: 3281: 3275: 3271: 3262: 3253: 3247: 3244: 3239: 3235: 3231: 3228: 3224: 3220: 3215: 3210: 3206: 3198: 3197: 3196: 3180: 3176: 3149: 3122: 3118: 3112: 3109: 3106: 3102: 3095: 3091: 3087: 3081: 3078: 3075: 3068: 3064: 3058: 3055: 3052: 3048: 3044: 3037: 3033: 3027: 3024: 3021: 3017: 3010: 3006: 3002: 2999: 2993: 2990: 2987: 2984: 2977: 2976: 2975: 2956: 2953: 2950: 2946: 2939: 2916: 2913: 2907: 2901: 2895: 2892: 2889: 2883: 2877: 2871: 2865: 2862: 2859: 2853: 2847: 2841: 2835: 2832: 2829: 2819: 2818: 2817: 2800: 2792: 2786: 2782: 2770: 2764: 2761: 2755: 2752: 2747: 2744: 2741: 2737: 2733: 2730: 2726: 2722: 2717: 2712: 2709: 2706: 2702: 2697: 2689: 2683: 2679: 2673: 2667: 2664: 2659: 2656: 2653: 2649: 2645: 2642: 2638: 2634: 2629: 2624: 2621: 2618: 2614: 2609: 2601: 2595: 2591: 2582: 2573: 2567: 2564: 2559: 2556: 2553: 2549: 2545: 2542: 2538: 2534: 2529: 2524: 2521: 2518: 2514: 2506: 2505: 2504: 2484: 2461: 2441: 2421: 2401: 2378: 2372: 2369: 2366: 2355: 2349: 2346: 2343: 2337: 2331: 2328: 2323: 2312: 2307: 2303: 2300: 2297: 2294: 2288: 2282: 2276: 2273: 2270: 2267: 2264: 2250: 2247: 2244: 2238: 2230: 2227: 2224: 2220: 2213: 2206: 2205: 2204: 2203:are given by 2188: 2185: 2182: 2178: 2157: 2153: 2149: 2146: 2124: 2121: 2118: 2114: 2104: 2090: 2070: 2067: 2064: 2061: 2058: 2035: 2032: 2029: 2023: 2017: 2011: 2008: 2005: 1999: 1993: 1987: 1981: 1978: 1975: 1969: 1963: 1957: 1951: 1948: 1945: 1935: 1934: 1933: 1899: 1879: 1875: 1871: 1868: 1865: 1841: 1836: 1833: 1827: 1823: 1820: 1815: 1811: 1807: 1804: 1795: 1782: 1774: 1768: 1764: 1755: 1752: 1749: 1741: 1737: 1733: 1730: 1727: 1723: 1717: 1711: 1708: 1702: 1699: 1695: 1691: 1685: 1679: 1671: 1657: 1637: 1617: 1588: 1570: 1565: 1562: 1557: 1554: 1530: 1525: 1522: 1516: 1512: 1509: 1504: 1500: 1477: 1473: 1469: 1466: 1444: 1440: 1436: 1433: 1408: 1404: 1398: 1394: 1383: 1380: 1377: 1373: 1369: 1361: 1355: 1351: 1345: 1339: 1336: 1333: 1329: 1325: 1319: 1313: 1306: 1305: 1304: 1290: 1270: 1250: 1227: 1224: 1221: 1213: 1209: 1185: 1179: 1159: 1139: 1119: 1110: 1106: 1086: 1081: 1078: 1073: 1070: 1062: 1054: 1052: 1050: 1031: 1028: 1025: 1022: 1019: 1014: 1010: 1006: 1003: 998: 994: 990: 987: 982: 978: 974: 971: 966: 962: 958: 955: 950: 946: 942: 939: 934: 930: 926: 923: 918: 914: 906: 905: 904: 885: 881: 849: 843: 836: 816: 812: 801: 800: 785: 778: 758: 754: 743: 742: 724: 718: 711: 708: 707: 689: 683: 676: 673: 672: 657: 650: 648: 645: 644: 626: 620: 613: 611: 608: 607: 589: 583: 576: 574: 571: 570: 555: 552: 545: 540: 537: 528: 525: 524: 516: 510: 508: 494: 490: 486: 483: 480: 460: 440: 420: 398: 395: 392: 388: 382: 378: 374: 369: 365: 344: 324: 302: 298: 277: 255: 251: 247: 242: 238: 226: 218: 215: 207: 189: 185: 179: 175: 171: 166: 163: 160: 156: 147: 143: 140: +  139: 135: 117: 113: 100: 98: 96: 76: 71: 68: 58: 54: 53:Duminil-Copin 50: 46: 42: 38: 34: 30: 26: 22: 5289: 5221:math/0204277 5211: 5205: 5162: 5158: 5122: 5095: 5089: 5064: 5060: 5056: 5050: 5041: 5016: 5012: 4999: 4982: 4978: 4972: 4893: 4887: 4519: 4512:as desired. 4471: 4158: 3932: 3767: 3637: 3471: 3141: 2931: 2815: 2393: 2105: 2050: 1796: 1672: 1589: 1425: 1172:, we define 1104: 1058: 1046: 869: 786:1.7110412... 511:Known values 145: 141: 137: 133: 104: 37:universality 24: 18: 4516:Conjectures 1109:Ising model 21:mathematics 4879:References 1932:, we have 844:1.80883001 709:L-lattice 674:Manhattan 573:Triangular 526:Hexagonal 101:Definition 5291:MathWorld 5172:1109.0358 5105:1009.6077 4963:1007.0575 4837:κ 4785:ν 4751:ν 4714:ν 4679:γ 4640:∑ 4616:⟩ 4592:γ 4584:⟨ 4564:⟩ 4540:γ 4532:⟨ 4480:μ 4454:∞ 4398:∏ 4345:− 4335:∏ 4308:⋯ 4283:− 4272:⋯ 4261:− 4252:∑ 4248:≤ 4213:∞ 4168:∏ 4113:≤ 4057:≤ 4006:⋯ 3968:− 3957:⋯ 3946:− 3901:≥ 3898:μ 3878:∞ 3838:∑ 3834:≥ 3702:≤ 3677:− 3552:π 3543:⁡ 3449:γ 3443:ℓ 3430:¯ 3427:ϵ 3421:∪ 3418:ϵ 3415:→ 3396:∈ 3393:γ 3389:∑ 3358:γ 3352:ℓ 3342:β 3339:→ 3320:∈ 3317:γ 3313:∑ 3282:γ 3276:ℓ 3257:∖ 3254:α 3251:→ 3232:∈ 3229:γ 3225:∑ 3156:∞ 3153:→ 3088:π 3082:⁡ 3003:π 2994:⁡ 2893:− 2863:− 2833:− 2793:γ 2787:ℓ 2774:¯ 2771:ϵ 2765:∪ 2762:ϵ 2759:→ 2734:∈ 2731:γ 2727:∑ 2690:γ 2684:ℓ 2674:β 2671:→ 2646:∈ 2643:γ 2639:∑ 2602:γ 2596:ℓ 2577:∖ 2574:α 2571:→ 2546:∈ 2543:γ 2539:∑ 2488:¯ 2485:ϵ 2462:ϵ 2442:β 2422:α 2367:≤ 2344:− 2289:≤ 2271:≤ 2248:∈ 2150:π 2147:± 2009:− 1979:− 1949:− 1920:Ω 1866:σ 1775:γ 1769:ℓ 1742:γ 1734:σ 1728:− 1715:→ 1706:Ω 1703:⊂ 1700:γ 1696:∑ 1658:σ 1598:Ω 1555:μ 1389:∞ 1374:∑ 1362:γ 1356:ℓ 1343:→ 1334:γ 1330:∑ 1251:γ 1214:γ 1186:γ 1180:ℓ 1120:γ 1071:μ 1051:article. 956:− 940:− 924:− 553:≃ 481:γ 461:γ 421:μ 396:− 393:γ 379:μ 375:≈ 345:μ 325:μ 278:μ 233:∞ 230:→ 216:μ 172:≤ 45:universal 5304:Category 5264:16710180 5197:54799238 4867:See also 3807:. Since 834:lattice 776:lattice 684:1.733535 518:Lattice 5256:2112127 5226:Bibcode 5177:Bibcode 5110:Bibcode 5069:Bibcode 5021:Bibcode 4743:, with 658:2.56062 584:4.15079 57:Smirnov 33:lattice 5262:  5254:  5244:  5195:  4900:  2051:where 719:1.5657 647:KagomĂ© 610:Square 23:, the 5260:S2CID 5216:arXiv 5193:S2CID 5167:arXiv 5100:arXiv 5009:(PDF) 4958:arXiv 4829:with 31:on a 5242:ISBN 4898:ISBN 4451:< 4405:> 4311:> 4305:> 4275:< 4269:< 4210:< 4175:> 4009:> 4003:> 3985:and 3960:< 3954:< 3845:> 1858:and 1650:and 1470:> 1437:< 1152:and 882:3.12 755:3.12 556:1.85 433:and 55:and 5234:doi 5185:doi 5163:326 5157:". 5077:doi 5029:doi 4987:doi 4983:307 4956:". 3540:cos 3079:cos 2991:cos 1912:in 1797:If 1283:to 813:4.8 223:lim 19:In 5306:: 5288:. 5258:. 5252:MR 5250:. 5240:. 5232:. 5224:. 5191:. 5183:. 5175:. 5161:. 5108:. 5075:. 5065:49 5063:. 5027:. 5017:31 5015:. 5011:. 4981:. 4912:^ 4863:. 4813:32 4805:11 3930:. 3385::= 3309::= 3221::= 2723::= 2635::= 2535::= 1587:. 1007:12 919:12 725:15 507:. 495:32 487:43 97:. 5294:. 5266:. 5236:: 5228:: 5218:: 5199:. 5187:: 5179:: 5169:: 5143:2 5138:+ 5135:1 5116:. 5112:: 5102:: 5083:. 5079:: 5071:: 5057:n 5035:. 5031:: 5023:: 4993:. 4989:: 4966:. 4960:: 4940:2 4935:+ 4932:2 4906:. 4851:3 4847:/ 4843:8 4840:= 4809:/ 4765:4 4761:/ 4757:3 4754:= 4729:) 4726:1 4723:( 4720:o 4717:+ 4711:2 4707:n 4703:= 4698:2 4693:| 4688:) 4685:n 4682:( 4675:| 4668:W 4665:A 4662:S 4658:p 4655:e 4652:t 4649:s 4644:n 4632:n 4628:c 4624:1 4619:= 4611:2 4606:| 4601:) 4598:n 4595:( 4588:| 4559:2 4554:| 4549:) 4546:n 4543:( 4536:| 4496:2 4491:+ 4488:2 4483:= 4457:. 4446:2 4441:) 4437:) 4432:x 4427:T 4423:B 4419:+ 4416:1 4413:( 4408:0 4402:T 4393:( 4388:2 4385:= 4381:) 4375:x 4368:k 4364:T 4359:B 4353:j 4348:I 4342:= 4339:k 4330:( 4326:2 4319:j 4315:T 4300:0 4296:T 4291:, 4286:1 4279:T 4264:I 4257:T 4245:) 4242:x 4239:( 4236:Z 4207:) 4202:x 4197:T 4193:B 4189:+ 4186:1 4183:( 4178:0 4172:T 4142:T 4138:) 4132:c 4128:x 4123:/ 4119:x 4116:( 4106:c 4102:x 4096:T 4092:B 4086:T 4082:) 4076:c 4072:x 4067:/ 4063:x 4060:( 4052:x 4047:T 4043:B 4017:j 4013:T 3998:0 3994:T 3971:1 3964:T 3949:I 3942:T 3914:2 3909:+ 3906:2 3875:= 3868:c 3864:x 3858:T 3854:B 3848:0 3842:T 3831:) 3826:c 3822:x 3818:( 3815:Z 3791:c 3787:x 3781:T 3777:B 3751:2 3747:) 3739:c 3735:x 3729:1 3726:+ 3723:T 3719:B 3715:( 3710:c 3706:x 3695:c 3691:x 3685:T 3681:A 3670:c 3666:x 3660:1 3657:+ 3654:T 3650:A 3634:. 3618:c 3614:x 3608:L 3605:, 3602:T 3598:B 3594:+ 3587:c 3583:x 3577:L 3574:, 3571:T 3567:A 3563:) 3560:8 3556:/ 3549:3 3546:( 3537:= 3534:1 3511:0 3508:= 3501:c 3497:x 3491:L 3488:, 3485:T 3481:E 3457:. 3452:) 3446:( 3439:x 3412:a 3409:: 3404:T 3400:S 3380:x 3375:T 3371:E 3366:, 3361:) 3355:( 3348:x 3336:a 3333:: 3328:T 3324:S 3304:x 3299:T 3295:B 3290:, 3285:) 3279:( 3272:x 3266:} 3263:a 3260:{ 3248:a 3245:: 3240:T 3236:S 3216:x 3211:T 3207:A 3181:T 3177:S 3150:L 3123:c 3119:x 3113:L 3110:, 3107:T 3103:E 3099:) 3096:4 3092:/ 3085:( 3076:+ 3069:c 3065:x 3059:L 3056:, 3053:T 3049:B 3045:+ 3038:c 3034:x 3028:L 3025:, 3022:T 3018:A 3014:) 3011:8 3007:/ 3000:3 2997:( 2988:= 2985:1 2962:) 2957:L 2954:, 2951:T 2947:S 2943:( 2940:V 2917:0 2914:= 2911:) 2908:r 2905:( 2902:F 2899:) 2896:v 2890:r 2887:( 2884:+ 2881:) 2878:q 2875:( 2872:F 2869:) 2866:v 2860:q 2857:( 2854:+ 2851:) 2848:p 2845:( 2842:F 2839:) 2836:v 2830:p 2827:( 2801:. 2796:) 2790:( 2783:x 2756:a 2753:: 2748:L 2745:, 2742:T 2738:S 2718:x 2713:L 2710:, 2707:T 2703:E 2698:, 2693:) 2687:( 2680:x 2668:a 2665:: 2660:L 2657:, 2654:T 2650:S 2630:x 2625:L 2622:, 2619:T 2615:B 2610:, 2605:) 2599:( 2592:x 2586:} 2583:a 2580:{ 2568:a 2565:: 2560:L 2557:, 2554:T 2550:S 2530:x 2525:L 2522:, 2519:T 2515:A 2402:a 2379:. 2376:} 2373:L 2370:3 2363:| 2359:) 2356:z 2353:( 2350:e 2347:R 2341:) 2338:z 2335:( 2332:m 2329:I 2324:3 2318:| 2313:, 2308:2 2304:1 2301:+ 2298:T 2295:3 2286:) 2283:z 2280:( 2277:e 2274:R 2268:0 2265:: 2262:) 2258:H 2254:( 2251:V 2245:z 2242:{ 2239:= 2236:) 2231:L 2228:, 2225:T 2221:S 2217:( 2214:V 2189:L 2186:, 2183:T 2179:S 2158:3 2154:/ 2125:L 2122:, 2119:T 2115:S 2091:v 2071:r 2068:, 2065:q 2062:, 2059:p 2036:, 2033:0 2030:= 2027:) 2024:r 2021:( 2018:F 2015:) 2012:v 2006:r 2003:( 2000:+ 1997:) 1994:q 1991:( 1988:F 1985:) 1982:v 1976:q 1973:( 1970:+ 1967:) 1964:p 1961:( 1958:F 1955:) 1952:v 1946:p 1943:( 1900:v 1880:8 1876:/ 1872:5 1869:= 1842:2 1837:+ 1834:2 1828:/ 1824:1 1821:= 1816:c 1812:x 1808:= 1805:x 1783:. 1778:) 1772:( 1765:x 1759:) 1756:z 1753:, 1750:a 1747:( 1738:W 1731:i 1724:e 1718:z 1712:a 1709:: 1692:= 1689:) 1686:z 1683:( 1680:F 1638:x 1618:a 1571:2 1566:+ 1563:2 1558:= 1531:2 1526:+ 1523:2 1517:/ 1513:1 1510:= 1505:c 1501:x 1478:c 1474:x 1467:x 1445:c 1441:x 1434:x 1409:n 1405:x 1399:n 1395:c 1384:0 1381:= 1378:n 1370:= 1365:) 1359:( 1352:x 1346:H 1340:a 1337:: 1326:= 1323:) 1320:x 1317:( 1314:Z 1291:b 1271:a 1231:) 1228:b 1225:, 1222:a 1219:( 1210:W 1189:) 1183:( 1160:b 1140:a 1105:n 1087:2 1082:+ 1079:2 1074:= 1032:2 1029:+ 1026:x 1023:8 1020:+ 1015:2 1011:x 1004:+ 999:3 995:x 991:8 988:+ 983:4 979:x 975:2 972:+ 967:6 963:x 959:4 951:7 947:x 943:8 935:8 931:x 927:4 915:x 891:) 886:2 878:( 853:) 850:6 847:( 822:) 817:2 809:( 764:) 759:2 751:( 728:) 722:( 693:) 690:3 687:( 630:) 627:3 624:( 593:) 590:4 587:( 546:2 541:+ 538:2 491:/ 484:= 441:A 399:1 389:n 383:n 370:n 366:c 303:n 299:c 256:n 252:/ 248:1 243:n 239:c 227:n 219:= 190:m 186:c 180:n 176:c 167:m 164:+ 161:n 157:c 146:n 142:m 138:n 134:n 118:n 114:c 77:2 72:+ 69:2

Index

mathematics
self-avoiding walks
lattice
universality
statistical physics
universal
critical probability threshold for percolation
Duminil-Copin
Smirnov
Schramm–Loewner evolution
Fekete's lemma
Triangular
Square
Kagomé
percolation threshold
Stanislav Smirnov
Ising model
mean squared displacement
Schramm–Loewner evolution
Percolation threshold
ISBN
978-0-8176-3891-7



arXiv
1007.0575
doi
10.1016/S0304-3975(03)00229-9
"Self-avoiding walks, neighbor-avoiding walks and trails on semi-regular lattices"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑