Knowledge

Constant-mean-curvature surface

Source đź“ť

503: 491: 479: 36: 28: 1353: 2528: 1109: 2699:
E.J. Lobaton, T.R. Salamon. Computation of constant mean curvature surfaces: Application to the gas–liquid interface of a pressurized fluid on a superhydrophobic surface. Journal of Colloid and Interface Science. Volume 314, Issue 1, 1 October 2007, Pages
2788:
Helmut Pottmann, Yang Liu, Johannes Wallner, Alexander Bobenko, Wenping Wang. Geometry of Multi-layer Freeform Structures for Architecture. ACM Transactions on Graphics – Proceedings of ACM SIGGRAPH 2007 Volume 26 Issue 3, July 2007 Article No. 65
587:"force" along the asymptotic axis of the unduloid (where n is the circumference of the necks), the sum of which must be balanced for the surface to exist. Current work involves classification of families of embedded CMC surfaces in terms of their 2231:
where the different components have a nonzero interfacial energy or tension. CMC analogs to the periodic minimal surfaces have been constructed, producing unequal partitions of space. CMC structures have been observed in ABC triblock copolymers.
466:
with each genus bigger than one. In particular gluing methods appear to allow combining CMC surfaces fairly arbitrarily. Delaunay surfaces can also be combined with immersed "bubbles", retaining their CMC properties.
2709:
D. M. Anderson, H. T. Davis, L. E. Scriven, J. C. C. Nitsche, Periodic Surfaces of Prescribed Mean Curvature in Advances in Chemical Physics vol 77, eds. I. Prigogine and S. A. Rice, John Wiley & Sons, 2007, p.
2397: 1805:
can be described in purely algebro-geometric data. This can be extended to a subset of CMC immersions of the plane which are of finite type. More precisely there is an explicit bijection between CMC immersions of
1976: 1098: 2453:
Nikolaos Kapouleas, Christine Breiner, Stephen Kleene. Conservation laws and gluing constructions for constant mean curvature (hyper)surfaces. Notices Amer. Math. Soc. 69 (2022), no.5, 762–773.
688: 1877: 1774: 930: 749: 1348:{\displaystyle X_{z}(z)={\frac {-1}{H(1+\phi (z){\bar {\phi }}(z))^{2}}}\left\{(1-\phi (z)^{2},i(1+\phi (z)^{2}),2\phi (z)){\frac {\bar {\partial \phi }}{\partial {\bar {z}}}}(z)\right\}} 2124: 1480: 970: 1906: 1833: 1803: 1718: 1689: 1660: 1554: 1002: 819: 547: 464: 435: 395: 358: 303: 244: 185: 152: 2090: 2063: 876: 585: 2016: 2184: 2036: 1996: 615: 270: 211: 1623: 1382: 2790: 2144: 1588: 1402: 1506: 329: 2164: 1422: 896: 854: 790: 123: 2317:
A. D. Alexandrov, Uniqueness theorem for surfaces in the large, V. Vestnik, Leningrad Univ. 13, 19 (1958), 5–8, Amer. Math. Soc. Trans. (Series 2) 21, 412–416.
2721: 2557:. Triunduloids: Embedded constant mean curvature surfaces with three ends and genus zero. J. Reine Angew. Math., 564, pp. 35–61 2001 arXiv:math/0102183v2 2838: 830: 2675:
Smith, J. 2003. Three Applications of Optimization in Computer Graphics. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
2511:
Shoichi Fujimori, Shimpei Kobayashi and Wayne Rossman, Loop Group Methods for Constant Mean Curvature Surfaces. Rokko Lectures in Mathematics 2005
2288:
Carl Johan Lejdfors, Surfaces of Constant Mean Curvature. Master’s thesis Lund University, Centre for Mathematical Sciences Mathematics 2003:E11
2488:
Korevaar N., Kusner R., Solomon B., The structure of complete embedded surfaces with constant mean curvature, J. Diff. Geom. 30 (1989) 465–503.
2277:
Nick Korevaar, Jesse Ratzkin, Nat Smale, Andrejs Treibergs, A survey of the classical theory of constant mean curvature surfaces in R3, 2002
1911: 2638: 2197:
can be used to produce approximations to CMC surfaces (or discrete counterparts), typically by minimizing a suitable energy functional.
2805: 1720:, which are spanned by a minimal patch that can be extended into a complete surface by reflection, and then turned into a CMC surface. 549:. Korevaar, Kusner and Solomon proved that a complete embedded CMC surface will have ends asymptotic to unduloids. Each end carries a 2554: 2497: 2437: 155: 2224: 2687: 1010: 2824: 2289: 2194: 2762: 2299:
C. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pures Appl., 6 (1841), 309–320.
624: 1838: 1735: 2810: 2210: 901: 697: 79: 2690:. ACM Transactions on Graphics – SIGGRAPH 2012 Conference Proceedings. Volume 31 Issue 4, July 2012 Article No. 85 2095: 2440:. Coplanar constant mean curvature surfaces. Comm. Anal. Geom. 15:5 (2008) pp. 985–1023. ArXiv math.DG/0509210. 437:
with most topological types and at least two ends. Subsequently, Kapouleas constructed compact CMC surfaces in
2248: 2236: 2216:
Besides macroscopic bubble surfaces CMC surfaces are relevant for the shape of the gas–liquid interface on a
2308:
J. H. Jellet, Sur la Surface dont la Courbure Moyenne est Constant, J. Math. Pures Appl., 18 (1853), 163–167
1732:, Sterling and Bobenko showed that all constant mean curvature immersions of a 2-torus into the space forms 1430: 935: 2422:
Rafe Mazzeo, Daniel Pollack, Gluing and Moduli for Noncompact Geometric Problems. 1996 arXiv:dg-ga/9601008
2500:, A Complete Family of CMC Surfaces. In Integrable Systems, Geometry and Visualization, 2005, pp 237–245. 83: 2756: 2371: 405: 44: 1882: 1809: 1779: 1694: 1665: 1636: 1511: 975: 795: 523: 440: 411: 371: 334: 279: 220: 161: 128: 2736: 2686:
Hao Pan, Yi-King Choi, Yang Liu, Wenchao Hu, Qiang Du, Konrad Polthier, Caiming Zhang, Wenping Wang,
2464:
Existence and classification of constant mean curvature multibubbletons of finite and infinite type
2676: 2068: 2041: 859: 514:
Triunduloids with different neck sizes. As neck sizes are varied the asymptotic directions change.
2658: 2619: 2512: 2476: 404:
Up until this point it had seemed that CMC surfaces were rare. Using gluing techniques, in 1987
276:
conjectured in 1956 that any immersed compact orientable constant mean curvature hypersurface in
63: 552: 772:
Like for minimal surfaces, there exist a close link to harmonic functions. An oriented surface
2001: 502: 2169: 2021: 1981: 594: 249: 190: 2744: 2650: 2611: 2582: 2352: 2228: 2217: 1593: 1361: 87: 56: 2602:
Pinkall, U.; Sterling, I. (1989). "On the classification of constant mean curvature tori".
2501: 2129: 1559: 1387: 2278: 2258: 2326:
H. Hopf, Differential geometry in the large. Springer-Verlag, Berlin, 1983. vii+184 pp.
1485: 308: 2740: 2239:
such as inflatable domes and enclosures, as well as a source of flowing organic shapes.
331:
sphere. This conjecture was disproven in 1982 by Wu-Yi Hsiang using a counterexample in
2410: 2336: 2149: 1729: 1407: 881: 839: 775: 361: 108: 52: 17: 2832: 2662: 2654: 2541: 2451: 2777:
Observation of a non-constant mean curvature interface in an ABC triblock copolymer
2776: 2253: 2206: 826: 588: 490: 2340: 365: 2775:
Samuel P. Gido, Dwight W. Schwark, Edwin L. Thomas, Maria do Carmo Goncalves,
273: 214: 2587: 2570: 2357: 822: 154:
with constant mean curvature, then it is the standard sphere. Subsequently,
2722:"Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries" 2720:
Meinhard Wohlgemuth; Nataliya Yufa; James Hoffman; Edwin L. Thomas (2001).
520:
Meeks showed that there are no embedded CMC surfaces with just one end in
2815: 2477:
The topology and geometry of embedded surfaces of constant mean curvature
95: 91: 2463: 2441: 478: 408:
constructed a plethora of examples of complete immersed CMC surfaces in
86:
with constant mean curvature were the surfaces obtained by rotating the
2623: 2558: 2384: 2748: 2423: 2516: 99: 67: 2615: 1971:{\displaystyle (\Sigma ,\lambda ,\rho ,\lambda _{1},\lambda _{2},L)} 35: 2385:
Complete constant mean curvature surfaces in Euclidean three space
398: 34: 27: 26: 2411:
Constant mean curvature surfaces constructed by fusing Wente tori
2398:
Compact constant mean curvature surfaces in Euclidean three-space
2227:
there has been interest in periodic CMC surfaces as models for
1691:. This allows constructions starting from geodesic polygons in 62:
Note that these surfaces are generally different from constant
2639:"Surfaces of constant mean curvature and integrable equations" 829:. Kenmotsu’s representation formula is the counterpart to the 2529:
Weierstrass Formula for Surfaces of Prescribed Mean Curvature
59:
as a subset, but typically they are treated as special case.
2372:
Constant mean curvature surfaces in Euclidean three-space.
90:
of the conics. These are the plane, cylinder, sphere, the
2374:. Bull. Amer. Math. Soc. (N.S.) 17 (1987), no.2, 318–320. 2211:
curvature corresponding to a nonzero pressure difference
1093:{\displaystyle X(z)=\Re \int _{z_{0}}^{z}X_{z}(z')\,dz'} 2466:, Indiana Univ. Math. J. 42 (1993), no. 4, 1239–1266. 2172: 2152: 2132: 2098: 2071: 2044: 2024: 2004: 1984: 1914: 1885: 1841: 1812: 1782: 1738: 1697: 1668: 1639: 1596: 1562: 1514: 1488: 1433: 1410: 1390: 1364: 1112: 1013: 978: 938: 904: 884: 862: 842: 798: 778: 700: 627: 597: 555: 526: 443: 414: 374: 337: 311: 282: 252: 223: 193: 164: 131: 111: 1998:
is a hyperelliptic curve called the spectral curve,
2688:
Robust modeling of constant mean curvature surfaces
932:is a harmonic function into the Riemann sphere. If 2178: 2158: 2138: 2118: 2084: 2057: 2030: 2010: 1990: 1970: 1900: 1871: 1827: 1797: 1768: 1712: 1683: 1654: 1617: 1582: 1548: 1500: 1474: 1416: 1396: 1376: 1347: 1092: 996: 964: 924: 890: 870: 848: 813: 784: 743: 683:{\displaystyle \sum _{i=1}^{k}n_{i}\leq (k-1)\pi } 682: 609: 579: 541: 458: 429: 389: 352: 323: 297: 264: 238: 205: 179: 146: 117: 1872:{\displaystyle \mathbb {R} ^{3},\mathbb {S} ^{3}} 1769:{\displaystyle \mathbb {R} ^{3},\mathbb {S} ^{3}} 2804:CMC surfaces at the Scientific Graphics Project 2400:J. Differential Geom. 33 (1991), no. 3, 683-715. 2205:CMC surfaces are natural for representations of 898:be an arbitrary non-zero real constant. Suppose 39:Unduloid, a surface with constant mean curvature 1633:Lawson showed in 1970 that each CMC surface in 925:{\displaystyle \phi :V\rightarrow \mathbb {C} } 821:has constant mean curvature if and only if its 2571:"Harmonic maps from a 2-torus to the 3-sphere" 2235:In architecture CMC surfaces are relevant for 759: − 2 ends can be cylindrical. 744:{\displaystyle \sum _{i=1}^{k}n_{i}\leq k\pi } 66:surfaces, with the important exception of the 31:Nodoid, a surface with constant mean curvature 2779:, Macromolecules, 1993, 26 (10), pp 2636–2640 2436:Karsten Grosse-Brauckmann, Robert B. Kusner, 2387:Ann. of Math. (2) 131 (1990), no. 2, 239-330. 1662:has an isometric "cousin" minimal surface in 8: 2553:Karsten Grosse-Brauckmann, Robert B Kusner, 2341:"Counterexample to a conjecture of H. Hopf." 2113: 2107: 2751:. Archived from the original on 2015-06-23. 2544:”, Annals of Mathematics 92 (1970) 335–374. 2432: 2430: 2119:{\displaystyle \mathbb {C} \setminus \{0\}} 2413:Invent. Math. 119 (1995), no. 3, 443-518. 158:proved that a compact embedded surface in 2586: 2356: 2171: 2151: 2131: 2100: 2099: 2097: 2076: 2070: 2049: 2043: 2023: 2003: 1983: 1953: 1940: 1913: 1892: 1888: 1887: 1884: 1863: 1859: 1858: 1848: 1844: 1843: 1840: 1819: 1815: 1814: 1811: 1789: 1785: 1784: 1781: 1760: 1756: 1755: 1745: 1741: 1740: 1737: 1704: 1700: 1699: 1696: 1675: 1671: 1670: 1667: 1646: 1642: 1641: 1638: 1595: 1572: 1561: 1537: 1513: 1487: 1461: 1460: 1455: 1432: 1409: 1389: 1363: 1317: 1316: 1297: 1295: 1265: 1231: 1195: 1171: 1170: 1135: 1117: 1111: 1078: 1058: 1048: 1041: 1036: 1012: 977: 944: 943: 937: 918: 917: 903: 883: 864: 863: 861: 841: 805: 801: 800: 797: 777: 726: 716: 705: 699: 653: 643: 632: 626: 596: 554: 533: 529: 528: 525: 450: 446: 445: 442: 421: 417: 416: 413: 381: 377: 376: 373: 344: 340: 339: 336: 310: 289: 285: 284: 281: 272:must be a standard sphere. Based on this 251: 230: 226: 225: 222: 192: 171: 167: 166: 163: 138: 134: 133: 130: 110: 2270: 2104: 2754: 1475:{\displaystyle \phi (z)=-1/{\bar {z}}} 965:{\displaystyle \phi _{\bar {z}}\neq 0} 856:be an open simply connected subset of 49:constant-mean-curvature (CMC) surfaces 2146:is an antiholomorphic involution and 7: 831:Weierstrass–Enneper parameterization 125:is a compact star-shaped surface in 105:In 1853 J. H. Jellet showed that if 2809:GeometrieWerkstatt surface gallery 2479:, J. Diff. Geom. 27 (1988) 539–552. 2173: 2025: 1985: 1918: 1313: 1300: 1029: 25: 2839:Differential geometry of surfaces 217:proved that a sphere immersed in 2575:Journal of Differential Geometry 2225:triply periodic minimal surfaces 1908:, and spectral data of the form 1901:{\displaystyle \mathbb {H} ^{3}} 1828:{\displaystyle \mathbb {R} ^{2}} 1798:{\displaystyle \mathbb {H} ^{3}} 1713:{\displaystyle \mathbb {S} ^{3}} 1684:{\displaystyle \mathbb {S} ^{3}} 1655:{\displaystyle \mathbb {R} ^{3}} 1549:{\displaystyle \phi (z)=-e^{ix}} 1404:as Gauss map and mean curvature 997:{\displaystyle X:V\rightarrow R} 814:{\displaystyle \mathbb {R} ^{3}} 542:{\displaystyle \mathbb {R} ^{3}} 501: 489: 477: 459:{\displaystyle \mathbb {R} ^{3}} 430:{\displaystyle \mathbb {R} ^{3}} 390:{\displaystyle \mathbb {R} ^{3}} 353:{\displaystyle \mathbb {R} ^{4}} 298:{\displaystyle \mathbb {R} ^{n}} 239:{\displaystyle \mathbb {R} ^{3}} 180:{\displaystyle \mathbb {R} ^{3}} 147:{\displaystyle \mathbb {R} ^{3}} 2655:10.1070/RM1991v046n04ABEH002826 2542:Complete minimal surfaces in S3 2531:, Math. Ann., 245 (1979), 89–99 2345:Pacific Journal of Mathematics 2195:Discrete differential geometry 1965: 1915: 1524: 1518: 1466: 1443: 1437: 1337: 1331: 1322: 1307: 1292: 1289: 1283: 1271: 1262: 1255: 1243: 1228: 1221: 1209: 1192: 1188: 1182: 1176: 1167: 1161: 1149: 1129: 1123: 1075: 1064: 1023: 1017: 988: 949: 914: 674: 662: 621:-unduloids of genus 0 satisfy 574: 559: 401:with constant mean curvature. 1: 2819:Noid, software for computing 2814:GANG gallery of CMC surfaces 2462:I. Sterling and H. C. Wente, 2018:is a meromorphic function on 246:with constant mean curvature 187:with constant mean curvature 2186:obeying certain conditions. 2085:{\displaystyle \lambda _{2}} 2058:{\displaystyle \lambda _{1}} 1384:is a regular surface having 871:{\displaystyle \mathbb {C} } 305:must be a standard embedded 51:are surfaces with constant 2855: 2190:Discrete numerical methods 1508:this produces the sphere. 580:{\displaystyle n(2\pi -n)} 2761:: CS1 maint: unfit URL ( 2358:10.2140/pjm.1986.121.193 2249:Double bubble conjecture 2237:air-supported structures 2011:{\displaystyle \lambda } 2637:Bobenko, A. I. (1991). 2569:Hitchin, Nigel (1990). 2179:{\displaystyle \Sigma } 2031:{\displaystyle \Sigma } 1991:{\displaystyle \Sigma } 1629:Conjugate cousin method 1590:gives a cylinder where 610:{\displaystyle k\geq 3} 265:{\displaystyle H\neq 0} 206:{\displaystyle H\neq 0} 18:Constant mean curvature 2588:10.4310/jdg/1214444631 2209:, since they have the 2180: 2160: 2140: 2120: 2086: 2059: 2032: 2012: 1992: 1972: 1902: 1873: 1829: 1799: 1770: 1714: 1685: 1656: 1619: 1618:{\displaystyle z=x+iv} 1584: 1550: 1502: 1476: 1418: 1398: 1378: 1377:{\displaystyle z\in V} 1349: 1094: 998: 966: 926: 892: 872: 850: 815: 786: 768:Representation formula 745: 721: 684: 648: 611: 581: 543: 460: 431: 391: 354: 325: 299: 266: 240: 213:must be a sphere, and 207: 181: 148: 119: 84:surfaces of revolution 40: 32: 2643:Russian Math. Surveys 2604:Annals of Mathematics 2370:Nikolaos Kapouleas. 2181: 2161: 2141: 2139:{\displaystyle \rho } 2121: 2087: 2060: 2033: 2013: 1993: 1973: 1903: 1874: 1830: 1800: 1771: 1715: 1686: 1657: 1620: 1585: 1583:{\displaystyle H=1/2} 1551: 1503: 1477: 1419: 1399: 1397:{\displaystyle \phi } 1379: 1350: 1095: 999: 967: 927: 893: 873: 851: 833:of minimal surfaces: 816: 787: 746: 701: 685: 628: 612: 591:. In particular, for 582: 544: 461: 432: 392: 355: 326: 300: 267: 241: 208: 182: 149: 120: 82:proved that the only 45:differential geometry 38: 30: 2409:Nikolaos Kapouleas. 2396:Nikolaos Kapouleas. 2383:Nikolaos Kapouleas. 2170: 2166:is a line bundle on 2150: 2130: 2096: 2069: 2042: 2022: 2002: 1982: 1912: 1883: 1839: 1810: 1780: 1736: 1695: 1666: 1637: 1594: 1560: 1512: 1486: 1431: 1408: 1388: 1362: 1110: 1011: 976: 936: 902: 882: 860: 840: 796: 776: 698: 625: 595: 553: 524: 441: 412: 372: 368:, an immersion into 335: 309: 280: 250: 221: 191: 162: 129: 109: 2823:-noid CMC surfaces 2741:2001MaMol..34.6083W 1501:{\displaystyle H=1} 1053: 324:{\displaystyle n-1} 2176: 2156: 2136: 2116: 2082: 2055: 2028: 2008: 1988: 1968: 1898: 1869: 1825: 1795: 1766: 1710: 1681: 1652: 1615: 1580: 1546: 1498: 1472: 1414: 1394: 1374: 1345: 1090: 1032: 994: 962: 922: 888: 868: 846: 811: 782: 763:Generation methods 741: 680: 607: 577: 539: 496:Unequal neck sizes 456: 427: 406:Nikolaos Kapouleas 387: 350: 321: 295: 262: 236: 203: 177: 144: 115: 64:Gaussian curvature 41: 33: 2749:10.1021/ma0019499 2735:(17): 6083–6089. 2159:{\displaystyle L} 1469: 1417:{\displaystyle H} 1329: 1325: 1310: 1202: 1179: 952: 891:{\displaystyle H} 849:{\displaystyle V} 785:{\displaystyle S} 118:{\displaystyle S} 16:(Redirected from 2846: 2792: 2786: 2780: 2773: 2767: 2766: 2760: 2752: 2726: 2717: 2711: 2707: 2701: 2697: 2691: 2684: 2678: 2673: 2667: 2666: 2634: 2628: 2627: 2599: 2593: 2592: 2590: 2566: 2560: 2551: 2545: 2538: 2532: 2525: 2519: 2509: 2503: 2498:John M. Sullivan 2495: 2489: 2486: 2480: 2473: 2467: 2460: 2454: 2449: 2443: 2438:John M. Sullivan 2434: 2425: 2420: 2414: 2407: 2401: 2394: 2388: 2381: 2375: 2368: 2362: 2361: 2360: 2333: 2327: 2324: 2318: 2315: 2309: 2306: 2300: 2297: 2291: 2286: 2280: 2275: 2229:block copolymers 2218:superhydrophobic 2185: 2183: 2182: 2177: 2165: 2163: 2162: 2157: 2145: 2143: 2142: 2137: 2125: 2123: 2122: 2117: 2103: 2091: 2089: 2088: 2083: 2081: 2080: 2064: 2062: 2061: 2056: 2054: 2053: 2037: 2035: 2034: 2029: 2017: 2015: 2014: 2009: 1997: 1995: 1994: 1989: 1977: 1975: 1974: 1969: 1958: 1957: 1945: 1944: 1907: 1905: 1904: 1899: 1897: 1896: 1891: 1878: 1876: 1875: 1870: 1868: 1867: 1862: 1853: 1852: 1847: 1834: 1832: 1831: 1826: 1824: 1823: 1818: 1804: 1802: 1801: 1796: 1794: 1793: 1788: 1775: 1773: 1772: 1767: 1765: 1764: 1759: 1750: 1749: 1744: 1719: 1717: 1716: 1711: 1709: 1708: 1703: 1690: 1688: 1687: 1682: 1680: 1679: 1674: 1661: 1659: 1658: 1653: 1651: 1650: 1645: 1624: 1622: 1621: 1616: 1589: 1587: 1586: 1581: 1576: 1555: 1553: 1552: 1547: 1545: 1544: 1507: 1505: 1504: 1499: 1481: 1479: 1478: 1473: 1471: 1470: 1462: 1459: 1423: 1421: 1420: 1415: 1403: 1401: 1400: 1395: 1383: 1381: 1380: 1375: 1354: 1352: 1351: 1346: 1344: 1340: 1330: 1328: 1327: 1326: 1318: 1311: 1306: 1298: 1296: 1270: 1269: 1236: 1235: 1203: 1201: 1200: 1199: 1181: 1180: 1172: 1144: 1136: 1122: 1121: 1099: 1097: 1096: 1091: 1089: 1074: 1063: 1062: 1052: 1047: 1046: 1045: 1003: 1001: 1000: 995: 971: 969: 968: 963: 955: 954: 953: 945: 931: 929: 928: 923: 921: 897: 895: 894: 889: 877: 875: 874: 869: 867: 855: 853: 852: 847: 820: 818: 817: 812: 810: 809: 804: 791: 789: 788: 783: 750: 748: 747: 742: 731: 730: 720: 715: 689: 687: 686: 681: 658: 657: 647: 642: 616: 614: 613: 608: 586: 584: 583: 578: 548: 546: 545: 540: 538: 537: 532: 505: 493: 484:Equal neck sizes 481: 465: 463: 462: 457: 455: 454: 449: 436: 434: 433: 428: 426: 425: 420: 396: 394: 393: 388: 386: 385: 380: 364:constructed the 359: 357: 356: 351: 349: 348: 343: 330: 328: 327: 322: 304: 302: 301: 296: 294: 293: 288: 271: 269: 268: 263: 245: 243: 242: 237: 235: 234: 229: 212: 210: 209: 204: 186: 184: 183: 178: 176: 175: 170: 156:A. D. Alexandrov 153: 151: 150: 145: 143: 142: 137: 124: 122: 121: 116: 57:minimal surfaces 55:. This includes 21: 2854: 2853: 2849: 2848: 2847: 2845: 2844: 2843: 2829: 2828: 2801: 2796: 2795: 2787: 2783: 2774: 2770: 2753: 2724: 2719: 2718: 2714: 2708: 2704: 2698: 2694: 2685: 2681: 2674: 2670: 2636: 2635: 2631: 2616:10.2307/1971425 2601: 2600: 2596: 2568: 2567: 2563: 2555:John M Sullivan 2552: 2548: 2539: 2535: 2526: 2522: 2510: 2506: 2496: 2492: 2487: 2483: 2474: 2470: 2461: 2457: 2450: 2446: 2435: 2428: 2421: 2417: 2408: 2404: 2395: 2391: 2382: 2378: 2369: 2365: 2337:Wente, Henry C. 2335: 2334: 2330: 2325: 2321: 2316: 2312: 2307: 2303: 2298: 2294: 2287: 2283: 2276: 2272: 2267: 2259:Minimal surface 2245: 2203: 2192: 2168: 2167: 2148: 2147: 2128: 2127: 2094: 2093: 2072: 2067: 2066: 2045: 2040: 2039: 2020: 2019: 2000: 1999: 1980: 1979: 1949: 1936: 1910: 1909: 1886: 1881: 1880: 1857: 1842: 1837: 1836: 1813: 1808: 1807: 1783: 1778: 1777: 1754: 1739: 1734: 1733: 1726: 1698: 1693: 1692: 1669: 1664: 1663: 1640: 1635: 1634: 1631: 1592: 1591: 1558: 1557: 1533: 1510: 1509: 1484: 1483: 1429: 1428: 1406: 1405: 1386: 1385: 1360: 1359: 1312: 1299: 1261: 1227: 1208: 1204: 1191: 1145: 1137: 1113: 1108: 1107: 1082: 1067: 1054: 1037: 1009: 1008: 974: 973: 939: 934: 933: 900: 899: 880: 879: 858: 857: 838: 837: 799: 794: 793: 774: 773: 770: 765: 722: 696: 695: 649: 623: 622: 593: 592: 551: 550: 527: 522: 521: 518: 517: 516: 515: 511: 510: 509: 508:With nodoid end 506: 498: 497: 494: 486: 485: 482: 470: 444: 439: 438: 415: 410: 409: 375: 370: 369: 338: 333: 332: 307: 306: 283: 278: 277: 248: 247: 224: 219: 218: 189: 188: 165: 160: 159: 132: 127: 126: 107: 106: 76: 23: 22: 15: 12: 11: 5: 2852: 2850: 2842: 2841: 2831: 2830: 2827: 2826: 2817: 2812: 2807: 2800: 2799:External links 2797: 2794: 2793: 2781: 2768: 2729:Macromolecules 2712: 2702: 2692: 2679: 2668: 2629: 2610:(2): 407–451. 2594: 2581:(3): 627–710. 2561: 2546: 2540:Lawson H.B., “ 2533: 2520: 2504: 2490: 2481: 2468: 2455: 2444: 2426: 2415: 2402: 2389: 2376: 2363: 2328: 2319: 2310: 2301: 2292: 2281: 2269: 2268: 2266: 2263: 2262: 2261: 2256: 2251: 2244: 2241: 2202: 2199: 2191: 2188: 2175: 2155: 2135: 2115: 2112: 2109: 2106: 2102: 2092:are points on 2079: 2075: 2052: 2048: 2027: 2007: 1987: 1967: 1964: 1961: 1956: 1952: 1948: 1943: 1939: 1935: 1932: 1929: 1926: 1923: 1920: 1917: 1895: 1890: 1866: 1861: 1856: 1851: 1846: 1822: 1817: 1792: 1787: 1763: 1758: 1753: 1748: 1743: 1725: 1722: 1707: 1702: 1678: 1673: 1649: 1644: 1630: 1627: 1614: 1611: 1608: 1605: 1602: 1599: 1579: 1575: 1571: 1568: 1565: 1543: 1540: 1536: 1532: 1529: 1526: 1523: 1520: 1517: 1497: 1494: 1491: 1468: 1465: 1458: 1454: 1451: 1448: 1445: 1442: 1439: 1436: 1413: 1393: 1373: 1370: 1367: 1356: 1355: 1343: 1339: 1336: 1333: 1324: 1321: 1315: 1309: 1305: 1302: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1268: 1264: 1260: 1257: 1254: 1251: 1248: 1245: 1242: 1239: 1234: 1230: 1226: 1223: 1220: 1217: 1214: 1211: 1207: 1198: 1194: 1190: 1187: 1184: 1178: 1175: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1143: 1140: 1134: 1131: 1128: 1125: 1120: 1116: 1101: 1100: 1088: 1085: 1081: 1077: 1073: 1070: 1066: 1061: 1057: 1051: 1044: 1040: 1035: 1031: 1028: 1025: 1022: 1019: 1016: 993: 990: 987: 984: 981: 961: 958: 951: 948: 942: 920: 916: 913: 910: 907: 887: 866: 845: 808: 803: 781: 769: 766: 764: 761: 751:for even  740: 737: 734: 729: 725: 719: 714: 711: 708: 704: 679: 676: 673: 670: 667: 664: 661: 656: 652: 646: 641: 638: 635: 631: 606: 603: 600: 576: 573: 570: 567: 564: 561: 558: 536: 531: 513: 512: 507: 500: 499: 495: 488: 487: 483: 476: 475: 474: 473: 472: 453: 448: 424: 419: 384: 379: 362:Henry C. Wente 347: 342: 320: 317: 314: 292: 287: 261: 258: 255: 233: 228: 202: 199: 196: 174: 169: 141: 136: 114: 75: 72: 53:mean curvature 24: 14: 13: 10: 9: 6: 4: 3: 2: 2851: 2840: 2837: 2836: 2834: 2825: 2822: 2818: 2816: 2813: 2811: 2808: 2806: 2803: 2802: 2798: 2791: 2785: 2782: 2778: 2772: 2769: 2764: 2758: 2750: 2746: 2742: 2738: 2734: 2730: 2723: 2716: 2713: 2706: 2703: 2696: 2693: 2689: 2683: 2680: 2677: 2672: 2669: 2664: 2660: 2656: 2652: 2648: 2644: 2640: 2633: 2630: 2625: 2621: 2617: 2613: 2609: 2605: 2598: 2595: 2589: 2584: 2580: 2576: 2572: 2565: 2562: 2559: 2556: 2550: 2547: 2543: 2537: 2534: 2530: 2527:K. Kenmotsu, 2524: 2521: 2518: 2514: 2508: 2505: 2502: 2499: 2494: 2491: 2485: 2482: 2478: 2475:Meeks W. H., 2472: 2469: 2465: 2459: 2456: 2452: 2448: 2445: 2442: 2439: 2433: 2431: 2427: 2424: 2419: 2416: 2412: 2406: 2403: 2399: 2393: 2390: 2386: 2380: 2377: 2373: 2367: 2364: 2359: 2354: 2350: 2346: 2342: 2338: 2332: 2329: 2323: 2320: 2314: 2311: 2305: 2302: 2296: 2293: 2290: 2285: 2282: 2279: 2274: 2271: 2264: 2260: 2257: 2255: 2252: 2250: 2247: 2246: 2242: 2240: 2238: 2233: 2230: 2226: 2221: 2219: 2214: 2212: 2208: 2200: 2198: 2196: 2189: 2187: 2153: 2133: 2110: 2077: 2073: 2050: 2046: 2005: 1962: 1959: 1954: 1950: 1946: 1941: 1937: 1933: 1930: 1927: 1924: 1921: 1893: 1864: 1854: 1849: 1820: 1790: 1761: 1751: 1746: 1731: 1723: 1721: 1705: 1676: 1647: 1628: 1626: 1612: 1609: 1606: 1603: 1600: 1597: 1577: 1573: 1569: 1566: 1563: 1541: 1538: 1534: 1530: 1527: 1521: 1515: 1495: 1492: 1489: 1463: 1456: 1452: 1449: 1446: 1440: 1434: 1425: 1411: 1391: 1371: 1368: 1365: 1341: 1334: 1319: 1303: 1286: 1280: 1277: 1274: 1266: 1258: 1252: 1249: 1246: 1240: 1237: 1232: 1224: 1218: 1215: 1212: 1205: 1196: 1185: 1173: 1164: 1158: 1155: 1152: 1146: 1141: 1138: 1132: 1126: 1118: 1114: 1106: 1105: 1104: 1086: 1083: 1079: 1071: 1068: 1059: 1055: 1049: 1042: 1038: 1033: 1026: 1020: 1014: 1007: 1006: 1005: 991: 985: 982: 979: 959: 956: 946: 940: 911: 908: 905: 885: 843: 834: 832: 828: 824: 806: 779: 767: 762: 760: 758: 754: 738: 735: 732: 727: 723: 717: 712: 709: 706: 702: 693: 677: 671: 668: 665: 659: 654: 650: 644: 639: 636: 633: 629: 620: 604: 601: 598: 590: 589:moduli spaces 571: 568: 565: 562: 556: 534: 504: 492: 480: 471: 468: 451: 422: 407: 402: 400: 382: 367: 363: 345: 318: 315: 312: 290: 275: 259: 256: 253: 231: 216: 200: 197: 194: 172: 157: 139: 112: 103: 101: 97: 93: 89: 85: 81: 73: 71: 69: 65: 60: 58: 54: 50: 46: 37: 29: 19: 2820: 2784: 2771: 2757:cite journal 2732: 2728: 2715: 2705: 2695: 2682: 2671: 2646: 2642: 2632: 2607: 2603: 2597: 2578: 2574: 2564: 2549: 2536: 2523: 2517:math/0602570 2507: 2493: 2484: 2471: 2458: 2447: 2418: 2405: 2392: 2379: 2366: 2348: 2344: 2331: 2322: 2313: 2304: 2295: 2284: 2273: 2254:Free surface 2234: 2222: 2215: 2207:soap bubbles 2204: 2201:Applications 2193: 1727: 1632: 1426: 1357: 1102: 835: 827:harmonic map 771: 756: 752: 691: 618: 519: 469: 403: 104: 77: 61: 48: 42: 2649:(4): 1–45. 2351:: 193–243, 1004:defined by 366:Wente torus 2606:. Second. 2265:References 755:. At most 360:. In 1984 2663:250883973 2220:surface. 2174:Σ 2134:ρ 2105:∖ 2074:λ 2047:λ 2026:Σ 2006:λ 1986:Σ 1951:λ 1938:λ 1931:ρ 1925:λ 1919:Σ 1728:Hitchin, 1531:− 1516:ϕ 1467:¯ 1450:− 1435:ϕ 1392:ϕ 1369:∈ 1323:¯ 1314:∂ 1308:¯ 1304:ϕ 1301:∂ 1281:ϕ 1253:ϕ 1219:ϕ 1216:− 1177:¯ 1174:ϕ 1159:ϕ 1139:− 1034:∫ 1030:ℜ 989:→ 957:≠ 950:¯ 941:ϕ 915:→ 906:ϕ 823:Gauss map 739:π 733:≤ 703:∑ 678:π 669:− 660:≤ 630:∑ 617:coplanar 602:≥ 569:− 566:π 316:− 257:≠ 198:≠ 88:roulettes 2833:Category 2339:(1986), 2243:See also 1724:CMC Tori 1087:′ 1072:′ 690:for odd 96:unduloid 92:catenoid 80:Delaunay 78:In 1841 2737:Bibcode 2710:337–396 2700:184–198 2624:1971425 1730:Pinkall 274:H. Hopf 215:H. Hopf 74:History 2661:  2622:  1978:where 694:, and 100:nodoid 94:, the 68:sphere 2725:(PDF) 2659:S2CID 2620:JSTOR 2513:arXiv 2223:Like 1835:into 1103:with 972:then 825:is a 399:torus 397:of a 2763:link 2065:and 1879:and 1776:and 1556:and 1482:and 1427:For 1358:for 878:and 836:Let 98:and 2745:doi 2651:doi 2612:doi 2608:130 2583:doi 2353:doi 2349:121 792:in 43:In 2835:: 2759:}} 2755:{{ 2743:. 2733:34 2731:. 2727:. 2657:. 2647:46 2645:. 2641:. 2618:. 2579:31 2577:. 2573:. 2429:^ 2347:, 2343:, 2213:. 2126:, 2038:, 1625:. 1424:. 102:. 70:. 47:, 2821:n 2765:) 2747:: 2739:: 2665:. 2653:: 2626:. 2614:: 2591:. 2585:: 2515:: 2355:: 2154:L 2114:} 2111:0 2108:{ 2101:C 2078:2 2051:1 1966:) 1963:L 1960:, 1955:2 1947:, 1942:1 1934:, 1928:, 1922:, 1916:( 1894:3 1889:H 1865:3 1860:S 1855:, 1850:3 1845:R 1821:2 1816:R 1791:3 1786:H 1762:3 1757:S 1752:, 1747:3 1742:R 1706:3 1701:S 1677:3 1672:S 1648:3 1643:R 1613:v 1610:i 1607:+ 1604:x 1601:= 1598:z 1578:2 1574:/ 1570:1 1567:= 1564:H 1542:x 1539:i 1535:e 1528:= 1525:) 1522:z 1519:( 1496:1 1493:= 1490:H 1464:z 1457:/ 1453:1 1447:= 1444:) 1441:z 1438:( 1412:H 1372:V 1366:z 1342:} 1338:) 1335:z 1332:( 1320:z 1293:) 1290:) 1287:z 1284:( 1278:2 1275:, 1272:) 1267:2 1263:) 1259:z 1256:( 1250:+ 1247:1 1244:( 1241:i 1238:, 1233:2 1229:) 1225:z 1222:( 1213:1 1210:( 1206:{ 1197:2 1193:) 1189:) 1186:z 1183:( 1168:) 1165:z 1162:( 1156:+ 1153:1 1150:( 1147:H 1142:1 1133:= 1130:) 1127:z 1124:( 1119:z 1115:X 1084:z 1080:d 1076:) 1069:z 1065:( 1060:z 1056:X 1050:z 1043:0 1039:z 1027:= 1024:) 1021:z 1018:( 1015:X 992:R 986:V 983:: 980:X 960:0 947:z 919:C 912:V 909:: 886:H 865:C 844:V 807:3 802:R 780:S 757:k 753:k 736:k 728:i 724:n 718:k 713:1 710:= 707:i 692:k 675:) 672:1 666:k 663:( 655:i 651:n 645:k 640:1 637:= 634:i 619:k 605:3 599:k 575:) 572:n 563:2 560:( 557:n 535:3 530:R 452:3 447:R 423:3 418:R 383:3 378:R 346:4 341:R 319:1 313:n 291:n 286:R 260:0 254:H 232:3 227:R 201:0 195:H 173:3 168:R 140:3 135:R 113:S 20:)

Index

Constant mean curvature


differential geometry
mean curvature
minimal surfaces
Gaussian curvature
sphere
Delaunay
surfaces of revolution
roulettes
catenoid
unduloid
nodoid
A. D. Alexandrov
H. Hopf
H. Hopf
Henry C. Wente
Wente torus
torus
Nikolaos Kapouleas
Triunduloid
Unequal neck size triunduloid
Triunduloid with nodoid end
moduli spaces
Gauss map
harmonic map
Weierstrass–Enneper parameterization
Pinkall
Discrete differential geometry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑