Knowledge

Continuous knapsack problem

Source 📝

36:
in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials. It resembles the classic
293: 343: 189: 139: 588: 528: 242: 40:, in which the items to be placed in the container are indivisible; however, the continuous knapsack problem may be solved in 298: 144: 101: 48:. It is a classic example of how a seemingly small change in the formulation of a problem can have a large impact on its 17: 64:
of the knapsack, together with a collection of materials, each of which has two numbers associated with it: the weight
33: 360:, that considers the materials in sorted order by their values per unit weight. For each material, the amount 60:
An instance of either the continuous or classic knapsack problems may be specified by the numerical capacity
49: 484: 524: 518: 556: 488: 353: 37: 568: 564: 449: 41: 544: 514: 357: 582: 239:
to be in the range from 0 to 1. In this case the capacity constraint becomes
29: 523:, Algorithms and Combinatorics, vol. 21, Springer, pp. 459–461, 560: 45: 517:; Vygen, Jens (2012), "17.1 Fractional Knapsack and Weighted Median", 432:
Because of the need to sort the materials, this algorithm takes time
73:
of material that is available to be selected and the total value
493:
Algorithm Design: Foundations, Analysis, and Internet Examples
371:
If the sum of the choices made so far equals the capacity
448:
materials. However, by adapting an algorithm for finding
230:
Some formulations of this problem rescale the variables
209:; the continuous knapsack problem differs by allowing 301: 245: 191:
In the classic knapsack problem, each of the amounts
147: 104: 98:
of each material, subject to the capacity constraint
352:The continuous knapsack problem may be solved by a 337: 287: 183: 133: 82:of that material. The goal is to choose an amount 520:Combinatorial Optimization: Theory and Algorithms 491:(2002), "5.1.1 The Fractional Knapsack Problem", 547:(1957), "Discrete-variable extremum problems", 389:between the sum of the choices made so far and 452:, it is possible to solve the problem in time 295:and the goal is to maximize the total benefit 414:In the remaining case, the algorithm chooses 8: 288:{\displaystyle \sum _{i}x_{i}w_{i}\leq W,} 495:, John Wiley & Sons, pp. 259–260 326: 316: 306: 300: 270: 260: 250: 244: 172: 162: 152: 146: 119: 109: 103: 44:whereas the classic knapsack problem is 469: 367:is chosen to be as large as possible: 7: 509: 507: 505: 503: 479: 477: 475: 473: 338:{\displaystyle \sum _{i}x_{i}v_{i}.} 184:{\displaystyle \sum _{i}x_{i}v_{i}.} 134:{\displaystyle \sum _{i}x_{i}\leq W} 218:to range continuously from zero to 14: 141:and maximizing the total benefit 1: 356:, first published in 1957 by 18:theoretical computer science 26:fractional knapsack problem 22:continuous knapsack problem 605: 589:Combinatorial optimization 400:, then the algorithm sets 375:, then the algorithm sets 34:combinatorial optimization 50:computational complexity 200:must be either zero or 339: 289: 185: 135: 340: 290: 186: 136: 561:10.1287/opre.5.2.266 485:Goodrich, Michael T. 299: 243: 145: 102: 549:Operations Research 24:(also known as the 545:Dantzig, George B. 385:If the difference 348:Solution technique 335: 311: 285: 255: 181: 157: 131: 114: 56:Problem definition 489:Tamassia, Roberto 444:) on inputs with 302: 246: 148: 105: 596: 573: 571: 541: 535: 533: 511: 498: 496: 481: 450:weighted medians 393:is smaller than 354:greedy algorithm 344: 342: 341: 336: 331: 330: 321: 320: 310: 294: 292: 291: 286: 275: 274: 265: 264: 254: 238: 226: 217: 208: 199: 190: 188: 187: 182: 177: 176: 167: 166: 156: 140: 138: 137: 132: 124: 123: 113: 97: 81: 72: 63: 38:knapsack problem 604: 603: 599: 598: 597: 595: 594: 593: 579: 578: 577: 576: 543: 542: 538: 531: 515:Korte, Bernhard 513: 512: 501: 483: 482: 471: 466: 440: log  426: 419: 405: 398: 382: = 0. 380: 365: 350: 322: 312: 297: 296: 266: 256: 241: 240: 236: 231: 224: 219: 215: 210: 206: 201: 197: 192: 168: 158: 143: 142: 115: 100: 99: 95: 88: 83: 79: 74: 70: 65: 61: 58: 42:polynomial time 12: 11: 5: 602: 600: 592: 591: 581: 580: 575: 574: 536: 529: 499: 468: 467: 465: 462: 430: 429: 424: 417: 412: 403: 396: 383: 378: 363: 358:George Dantzig 349: 346: 334: 329: 325: 319: 315: 309: 305: 284: 281: 278: 273: 269: 263: 259: 253: 249: 234: 222: 213: 204: 195: 180: 175: 171: 165: 161: 155: 151: 130: 127: 122: 118: 112: 108: 93: 86: 77: 68: 57: 54: 13: 10: 9: 6: 4: 3: 2: 601: 590: 587: 586: 584: 570: 566: 562: 558: 554: 550: 546: 540: 537: 532: 530:9783642244889 526: 522: 521: 516: 510: 508: 506: 504: 500: 494: 490: 486: 480: 478: 476: 474: 470: 463: 461: 459: 455: 451: 447: 443: 439: 435: 427: 421: =  420: 413: 410: 407: =  406: 399: 392: 388: 384: 381: 374: 370: 369: 368: 366: 359: 355: 347: 345: 332: 327: 323: 317: 313: 307: 303: 282: 279: 276: 271: 267: 261: 257: 251: 247: 237: 228: 225: 216: 207: 198: 178: 173: 169: 163: 159: 153: 149: 128: 125: 120: 116: 110: 106: 96: 89: 80: 71: 55: 53: 51: 47: 43: 39: 35: 31: 27: 23: 19: 552: 548: 539: 519: 492: 457: 453: 445: 441: 437: 433: 431: 422: 415: 408: 401: 394: 390: 386: 376: 372: 361: 351: 232: 229: 220: 211: 202: 193: 91: 84: 75: 66: 59: 25: 21: 15: 555:: 266–277, 32:problem in 30:algorithmic 464:References 304:∑ 277:≤ 248:∑ 150:∑ 126:≤ 107:∑ 583:Category 28:) is an 569:0089098 46:NP-hard 567:  527:  20:, the 525:ISBN 557:doi 460:). 16:In 585:: 565:MR 563:, 551:, 502:^ 487:; 472:^ 227:. 90:≤ 52:. 572:. 559:: 553:5 534:. 497:. 458:n 456:( 454:O 446:n 442:n 438:n 436:( 434:O 428:. 425:i 423:w 418:i 416:x 411:. 409:d 404:i 402:x 397:i 395:w 391:W 387:d 379:i 377:x 373:W 364:i 362:x 333:. 328:i 324:v 318:i 314:x 308:i 283:, 280:W 272:i 268:w 262:i 258:x 252:i 235:i 233:x 223:i 221:w 214:i 212:x 205:i 203:w 196:i 194:x 179:. 174:i 170:v 164:i 160:x 154:i 129:W 121:i 117:x 111:i 94:i 92:w 87:i 85:x 78:i 76:v 69:i 67:w 62:W

Index

theoretical computer science
algorithmic
combinatorial optimization
knapsack problem
polynomial time
NP-hard
computational complexity
greedy algorithm
George Dantzig
weighted medians




Goodrich, Michael T.
Tamassia, Roberto




Korte, Bernhard
Combinatorial Optimization: Theory and Algorithms
ISBN
9783642244889
Dantzig, George B.
doi
10.1287/opre.5.2.266
MR
0089098
Category

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.