Knowledge (XXG)

Control coefficient (biochemistry)

Source 📝

902:. For example, in a linear chain of reactions at steady-state, all steps carry the same flux. That is, there is no slow or fast step with respect to the rate or speed of a reaction. The flux control coefficient, instead, measures how much influence a given step has on the steady-state flux. A step with a high flux control coefficient means that changing the activity of the step (by changing the expression level of the enzyme) will have a large effect on the steady-state flux through the pathway and vice versa. 795: 604: 16:
In chemistry, control coefficients are used to describe how much influence (i.e., control) a given reaction step has on the steady-state flux or species concentration level. In practice, this can be accomplished by changing the expression level of a given enzyme and measuring the resulting changes in
417:
One criticism of the concept of the control coefficient as defined above is that it is dependent on being described relative to a change in enzyme activity. Instead, the Berlin school defined control coefficients in terms of changes to local rates brought about by any suitable parameter, which could
820:
could be any convenient parameter. For example, a drug, changes in enzyme expression etc. The advantage is that the control coefficient becomes independent of the applied perturbation. For control coefficients defined in terms of changes in enzyme expression, it is often assumed that the effect on
391: 194: 615: 424: 408:
It is important to note that control coefficients are not fixed values but will change depending on the state of the pathway or organism. If an organism shifts to a new nutritional source, then the control coefficients in the pathway will change.
35:
The simplest way to look at control coefficients is as the scaled derivatives of the steady-state change in an observable with respect to a change in enzyme activity. For example, the flux control coefficients can be written as:
203: 398:
In theory, other observables, such as growth rate, or even combinations of observables, can be defined using a control coefficient. But flux and concentration control coefficients are by far the most commonly used.
395:
Control coefficients can have any value that includes negative and positive values. A negative value indicates that the observable in question decreases as a result of the change in enzyme activity.
905:
Historically the concept of the rate-limiting steps was also related to the notion of the master step. However, this drew much criticism due to a misunderstanding of the concept of the steady-state.
41: 885: 898:
is defined as the slowest step of a chemical reaction that determines the speed (rate) at which the overall reaction proceeds. The flux control coefficients do not measure this kind of
790:{\displaystyle C_{v_{i}}^{s}=\left({\frac {ds}{dp}}{\frac {p}{s}}\right){\bigg /}\left({\frac {\partial v_{i}}{\partial p}}{\frac {p}{v_{i}}}\right)={\frac {d\ln s}{d\ln v_{i}}}} 599:{\displaystyle C_{v_{i}}^{J}=\left({\frac {dJ}{dp}}{\frac {p}{J}}\right){\bigg /}\left({\frac {\partial v_{i}}{\partial p}}{\frac {p}{v_{i}}}\right)={\frac {d\ln J}{d\ln v_{i}}}} 1117: 818: 386:{\displaystyle C_{e_{i}}^{s_{j}}={\frac {ds_{j}}{de_{i}}}{\frac {e_{i}}{s_{j}}}={\frac {d\ln s_{j}}{d\ln e_{i}}}\approx {\frac {s_{j}\%}{e_{i}\%}}} 405:
Control coefficients are useful because they tell us how much influence each enzyme or protein has in a biochemical reaction network.
924: 899: 418:
include changes to enzyme levels or the action of drugs. Hence a more general definition is given by the following expressions:
189:{\displaystyle C_{e_{i}}^{J}={\frac {dJ}{de_{i}}}{\frac {e_{i}}{J}}={\frac {d\ln J}{d\ln e_{i}}}\approx {\frac {J\%}{e_{i}\%}}} 402:
The approximation in terms of percentages makes control coefficients easier to measure and more intuitively understandable.
1107: 919: 18: 826: 1122: 914: 973:"A Linear Steady-State Treatment of Enzymatic Chains. General Properties, Control and Effector Strength" 895: 1112: 1047:
Burton, Alan C. (December 1936). "The basis of the principle of the master reaction in biology".
686: 495: 1029: 994: 953: 1083: 1056: 1021: 984: 1074:
Hearon, John Z. (September 1981). "Transient times in enzyme and coupled enzyme systems".
989: 972: 803: 1101: 1087: 1025: 17:
flux and metabolite levels. Control coefficients form a central component of
1060: 1033: 998: 957: 821:
the local rate by changes to the enzyme activity is proportional so that:
1012:
Hearon, John Z. (1 October 1952). "Rate Behavior of Metabolic Systems".
198:
while the concentration control coefficients can be written as:
971:
Heinrich, Reinhart; Rapoport, Tom A. (February 1974).
829: 806: 618: 427: 206: 44: 944:
Kacser, H; Burns, JA (1973). "The control of flux".
879: 812: 789: 598: 385: 188: 946:Symposia of the Society for Experimental Biology 1049:Journal of Cellular and Comparative Physiology 8: 24:There are two primary control coefficients: 894:In normal usage, the rate-limiting step or 880:{\displaystyle C_{v_{i}}^{X}=C_{e_{i}}^{X}} 609:and concentration control coefficients by 988: 871: 864: 859: 846: 839: 834: 828: 805: 778: 748: 732: 723: 706: 696: 685: 684: 669: 649: 635: 628: 623: 617: 587: 557: 541: 532: 515: 505: 494: 493: 478: 458: 444: 437: 432: 426: 371: 356: 349: 337: 316: 300: 289: 279: 273: 264: 249: 239: 228: 223: 216: 211: 205: 174: 159: 147: 117: 103: 97: 88: 70: 61: 54: 49: 43: 936: 7: 1118:Mathematical and theoretical biology 890:Relationship to rate-limiting steps 31:Concentration Control Coefficients. 990:10.1111/j.1432-1033.1974.tb03318.x 714: 699: 523: 508: 377: 362: 180: 165: 14: 925:Summation theorems (biochemistry) 977:European Journal of Biochemistry 1: 1026:10.1152/physrev.1952.32.4.499 1088:10.1016/0025-5564(81)90031-6 1139: 920:Metabolic control analysis 19:metabolic control analysis 800:In the above expression, 28:Flux Control Coefficients 1076:Mathematical Biosciences 1061:10.1002/jcp.1030090102 915:Elasticity coefficient 881: 814: 791: 600: 387: 190: 1014:Physiological Reviews 896:rate-determining step 882: 815: 792: 601: 388: 191: 1108:Biochemistry methods 827: 804: 616: 425: 204: 42: 876: 851: 640: 449: 235: 66: 877: 855: 830: 810: 787: 619: 596: 428: 383: 207: 186: 45: 900:rate-limitingness 813:{\displaystyle p} 785: 738: 721: 677: 667: 594: 547: 530: 486: 476: 413:Formal Definition 381: 344: 295: 271: 184: 154: 112: 95: 1130: 1092: 1091: 1082:(1–2): 129–140. 1071: 1065: 1064: 1044: 1038: 1037: 1009: 1003: 1002: 992: 968: 962: 961: 941: 886: 884: 883: 878: 875: 870: 869: 868: 850: 845: 844: 843: 819: 817: 816: 811: 796: 794: 793: 788: 786: 784: 783: 782: 763: 749: 744: 740: 739: 737: 736: 724: 722: 720: 712: 711: 710: 697: 690: 689: 683: 679: 678: 670: 668: 666: 658: 650: 639: 634: 633: 632: 605: 603: 602: 597: 595: 593: 592: 591: 572: 558: 553: 549: 548: 546: 545: 533: 531: 529: 521: 520: 519: 506: 499: 498: 492: 488: 487: 479: 477: 475: 467: 459: 448: 443: 442: 441: 392: 390: 389: 384: 382: 380: 376: 375: 365: 361: 360: 350: 345: 343: 342: 341: 322: 321: 320: 301: 296: 294: 293: 284: 283: 274: 272: 270: 269: 268: 255: 254: 253: 240: 234: 233: 232: 222: 221: 220: 195: 193: 192: 187: 185: 183: 179: 178: 168: 160: 155: 153: 152: 151: 132: 118: 113: 108: 107: 98: 96: 94: 93: 92: 79: 71: 65: 60: 59: 58: 1138: 1137: 1133: 1132: 1131: 1129: 1128: 1127: 1123:Systems biology 1098: 1097: 1096: 1095: 1073: 1072: 1068: 1046: 1045: 1041: 1011: 1010: 1006: 970: 969: 965: 943: 942: 938: 933: 911: 892: 860: 835: 825: 824: 802: 801: 774: 764: 750: 728: 713: 702: 698: 695: 691: 659: 651: 648: 644: 624: 614: 613: 583: 573: 559: 537: 522: 511: 507: 504: 500: 468: 460: 457: 453: 433: 423: 422: 415: 367: 366: 352: 351: 333: 323: 312: 302: 285: 275: 260: 256: 245: 241: 224: 212: 202: 201: 170: 169: 161: 143: 133: 119: 99: 84: 80: 72: 50: 40: 39: 12: 11: 5: 1136: 1134: 1126: 1125: 1120: 1115: 1110: 1100: 1099: 1094: 1093: 1066: 1039: 1020:(4): 499–523. 1004: 963: 935: 934: 932: 929: 928: 927: 922: 917: 910: 907: 891: 888: 874: 867: 863: 858: 854: 849: 842: 838: 833: 809: 798: 797: 781: 777: 773: 770: 767: 762: 759: 756: 753: 747: 743: 735: 731: 727: 719: 716: 709: 705: 701: 694: 688: 682: 676: 673: 665: 662: 657: 654: 647: 643: 638: 631: 627: 622: 607: 606: 590: 586: 582: 579: 576: 571: 568: 565: 562: 556: 552: 544: 540: 536: 528: 525: 518: 514: 510: 503: 497: 491: 485: 482: 474: 471: 466: 463: 456: 452: 447: 440: 436: 431: 414: 411: 379: 374: 370: 364: 359: 355: 348: 340: 336: 332: 329: 326: 319: 315: 311: 308: 305: 299: 292: 288: 282: 278: 267: 263: 259: 252: 248: 244: 238: 231: 227: 219: 215: 210: 182: 177: 173: 167: 164: 158: 150: 146: 142: 139: 136: 131: 128: 125: 122: 116: 111: 106: 102: 91: 87: 83: 78: 75: 69: 64: 57: 53: 48: 33: 32: 29: 13: 10: 9: 6: 4: 3: 2: 1135: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1105: 1103: 1089: 1085: 1081: 1077: 1070: 1067: 1062: 1058: 1054: 1050: 1043: 1040: 1035: 1031: 1027: 1023: 1019: 1015: 1008: 1005: 1000: 996: 991: 986: 982: 978: 974: 967: 964: 959: 955: 951: 947: 940: 937: 930: 926: 923: 921: 918: 916: 913: 912: 908: 906: 903: 901: 897: 889: 887: 872: 865: 861: 856: 852: 847: 840: 836: 831: 822: 807: 779: 775: 771: 768: 765: 760: 757: 754: 751: 745: 741: 733: 729: 725: 717: 707: 703: 692: 680: 674: 671: 663: 660: 655: 652: 645: 641: 636: 629: 625: 620: 612: 611: 610: 588: 584: 580: 577: 574: 569: 566: 563: 560: 554: 550: 542: 538: 534: 526: 516: 512: 501: 489: 483: 480: 472: 469: 464: 461: 454: 450: 445: 438: 434: 429: 421: 420: 419: 412: 410: 406: 403: 400: 396: 393: 372: 368: 357: 353: 346: 338: 334: 330: 327: 324: 317: 313: 309: 306: 303: 297: 290: 286: 280: 276: 265: 261: 257: 250: 246: 242: 236: 229: 225: 217: 213: 208: 199: 196: 175: 171: 162: 156: 148: 144: 140: 137: 134: 129: 126: 123: 120: 114: 109: 104: 100: 89: 85: 81: 76: 73: 67: 62: 55: 51: 46: 37: 30: 27: 26: 25: 22: 20: 1079: 1075: 1069: 1052: 1048: 1042: 1017: 1013: 1007: 983:(1): 89–95. 980: 976: 966: 949: 945: 939: 904: 893: 823: 799: 608: 416: 407: 404: 401: 397: 394: 200: 197: 38: 34: 23: 15: 1055:(1): 1–14. 1113:Metabolism 1102:Categories 952:: 65–104. 931:References 772:⁡ 758:⁡ 715:∂ 700:∂ 581:⁡ 567:⁡ 524:∂ 509:∂ 378:% 363:% 347:≈ 331:⁡ 310:⁡ 181:% 166:% 157:≈ 141:⁡ 127:⁡ 1034:13003538 909:See also 999:4830198 958:4148886 1032:  997:  956:  1030:PMID 995:PMID 954:PMID 1084:doi 1057:doi 1022:doi 985:doi 1104:: 1080:56 1078:. 1051:. 1028:. 1018:32 1016:. 993:. 981:42 979:. 975:. 950:27 948:. 769:ln 755:ln 578:ln 564:ln 328:ln 307:ln 138:ln 124:ln 21:. 1090:. 1086:: 1063:. 1059:: 1053:9 1036:. 1024:: 1001:. 987:: 960:. 873:X 866:i 862:e 857:C 853:= 848:X 841:i 837:v 832:C 808:p 780:i 776:v 766:d 761:s 752:d 746:= 742:) 734:i 730:v 726:p 718:p 708:i 704:v 693:( 687:/ 681:) 675:s 672:p 664:p 661:d 656:s 653:d 646:( 642:= 637:s 630:i 626:v 621:C 589:i 585:v 575:d 570:J 561:d 555:= 551:) 543:i 539:v 535:p 527:p 517:i 513:v 502:( 496:/ 490:) 484:J 481:p 473:p 470:d 465:J 462:d 455:( 451:= 446:J 439:i 435:v 430:C 373:i 369:e 358:j 354:s 339:i 335:e 325:d 318:j 314:s 304:d 298:= 291:j 287:s 281:i 277:e 266:i 262:e 258:d 251:j 247:s 243:d 237:= 230:j 226:s 218:i 214:e 209:C 176:i 172:e 163:J 149:i 145:e 135:d 130:J 121:d 115:= 110:J 105:i 101:e 90:i 86:e 82:d 77:J 74:d 68:= 63:J 56:i 52:e 47:C

Index

metabolic control analysis
rate-determining step
rate-limitingness
Elasticity coefficient
Metabolic control analysis
Summation theorems (biochemistry)
PMID
4148886
"A Linear Steady-State Treatment of Enzymatic Chains. General Properties, Control and Effector Strength"
doi
10.1111/j.1432-1033.1974.tb03318.x
PMID
4830198
doi
10.1152/physrev.1952.32.4.499
PMID
13003538
doi
10.1002/jcp.1030090102
doi
10.1016/0025-5564(81)90031-6
Categories
Biochemistry methods
Metabolism
Mathematical and theoretical biology
Systems biology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.