Knowledge (XXG)

Rate-limiting step (biochemistry)

Source πŸ“

29:
pathway, to characterize a single factor or reaction (namely the slowest), which plays the role of a master or rate-limiting step. In other words, the study of flux control can be simplified to the study of a single enzyme since, by definition, there can only be one 'rate-limiting' step. Since its conception, the 'rate-limiting' step has played a significant role in suggesting how metabolic pathways are controlled. Unfortunately, the notion of a 'rate-limiting' step is erroneous, at least under steady-state conditions. Modern biochemistry textbooks have begun to play down the concept. For example, the seventh edition of
43:
state of reaction chains, the principle of the master reaction has no application". Hearon (1952) made a more general mathematical analysis and developed strict rules for the prediction of mastery in a linear sequence of enzyme-catalysed reactions. Webb (1963) was highly critical of the concept of the rate-limiting step and of its blind application to solving problems of regulation in metabolism. Waley (1964) made a simple but illuminating analysis of simple linear chains. He showed that provided the intermediate concentrations were low compared to the
473:
coefficient.’ This described the relative change of one variable to another for small perturbations. In his Ph.D. thesis, Higgins describes many properties of the reflection coefficients, and in later work, three groups, Savageau, Heinrich and Rapoport and Jim Burns in his thesis (1971) and subsequent publications independently and simultaneously developed this work into what is now called
994:
Savageau, Michael A. (1972). "The Behavior of Intact Biochemical Control Systems* *This will not be an exhaustive review of the different methods for analyzing biochemical systems, but rather a selective treatment of one particular approach. Reviews covering alternative approaches to these problems
28:
Blackman (1905) stated as an axiom: "when a process is conditioned as to its rapidity by a number of separate factors, the rate of the process is limited by the pace of the slowest factor." This implies that it should be possible, by studying the behavior of a complicated system such as a metabolic
42:
From the 1920s to the 1950s, there were a number of authors who discussed the concept of rate-limiting steps, also known as master reactions. Several authors have stated that the concept of the 'rate-limiting' step is incorrect. Burton (1936) was one of the first to point out that: "In the steady
24:
is a step that controls the rate of a series of biochemical reactions. The statement is, however, a misunderstanding of how a sequence of enzyme catalyzed reaction steps operate. Rather than a single step controlling the rate, it has been discovered that multiple steps control the rate. Moreover,
472:
The modern perspective is that rate-limitingness should be quantitative and that it is distributed through a pathway to varying degrees. This idea was first considered by Higgins in the late 1950s as part of his PhD thesis where he introduced the quantitative measure he called the β€˜reflection
33:
explicitly states: "It has now become clear that, in most pathways, the control of flux is distributed among several enzymes, and the extent to which each contributes to the control varies with metabolic circumstances". However, the concept is still incorrectly used in research articles.
188: 1182:
Burns, J.A.; Cornish-Bowden, A.; Groen, A.K.; Heinrich, R.; Kacser, H.; Porteous, J.W.; Rapoport, S.M.; Rapoport, T.A.; Stucki, J.W.; Tager, J.M.; Wanders, R.J.A.; Westerhoff, H.V. (1985). "Control analysis of metabolic systems".
323:
values of the enzymes. The first point to note from the above equation is that the pathway flux is a function of all the enzymes; there is no need for there to be a 'rate-limiting' step. If, however, all the terms
481:. These developments extended Higgins’ original ideas significantly, and the formalism is now the primary theoretical approach to describing deterministic, continuous models of biochemical networks. 77: 254: 70: 462: 427: 392: 357: 301: 651: 321: 274: 210: 1078:"A Linear Steady-State Treatment of Enzymatic Chains. Critique of the Crossover Theorem and a General Procedure to Identify Interaction Sites with an Effector" 951:
Savageau, Michael A. (February 1971). "Parameter Sensitivity as a Criterion for Evaluating and Comparing the Performance of Biochemical Systems".
665:
Zuo, Jianlin; Tang, Jinshuo; Lu, Meng; Zhou, Zhongsheng; Li, Yang; Tian, Hao; Liu, Enbo; Gao, Baoying; Liu, Te; Shao, Pu (24 November 2021).
563: 536: 553: 484:
The variations in terminology between the different papers on metabolic control analysis were later harmonized by general agreement.
1016: 635: 183:{\displaystyle {\frac {1}{F}}={\frac {1}{Q}}\left({\frac {R}{e_{1}}}+\ldots {\frac {X}{e_{i}}}+\ldots +{\frac {Z}{e_{n}}}\right)} 464:
then the first enzyme will contribute the most to determining the flux and therefore, could be termed the 'rate-limiting' step.
1215: 503: 498: 478: 474: 1220: 215: 718:"The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment" 1037:"A Linear Steady-State Treatment of Enzymatic Chains. General Properties, Control and Effector Strength" 46: 667:"Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis" 976: 918: 767:
Burton, Alan C. (December 1936). "The basis of the principle of the master reaction in biology".
716:
Zhou, Daoying; Duan, Zhen; Li, Zhenyu; Ge, Fangfang; Wei, Ran; Kong, Lingsuo (14 December 2022).
645: 608: 1164: 1129: 1099: 1058: 1012: 968: 910: 875: 811: 749: 698: 631: 600: 559: 532: 493: 432: 397: 362: 327: 1192: 1156: 1089: 1048: 1004: 960: 902: 865: 857: 803: 776: 739: 729: 688: 678: 592: 279: 1147:
Kacser, H.; Burns, J. A.; Kacser, H.; Fell, D. A. (1 May 1995). "The control of flux".
1094: 1077: 1053: 1036: 1008: 906: 870: 845: 744: 717: 693: 666: 596: 508: 306: 259: 195: 1209: 1196: 922: 276:
are functions of the rate constants and intermediate metabolite concentrations. The
980: 17: 807: 734: 683: 604: 914: 815: 780: 753: 702: 1168: 1133: 1103: 1062: 972: 879: 794:
Hearon, John Z. (1 October 1952). "Rate Behavior of Metabolic Systems".
612: 1160: 580: 861: 964: 893:
Higgins, Joseph (May 1963). "Analysis of Sequential Reactions".
25:
each controlling step controls the rate to varying degrees.
72:
values of the enzymes, the following expression was valid:
1076:
Heinrich, Reinhart; Rapoport, Tom A. (February 1974).
1035:
Heinrich, Reinhart; Rapoport, Tom A. (February 1974).
435: 400: 365: 330: 309: 282: 262: 218: 198: 80: 49: 1120:
Kacser, H; Burns, JA (1973). "The control of flux".
552:Rajvaidya, Neelima; Markandey, Dilip Kumar (2005). 456: 421: 386: 351: 315: 295: 268: 248: 204: 182: 64: 1122:Symposia of the Society for Experimental Biology 846:"A note on the kinetics of multi-enzyme systems" 477:or, in the specific form developed by Savageau, 938:Kinetic properties of sequential enzyme systems 769:Journal of Cellular and Comparative Physiology 833:. New York: Academic Press. pp. 380–382. 8: 1115: 1113: 303:terms are proportional to the limiting rate 895:Annals of the New York Academy of Sciences 650:: CS1 maint: location missing publisher ( 626:Nelson, David L.; Cox, Michael M. (2017). 527:Nelson, David L.; Cox, Michael M. (2005). 1093: 1052: 1030: 1028: 940:. University of Pennsylvania: PhD Thesis. 869: 743: 733: 692: 682: 448: 439: 434: 413: 404: 399: 378: 369: 364: 343: 334: 329: 308: 287: 281: 261: 217: 197: 167: 158: 141: 132: 118: 109: 94: 81: 79: 55: 54: 48: 995:have recently been presented (28, 33)". 519: 643: 997:Current Topics in Cellular Regulation 249:{\displaystyle Q,R,\ldots ,X,\ldots } 7: 628:Lehninger Principles of biochemistry 529:Lehninger Principles of Biochemistry 31:Lehninger Principles of Biochemistry 1095:10.1111/j.1432-1033.1974.tb03319.x 1054:10.1111/j.1432-1033.1974.tb03318.x 1009:10.1016/B978-0-12-152806-5.50010-2 907:10.1111/j.1749-6632.1963.tb13382.x 630:(Seventh ed.). New York, NY. 597:10.1093/oxfordjournals.aob.a089000 56: 14: 1149:Biochemical Society Transactions 1082:European Journal of Biochemistry 1041:European Journal of Biochemistry 65:{\displaystyle K_{\mathrm {m} }} 831:Enzyme and metabolic inhibitors 558:. APH Publishing. p. 408. 1: 808:10.1152/physrev.1952.32.4.499 581:"Optima and Limiting Factors" 212:equals the pathway flux, and 1197:10.1016/0968-0004(85)90008-8 1237: 829:Webb, John Leyden (1963). 735:10.3389/fphar.2022.1091779 555:Environmental Biochemistry 531:. Macmillan. p. 195. 504:Biochemical systems theory 499:Metabolic control analysis 479:biochemical systems theory 475:metabolic control analysis 844:Waley, Sg (1 June 1964). 722:Frontiers in Pharmacology 684:10.3389/fimmu.2021.779787 936:Higgins, Joseph (1959). 579:Blackman, F. F. (1905). 429:, are small relative to 671:Frontiers in Immunology 457:{\displaystyle R/e_{1}} 422:{\displaystyle Z/e_{n}} 387:{\displaystyle S/e_{2}} 352:{\displaystyle X/e_{i}} 781:10.1002/jcp.1030090102 458: 423: 388: 353: 317: 297: 270: 250: 206: 184: 66: 38:Historical perspective 1216:Biochemical reactions 796:Physiological Reviews 459: 424: 389: 354: 318: 298: 296:{\displaystyle e_{i}} 271: 251: 207: 185: 67: 433: 398: 363: 328: 307: 280: 260: 216: 196: 78: 47: 1185:Trends Biochem. Sci 850:Biochemical Journal 1161:10.1042/bst0230341 468:Modern perspective 454: 419: 384: 349: 313: 293: 266: 246: 202: 180: 62: 22:rate-limiting step 959:(5286): 542–544. 862:10.1042/bj0910514 565:978-81-7648-789-4 538:978-0-7167-4339-2 494:Branched pathways 316:{\displaystyle V} 269:{\displaystyle Z} 205:{\displaystyle F} 173: 147: 124: 102: 89: 1228: 1201: 1200: 1179: 1173: 1172: 1144: 1138: 1137: 1117: 1108: 1107: 1097: 1073: 1067: 1066: 1056: 1032: 1023: 1022: 991: 985: 984: 965:10.1038/229542a0 948: 942: 941: 933: 927: 926: 890: 884: 883: 873: 841: 835: 834: 826: 820: 819: 791: 785: 784: 764: 758: 757: 747: 737: 713: 707: 706: 696: 686: 662: 656: 655: 649: 641: 623: 617: 616: 585:Annals of Botany 576: 570: 569: 549: 543: 542: 524: 463: 461: 460: 455: 453: 452: 443: 428: 426: 425: 420: 418: 417: 408: 393: 391: 390: 385: 383: 382: 373: 358: 356: 355: 350: 348: 347: 338: 322: 320: 319: 314: 302: 300: 299: 294: 292: 291: 275: 273: 272: 267: 255: 253: 252: 247: 211: 209: 208: 203: 189: 187: 186: 181: 179: 175: 174: 172: 171: 159: 148: 146: 145: 133: 125: 123: 122: 110: 103: 95: 90: 82: 71: 69: 68: 63: 61: 60: 59: 1236: 1235: 1231: 1230: 1229: 1227: 1226: 1225: 1221:Enzyme kinetics 1206: 1205: 1204: 1181: 1180: 1176: 1146: 1145: 1141: 1119: 1118: 1111: 1075: 1074: 1070: 1034: 1033: 1026: 1019: 993: 992: 988: 950: 949: 945: 935: 934: 930: 892: 891: 887: 843: 842: 838: 828: 827: 823: 793: 792: 788: 766: 765: 761: 715: 714: 710: 664: 663: 659: 642: 638: 625: 624: 620: 591:(74): 281–295. 578: 577: 573: 566: 551: 550: 546: 539: 526: 525: 521: 517: 490: 470: 444: 431: 430: 409: 396: 395: 374: 361: 360: 339: 326: 325: 305: 304: 283: 278: 277: 258: 257: 214: 213: 194: 193: 163: 137: 114: 108: 104: 76: 75: 50: 45: 44: 40: 12: 11: 5: 1234: 1232: 1224: 1223: 1218: 1208: 1207: 1203: 1202: 1174: 1155:(2): 341–366. 1139: 1109: 1068: 1024: 1017: 986: 943: 928: 901:(1): 305–321. 885: 856:(3): 514–517. 836: 821: 802:(4): 499–523. 786: 759: 708: 657: 636: 618: 571: 564: 544: 537: 518: 516: 513: 512: 511: 509:Committed step 506: 501: 496: 489: 486: 469: 466: 451: 447: 442: 438: 416: 412: 407: 403: 381: 377: 372: 368: 346: 342: 337: 333: 312: 290: 286: 265: 245: 242: 239: 236: 233: 230: 227: 224: 221: 201: 178: 170: 166: 162: 157: 154: 151: 144: 140: 136: 131: 128: 121: 117: 113: 107: 101: 98: 93: 88: 85: 58: 53: 39: 36: 13: 10: 9: 6: 4: 3: 2: 1233: 1222: 1219: 1217: 1214: 1213: 1211: 1198: 1194: 1190: 1186: 1178: 1175: 1170: 1166: 1162: 1158: 1154: 1150: 1143: 1140: 1135: 1131: 1127: 1123: 1116: 1114: 1110: 1105: 1101: 1096: 1091: 1088:(1): 97–105. 1087: 1083: 1079: 1072: 1069: 1064: 1060: 1055: 1050: 1046: 1042: 1038: 1031: 1029: 1025: 1020: 1018:9780121528065 1014: 1010: 1006: 1002: 998: 990: 987: 982: 978: 974: 970: 966: 962: 958: 954: 947: 944: 939: 932: 929: 924: 920: 916: 912: 908: 904: 900: 896: 889: 886: 881: 877: 872: 867: 863: 859: 855: 851: 847: 840: 837: 832: 825: 822: 817: 813: 809: 805: 801: 797: 790: 787: 782: 778: 774: 770: 763: 760: 755: 751: 746: 741: 736: 731: 727: 723: 719: 712: 709: 704: 700: 695: 690: 685: 680: 676: 672: 668: 661: 658: 653: 647: 639: 637:9781464126116 633: 629: 622: 619: 614: 610: 606: 602: 598: 594: 590: 586: 582: 575: 572: 567: 561: 557: 556: 548: 545: 540: 534: 530: 523: 520: 514: 510: 507: 505: 502: 500: 497: 495: 492: 491: 487: 485: 482: 480: 476: 467: 465: 449: 445: 440: 436: 414: 410: 405: 401: 379: 375: 370: 366: 344: 340: 335: 331: 310: 288: 284: 263: 243: 240: 237: 234: 231: 228: 225: 222: 219: 199: 190: 176: 168: 164: 160: 155: 152: 149: 142: 138: 134: 129: 126: 119: 115: 111: 105: 99: 96: 91: 86: 83: 73: 51: 37: 35: 32: 26: 23: 19: 1188: 1184: 1177: 1152: 1148: 1142: 1125: 1121: 1085: 1081: 1071: 1047:(1): 89–95. 1044: 1040: 1000: 996: 989: 956: 952: 946: 937: 931: 898: 894: 888: 853: 849: 839: 830: 824: 799: 795: 789: 772: 768: 762: 725: 721: 711: 674: 670: 660: 627: 621: 588: 584: 574: 554: 547: 528: 522: 483: 471: 191: 74: 41: 30: 27: 21: 18:biochemistry 15: 775:(1): 1–14. 728:: 1091779. 1210:Categories 1128:: 65–104. 1003:: 63–130. 677:: 779787. 515:References 646:cite book 605:0305-7364 244:… 232:… 153:… 130:… 923:30821044 915:13954410 816:13003538 754:36588722 703:34899740 613:43235278 488:See also 1169:7672373 1134:4148886 1104:4830199 1063:4830198 981:4297185 973:4925348 880:5840711 871:1202985 745:9795015 694:8651870 1191:: 16. 1167:  1132:  1102:  1061:  1015:  979:  971:  953:Nature 921:  913:  878:  868:  814:  752:  742:  701:  691:  634:  611:  603:  562:  535:  192:where 977:S2CID 919:S2CID 609:JSTOR 359:from 1165:PMID 1130:PMID 1100:PMID 1059:PMID 1013:ISBN 969:PMID 911:PMID 876:PMID 812:PMID 750:PMID 699:PMID 652:link 632:ISBN 601:ISSN 560:ISBN 533:ISBN 256:and 20:, a 1193:doi 1157:doi 1090:doi 1049:doi 1005:doi 961:doi 957:229 903:doi 899:108 866:PMC 858:doi 804:doi 777:doi 740:PMC 730:doi 689:PMC 679:doi 593:doi 394:to 16:In 1212:: 1189:10 1187:. 1163:. 1153:23 1151:. 1126:27 1124:. 1112:^ 1098:. 1086:42 1084:. 1080:. 1057:. 1045:42 1043:. 1039:. 1027:^ 1011:. 999:. 975:. 967:. 955:. 917:. 909:. 897:. 874:. 864:. 854:91 852:. 848:. 810:. 800:32 798:. 771:. 748:. 738:. 726:13 724:. 720:. 697:. 687:. 675:12 673:. 669:. 648:}} 644:{{ 607:. 599:. 589:19 587:. 583:. 1199:. 1195:: 1171:. 1159:: 1136:. 1106:. 1092:: 1065:. 1051:: 1021:. 1007:: 1001:6 983:. 963:: 925:. 905:: 882:. 860:: 818:. 806:: 783:. 779:: 773:9 756:. 732:: 705:. 681:: 654:) 640:. 615:. 595:: 568:. 541:. 450:1 446:e 441:/ 437:R 415:n 411:e 406:/ 402:Z 380:2 376:e 371:/ 367:S 345:i 341:e 336:/ 332:X 311:V 289:i 285:e 264:Z 241:, 238:X 235:, 229:, 226:R 223:, 220:Q 200:F 177:) 169:n 165:e 161:Z 156:+ 150:+ 143:i 139:e 135:X 127:+ 120:1 116:e 112:R 106:( 100:Q 97:1 92:= 87:F 84:1 57:m 52:K

Index

biochemistry
metabolic control analysis
biochemical systems theory
Branched pathways
Metabolic control analysis
Biochemical systems theory
Committed step
ISBN
978-0-7167-4339-2
Environmental Biochemistry
ISBN
978-81-7648-789-4
"Optima and Limiting Factors"
doi
10.1093/oxfordjournals.aob.a089000
ISSN
0305-7364
JSTOR
43235278
ISBN
9781464126116
cite book
link
"Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis"
doi
10.3389/fimmu.2021.779787
PMC
8651870
PMID
34899740

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑