Knowledge (XXG)

Cottrell atmosphere

Source đź“ť

430:-direction expand. Eventually, the interstitial atoms move to sites along the z-axis. When the interstitial atoms move, this leads to a reduction in strain energy. In BCC metals, interstitial sites of an unstrained lattice are equally favorable. The interstitial solutes create elastic dipoles. However, once a strain is applied on the lattice, such as that formed by a dislocation, 1/3 of the sites become more favorable than the other 2/3. Solute atoms will therefore move to occupy the favorable sites, forming a short ranged order of solutes immediately within the vicinity of the dislocation. The motion of the interstitial solutes to these other sites constitutes a change in the elastic dipoles, so there is a relaxation time associated with this change which can be connected to the diffusivity and migration enthalpy of the solute atoms. In the new, relaxed solute configuration, more energy is therefore required to break a dislocation from this order. 389:
atoms at this boundary would differ from the bulk. Moving through this field of solute atoms would therefore produce a similar drag on dislocations as the Cottrell atmosphere. Suzuki later observed such segregation in 1961. The Suzuki effect is often associated with adsorption of substitutional solute atoms to the stacking fault, but it has also been found to occur with interstitial atoms diffusing out of the stacking fault.
20: 407:
hundredths of a percent of either element within the solution, while the remainder is supersaturated. This revelation led to observed special magnetic phenomena in iron, mainly the presence of magnetism and time decrease of permeability due to small amount of carbon and nitrogen remaining in the iron. Moreover, the additional presence of magnetism leads to an elastic-after effect.
411:
mechanism for calculating the solubility of carbon and nitrogen in α-iron. A sample in a mixture of hydrogen and ammonia (or carbon monoxide) is mixed and heated until a stationary state was reached, where the mass of carbon and nitrogen taken up during the process can be found by estimating the changes in the weight of the sample.
725:
The interstitials that occupy the normal sites in an unstressed lattice will promote internal friction. Substituted solute atoms and interstitials in strain fields of a dislocation or at grain boundaries have their internal friction changed. Therefore, the Snoek effect can measure carbon and nitrogen
95:
The collection of solute atoms at the dislocation relieves the stresses associated with the dislocation, which lowers the energy of the dislocation's presence. Thus, moving the dislocation out of this Cottrell atmosphere constitutes an increase in energy, so it is not favorable for the dislocation to
410:
By preparing samples containing a larger amount of carbon or nitrogen in solid solution, magnetic and elastic phenomena are greatly enhanced. The solubility of nitrogen is much larger than the solubility of carbon in solid solution. The study of the Snoek effect on annealed irons provides a reliable
388:
The Suzuki effect is characterized by the segregation of solutes to stacking fault defects. When dislocations in an FCC system split into two partial dislocations, a hexagonal close-packed (HCP) stacking fault is formed between the two partials. H. Suzuki predicted that the concentration of solute
433:
However, a stress applied in the direction will not lead to any changes in the locations of the interstitial atoms as the three directions of the cube will be equally stressed, and on average, equally occupied by carbon atoms. When a stress is applied along a cube edge and at an amount below the
77:
diffusing towards a dislocation, which contains a small gap at its core (as it is a more open structure), see Figure 1. Once the atom has diffused into the dislocation core the atom will stay. Typically only one interstitial atom is required per lattice plane of the dislocation. The collection of
406:
an elastic effect, called the Snoek effect. The Snoek effect was discovered by J. L. Snoek in 1941. At room temperature, the solubility of carbon and nitrogen in solid solutions is exceedingly small. By raising, the temperature beyond 400C and cooling at a moderate rate, it is easy to keep a few
392:
Once two partial dislocations have split, they cannot cross-slip around obstacles anymore. Just as the Cottrell atmosphere provided a force against dislocation motion, the Suzuki effect in the stacking fault will lead to increased stresses for recombination of partials, leading to increased
65:
Cottrell atmospheres occur in body-centered cubic (BCC) and face-centered cubic (FCC) materials, such as iron or nickel, with small impurity atoms, such as boron, carbon, or nitrogen. As these interstitial atoms distort the lattice slightly, there will be an associated residual stress field
823:
Waseda, Osamu; Veiga, Roberto GA; Morthomas, Julien; Chantrenne, Patrice; Becquart, Charlotte S.; Ribeiro, Fabienne; Jelea, Andrei; Goldenstein, Helio; Perez, Michel (March 2017). "Formation of carbon Cottrell atmospheres and their effect on the stress field around an edge dislocation".
87: 371:
is the solute concentration. The existence of the Cottrell atmosphere and the effects of viscous drag have been proven to be important in high temperature deformation at intermediate stresses, as well as contributing to the power-law breakdown regime.
90:
A dislocation moving with a Cottrell Atmosphere around it. At high stresses (top), the dislocation can "break free" of the atmosphere, while at low stresses (bottom), the dislocation must drag the solutes with it, and motion is much
698: 253: 401:
Under an applied stress, interstitial solute atoms, such as carbon and nitrogen can migrate within the α-Fe lattice, a BCC metal. These short-range migrations of carbon and nitrogen solute atoms result in an internal friction
553: 99:
Once a dislocation has become pinned, a large force is required to unpin the dislocation prior the yielding, thus at room temperature, the dislocation will not get unpinned. This produces an observed upper yield point in a
123:
and large forces for deep drawing and forming large sheets, making them a hindrance to manufacture. Some steels are designed to remove the Cottrell atmosphere effect by removing all the interstitial atoms. Steels such as
859:
Veiga, R.G.A.; Goldenstein, H.; Perez, M.; Becquart, C.S. (1 November 2015). "Monte Carlo and molecular dynamics simulations of screw dislocation locking by Cottrell atmospheres in low carbon Fe–C alloys".
108:
to generate new dislocations that are not pinned. These dislocations are free to move in the crystal, which results in a subsequent lower yield point, and the material will deform in a more plastic manner.
977: 151:, an effective frictional force that makes moving the dislocation more difficult (and thus slowing plastic deformation). This drag force can be expressed according to the equation: 586: 438:
before stress, showing the presence of internal friction. A torsional pendulum is typically used as a means of studying this lagging effect. The angle of lag is taken to be
309: 289: 414:
Carbon and nitrogen atoms occupy octahedral interstices at the midpoints of the cube edges and at the centers of the cube faces. If a stress is applied a long the
720: 606: 369: 349: 329: 613: 156: 451: 788:
Blavette, D.; Cadel, E.; Fraczkiewicz, A.; Menand, A. (1999). "Three-Dimensional Atomic-Scale Imaging of Impurity Segregation to Line Defects".
1259: 380:
While the Cottrell atmosphere is a general effect, there are additional related mechanisms that occur under more specialized circumstances.
1194:"Mobility of dislocations in the iron-based C-, N-, H-solid solutions measured using internal friction: Effect of electron structure" 1402: 1326: 116:
for a few hours, enables the carbon atoms to rediffuse back to dislocation cores, resulting in a return of the upper yield point.
393:
difficulty in bypassing obstacles (such as precipitates or particles), and therefore resulting in a stronger material.
561:
is the ratio of consecutive magnitudes of one cycle of the pendulum. When the magnitude of one cycle decreases to
734:
Materials in which dislocations described by Cottrell atmosphere include metals and semiconductor materials such
101: 1042:
Hickel, T.; Sandlöbes, S.; Marceau, R. K. W.; Dick, A.; Bleskov, I.; Neugebauer, J.; Raabe, D. (2014-08-15).
125: 446:
is considered a measure of internal friction. The internal friction is expressed according to the equation:
96:
move forward in the crystal. As a result, the dislocation is effectively pinned by the Cottrell atmosphere.
140: 105: 982:
Science Reports of the Research Institutes, Tohoku University. Ser. A, Physics, Chemistry and Metallurgy
1279: 1193: 1099: 1043: 1363: 1286:. Proceedings of the 14th International Conference on Internal Friction and Mechanical Spectroscopy. 1158: 1111: 1055: 1008: 763: 71: 564: 144: 59: 754:
Cottrell, A. H.; Bilby, B. A. (1949), "Dislocation Theory of Yielding and Strain Ageing of Iron",
1100:"Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron" 1379: 1332: 1322: 1299: 1255: 1213: 1174: 1127: 1071: 1024: 958: 919: 877: 841: 805: 28: 294: 261: 1371: 1291: 1205: 1166: 1119: 1063: 1016: 950: 911: 869: 833: 797: 771: 113: 67: 735: 78:
solute atoms around the dislocation core due to this process is the Cottrell atmosphere.
1367: 1162: 1115: 1059: 1012: 767: 705: 693:{\displaystyle \tan(\delta )=Q^{-1}={\frac {\ln {\frac {1}{n}}}{\pi \times v\times t}}} 591: 354: 334: 314: 248:{\displaystyle F_{drag}={\frac {kT\Omega }{vD_{sol}}}\int {\frac {J\centerdot J}{c}}dA} 120: 86: 1123: 938: 899: 139:
The Cottrell atmosphere also has important consequences for material behavior at high
1396: 954: 915: 873: 837: 775: 129: 36: 148: 147:
conditions. Moving a dislocation with an associated Cottrell atmosphere introduces
44: 1209: 1067: 801: 19: 548:{\displaystyle \tan(\delta )=\left({\frac {\log(decrement)}{\pi }}\right)=Q^{-1}} 40: 1295: 999:
Suzuki, Hideji (1962-02-15). "Segregation of Solute Atoms to Stacking Faults".
1375: 1170: 1044:"Impact of nanodiffusion on the stacking fault energy in high-strength steels" 1383: 1303: 1217: 1178: 1131: 1075: 1028: 962: 923: 881: 845: 1351: 1336: 1146: 809: 726:
concentration in BCC alpha-Fe and other solutes present in ternary alloys.
133: 56: 1020: 104:
graph. Beyond the upper yield point, the pinned dislocation will act as
23:
A carbon atom below a dislocation in iron, forming a Cottrell atmosphere
52: 900:"Steady-state creep of alloys due to viscous motion of dislocations" 1280:"The Snoek relaxation in bcc metals—From steel wire to meteorites" 85: 48: 18: 608:, then the internal fraction behaves according to the equation: 74: 426:
axes will contract, while the octahedral interstices along the
1192:
Gavriljuk, V. G.; Shyvaniuk, V. N.; Teus, S. M. (2021-12-15).
291:
is the diffusivity of the solute atom in the host material,
978:"Chemical Interaction of Solute Atoms with Dislocations" 434:
yield stress, the interstitial atom will lead to strain
418:, or direction, the octahedral interstices along the 1352:"Theory of the snoek effect in ternary b.c.c. alloys" 1147:"Theory of the snoek effect in ternary b.c.c. alloys" 708: 616: 594: 567: 454: 357: 337: 317: 297: 264: 159: 714: 692: 600: 580: 547: 363: 343: 323: 303: 283: 247: 1254:. Cambridge, UK: Cambridge. pp. 569–570. 722:is the vibrational frequency of the pendulum. 8: 112:Leaving the sample to age, by holding it at 119:Cottrell atmospheres lead to formation of 1321:. Cambridge: Cambridge University Press. 939:"Creep behavior of solid solution alloys" 898:Takeuchi, S.; Argon, A. S. (1976-10-01). 707: 660: 651: 639: 615: 593: 568: 566: 536: 477: 453: 356: 336: 316: 296: 269: 263: 221: 203: 182: 164: 158: 143:, i.e. when the material is experiencing 1001:Journal of the Physical Society of Japan 746: 227: 1273: 1271: 1245: 1243: 1241: 1239: 1237: 1235: 1233: 1231: 1229: 1227: 1093: 1091: 1089: 1087: 1085: 7: 1284:Materials Science and Engineering: A 1250:Marc Meyers, Krishan Chawla (2009). 937:Mohamed, Farghalli A. (1979-04-01). 893: 891: 331:is the velocity of the dislocation, 756:Proceedings of the Physical Society 351:is the diffusion flux density, and 66:surrounding the interstitial. This 298: 191: 14: 943:Materials Science and Engineering 1319:Mechanical behavior of materials 1252:Mechanical Behavior of Materials 874:10.1016/j.scriptamat.2015.06.012 838:10.1016/j.scriptamat.2016.09.032 82:Influence on Mechanical Behavior 1198:Journal of Alloys and Compounds 629: 623: 588:of its original value in time 581:{\displaystyle {\frac {1}{n}}} 516: 486: 467: 461: 136:are added to remove nitrogen. 1: 1210:10.1016/j.jallcom.2021.161260 1124:10.1016/S0031-8914(41)90517-7 1068:10.1016/j.actamat.2014.04.062 976:Suzuki, Hideji (1952-01-01). 802:10.1126/science.286.5448.2317 47:are pinned in some metals by 1317:Hosford, William F. (2005). 955:10.1016/0025-5416(79)90034-X 916:10.1016/0001-6160(76)90036-5 70:field can be relaxed by the 16:Concept in materials science 1098:Snoek, J. L. (1941-07-01). 1419: 1356:The Philosophical Magazine 1296:10.1016/j.msea.2006.02.232 1151:The Philosophical Magazine 776:10.1088/0370-1298/62/1/308 1376:10.1080/14786437108217028 1278:Weller, M. (2006-12-20). 1171:10.1080/14786437108217028 1403:Crystallographic defects 1350:Koiwa, M. (1971-09-01). 1145:Koiwa, M. (1971-09-01). 132:and small quantities of 304:{\displaystyle \Omega } 284:{\displaystyle D_{sol}} 141:homologous temperatures 126:interstitial free steel 43:in 1949 to explain how 716: 694: 602: 582: 549: 365: 345: 325: 311:is the atomic volume, 305: 285: 249: 92: 24: 717: 695: 603: 583: 559:logarithmic decrement 550: 366: 346: 326: 306: 286: 250: 89: 31:, the concept of the 22: 706: 614: 592: 565: 452: 355: 335: 315: 295: 262: 157: 1368:1971PMag...24..539K 1163:1971PMag...24..539K 1116:1941Phy.....8..711S 1060:2014AcMat..75..147H 1021:10.1143/JPSJ.17.322 1013:1962JPSJ...17..322S 796:(5448): 2317–2319. 768:1949PPSA...62...49C 33:Cottrell atmosphere 862:Scripta Materialia 826:Scripta Materialia 712: 690: 598: 578: 545: 361: 341: 321: 301: 281: 245: 93: 35:was introduced by 25: 1261:978-0-511-45557-5 904:Acta Metallurgica 715:{\displaystyle v} 688: 668: 601:{\displaystyle t} 576: 523: 376:Similar phenomena 364:{\displaystyle c} 344:{\displaystyle J} 324:{\displaystyle v} 237: 216: 106:Frank–Read source 29:materials science 1410: 1388: 1387: 1362:(189): 539–554. 1347: 1341: 1340: 1314: 1308: 1307: 1275: 1266: 1265: 1247: 1222: 1221: 1189: 1183: 1182: 1157:(189): 539–554. 1142: 1136: 1135: 1095: 1080: 1079: 1039: 1033: 1032: 996: 990: 989: 973: 967: 966: 934: 928: 927: 895: 886: 885: 856: 850: 849: 820: 814: 813: 785: 779: 778: 751: 736:silicon crystals 721: 719: 718: 713: 699: 697: 696: 691: 689: 687: 670: 669: 661: 652: 647: 646: 607: 605: 604: 599: 587: 585: 584: 579: 577: 569: 554: 552: 551: 546: 544: 543: 528: 524: 519: 478: 370: 368: 367: 362: 350: 348: 347: 342: 330: 328: 327: 322: 310: 308: 307: 302: 290: 288: 287: 282: 280: 279: 254: 252: 251: 246: 238: 233: 222: 217: 215: 214: 213: 194: 183: 178: 177: 114:room temperature 1418: 1417: 1413: 1412: 1411: 1409: 1408: 1407: 1393: 1392: 1391: 1349: 1348: 1344: 1329: 1316: 1315: 1311: 1277: 1276: 1269: 1262: 1249: 1248: 1225: 1191: 1190: 1186: 1144: 1143: 1139: 1097: 1096: 1083: 1048:Acta Materialia 1041: 1040: 1036: 998: 997: 993: 984:(in Japanese). 975: 974: 970: 936: 935: 931: 910:(10): 883–889. 897: 896: 889: 858: 857: 853: 822: 821: 817: 787: 786: 782: 753: 752: 748: 744: 732: 704: 703: 671: 653: 635: 612: 611: 590: 589: 563: 562: 532: 479: 473: 450: 449: 399: 386: 378: 353: 352: 333: 332: 313: 312: 293: 292: 265: 260: 259: 223: 199: 195: 184: 160: 155: 154: 84: 17: 12: 11: 5: 1416: 1414: 1406: 1405: 1395: 1394: 1390: 1389: 1342: 1327: 1309: 1267: 1260: 1223: 1184: 1137: 1110:(7): 711–733. 1081: 1034: 1007:(2): 322–325. 991: 968: 929: 887: 851: 815: 780: 745: 743: 740: 731: 728: 711: 686: 683: 680: 677: 674: 667: 664: 659: 656: 650: 645: 642: 638: 634: 631: 628: 625: 622: 619: 597: 575: 572: 542: 539: 535: 531: 527: 522: 518: 515: 512: 509: 506: 503: 500: 497: 494: 491: 488: 485: 482: 476: 472: 469: 466: 463: 460: 457: 398: 395: 385: 382: 377: 374: 360: 340: 320: 300: 278: 275: 272: 268: 244: 241: 236: 232: 229: 226: 220: 212: 209: 206: 202: 198: 193: 190: 187: 181: 176: 173: 170: 167: 163: 83: 80: 37:A. H. Cottrell 15: 13: 10: 9: 6: 4: 3: 2: 1415: 1404: 1401: 1400: 1398: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1346: 1343: 1338: 1334: 1330: 1328:0-521-84670-6 1324: 1320: 1313: 1310: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1274: 1272: 1268: 1263: 1257: 1253: 1246: 1244: 1242: 1240: 1238: 1236: 1234: 1232: 1230: 1228: 1224: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1188: 1185: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1141: 1138: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1094: 1092: 1090: 1088: 1086: 1082: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1038: 1035: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 995: 992: 987: 983: 979: 972: 969: 964: 960: 956: 952: 948: 944: 940: 933: 930: 925: 921: 917: 913: 909: 905: 901: 894: 892: 888: 883: 879: 875: 871: 867: 863: 855: 852: 847: 843: 839: 835: 831: 827: 819: 816: 811: 807: 803: 799: 795: 791: 784: 781: 777: 773: 769: 765: 761: 757: 750: 747: 741: 739: 737: 729: 727: 723: 709: 700: 684: 681: 678: 675: 672: 665: 662: 657: 654: 648: 643: 640: 636: 632: 626: 620: 617: 609: 595: 573: 570: 560: 555: 540: 537: 533: 529: 525: 520: 513: 510: 507: 504: 501: 498: 495: 492: 489: 483: 480: 474: 470: 464: 458: 455: 447: 445: 441: 437: 431: 429: 425: 421: 417: 412: 408: 405: 396: 394: 390: 384:Suzuki effect 383: 381: 375: 373: 358: 338: 318: 276: 273: 270: 266: 256: 242: 239: 234: 230: 224: 218: 210: 207: 204: 200: 196: 188: 185: 179: 174: 171: 168: 165: 161: 152: 150: 146: 142: 137: 135: 131: 127: 122: 117: 115: 110: 107: 103: 102:stress–strain 97: 88: 81: 79: 76: 73: 69: 63: 61: 60:interstitials 58: 54: 50: 46: 42: 38: 34: 30: 21: 1359: 1355: 1345: 1318: 1312: 1290:(1): 21–30. 1287: 1283: 1251: 1201: 1197: 1187: 1154: 1150: 1140: 1107: 1103: 1051: 1047: 1037: 1004: 1000: 994: 985: 981: 971: 949:(1): 73–80. 946: 942: 932: 907: 903: 865: 861: 854: 829: 825: 818: 793: 789: 783: 762:(1): 49–62, 759: 755: 749: 733: 724: 701: 610: 558: 556: 448: 443: 439: 435: 432: 427: 423: 419: 415: 413: 409: 403: 400: 397:Snoek effect 391: 387: 379: 257: 153: 149:viscous drag 138: 130:decarburized 121:LĂĽders bands 118: 111: 98: 94: 72:interstitial 64: 45:dislocations 32: 26: 1054:: 147–155. 41:B. A. Bilby 1204:: 161260. 988:: 455–463. 742:References 557:Where the 1384:0031-8086 1304:0921-5093 1218:0925-8388 1179:0031-8086 1132:0031-8914 1076:1359-6454 1029:0031-9015 963:0025-5416 924:0001-6160 882:1359-6462 868:: 19–22. 846:1359-6462 832:: 16–19. 730:Materials 682:× 676:× 673:π 658:⁡ 641:− 627:δ 621:⁡ 538:− 521:π 484:⁡ 465:δ 459:⁡ 299:Ω 228:⋅ 219:∫ 192:Ω 1397:Category 1337:56482243 810:10600736 442:and tan 134:titanium 57:nitrogen 1364:Bibcode 1159:Bibcode 1112:Bibcode 1104:Physica 1056:Bibcode 1009:Bibcode 790:Science 764:Bibcode 436:lagging 91:slower. 1382:  1335:  1325:  1302:  1258:  1216:  1177:  1130:  1074:  1027:  961:  922:  880:  844:  808:  702:Where 258:where 68:stress 53:carbon 145:creep 55:, or 49:boron 1380:ISSN 1333:OCLC 1323:ISBN 1300:ISSN 1256:ISBN 1214:ISSN 1175:ISSN 1128:ISSN 1072:ISSN 1025:ISSN 959:ISSN 920:ISSN 878:ISSN 842:ISSN 806:PMID 422:and 128:are 75:atom 39:and 1372:doi 1292:doi 1288:442 1206:doi 1202:886 1167:doi 1120:doi 1064:doi 1017:doi 951:doi 912:doi 870:doi 866:108 834:doi 830:129 798:doi 794:286 772:doi 618:tan 481:log 456:tan 255:, 27:In 1399:: 1378:. 1370:. 1360:24 1358:. 1354:. 1331:. 1298:. 1282:. 1270:^ 1226:^ 1212:. 1200:. 1196:. 1173:. 1165:. 1155:24 1153:. 1149:. 1126:. 1118:. 1106:. 1102:. 1084:^ 1070:. 1062:. 1052:75 1050:. 1046:. 1023:. 1015:. 1005:17 1003:. 980:. 957:. 947:38 945:. 941:. 918:. 908:24 906:. 902:. 890:^ 876:. 864:. 840:. 828:. 804:. 792:. 770:, 760:62 758:, 738:. 655:ln 424:y- 420:x- 404:or 62:. 51:, 1386:. 1374:: 1366:: 1339:. 1306:. 1294:: 1264:. 1220:. 1208:: 1181:. 1169:: 1161:: 1134:. 1122:: 1114:: 1108:8 1078:. 1066:: 1058:: 1031:. 1019:: 1011:: 986:4 965:. 953:: 926:. 914:: 884:. 872:: 848:. 836:: 812:. 800:: 774:: 766:: 710:v 685:t 679:v 666:n 663:1 649:= 644:1 637:Q 633:= 630:) 624:( 596:t 574:n 571:1 541:1 534:Q 530:= 526:) 517:) 514:t 511:n 508:e 505:m 502:e 499:r 496:c 493:e 490:d 487:( 475:( 471:= 468:) 462:( 444:δ 440:δ 428:z 416:z 359:c 339:J 319:v 277:l 274:o 271:s 267:D 243:A 240:d 235:c 231:J 225:J 211:l 208:o 205:s 201:D 197:v 189:T 186:k 180:= 175:g 172:a 169:r 166:d 162:F

Index


materials science
A. H. Cottrell
B. A. Bilby
dislocations
boron
carbon
nitrogen
interstitials
stress
interstitial
atom

stress–strain
Frank–Read source
room temperature
LĂĽders bands
interstitial free steel
decarburized
titanium
homologous temperatures
creep
viscous drag
silicon crystals
Bibcode
1949PPSA...62...49C
doi
10.1088/0370-1298/62/1/308
doi
10.1126/science.286.5448.2317

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑