Knowledge (XXG)

Countable chain condition

Source 📝

66:
This is called the "countable chain condition" rather than the more logical term "countable antichain condition" for historical reasons related to certain chains of open sets in topological spaces and chains in complete Boolean algebras, where chain conditions sometimes happen to be equivalent to
67:
antichain conditions. For example, if κ is a cardinal, then in a complete Boolean algebra every antichain has size less than κ if and only if there is no descending κ-sequence of elements, so chain conditions are equivalent to antichain conditions.
81:, ccc partial orders are used because forcing with any generic set over such an order preserves cardinals and cofinalities. Furthermore, the ccc property is preserved by finite support iterations (see 198: 63:
countable chain conditions. These are not equivalent. The countable chain condition means the downwards countable chain condition, in other words no two elements have a common lower bound.
269: 317: 350: 325:
Products of Separable Spaces, K. A. Ross, and A. H. Stone. The American Mathematical Monthly 71(4):pp. 398–403 (1964)
156: 148: 159: 214: 114: 96:, also written as κ-c.c., if every antichain has size less than κ. The countable chain condition is the ℵ 345: 21: 86: 78: 140: 313: 283: 132: 109: 71: 272: 152: 82: 36: 309: 339: 205: 17: 301: 120: 44: 70:
Partial orders and spaces satisfying the ccc are used in the statement of
211:
In general, a ccc topological space need not be separable. For example,
92:
More generally, if κ is a cardinal then a poset is said to satisfy the
85:). For more information on ccc in the context of forcing, see 87:
Forcing (set theory) § The countable chain condition
308:, Springer Monographs in Mathematics, Berlin, New York: 289:
An example of a ccc topological space is the real line.
217: 201:
separable spaces is a separable space and, thus, ccc.
162: 112:
is said to satisfy the countable chain condition, or
330:
Set Theory: An Introduction to Independence Proofs.
263: 192: 193:{\displaystyle {\mathfrak {c}}=2^{\aleph _{0}}} 264:{\displaystyle \{0,1\}^{2^{2^{\aleph _{0}}}}} 8: 231: 218: 119:, if the partially ordered set of non-empty 249: 244: 239: 234: 216: 182: 177: 164: 163: 161: 127:satisfies the countable chain condition, 139:is countable. The name originates from 135:collection of non-empty open subsets of 208:is ccc if and only if it's separable. 55:There are really two conditions: the 7: 165: 104:Examples and properties in topology 246: 179: 14: 306:Set Theory: Millennium Edition 1: 282:Paracompact ccc spaces are 149:separable topological space 367: 151:is ccc. Furthermore, the 29:countable chain condition 27:is said to satisfy the 265: 194: 351:Forcing (mathematics) 266: 195: 22:partially ordered set 215: 160: 261: 190: 100:-chain condition. 319:978-3-540-44085-7 133:pairwise disjoint 110:topological space 94:κ-chain condition 77:In the theory of 358: 328:Kunen, Kenneth. 322: 273:product topology 270: 268: 267: 262: 260: 259: 258: 257: 256: 255: 254: 253: 199: 197: 196: 191: 189: 188: 187: 186: 169: 168: 141:Suslin's Problem 83:iterated forcing 37:strong antichain 366: 365: 361: 360: 359: 357: 356: 355: 336: 335: 334: 320: 310:Springer-Verlag 300: 296: 275:is ccc, though 245: 240: 235: 230: 213: 212: 178: 173: 158: 157: 106: 99: 53: 12: 11: 5: 364: 362: 354: 353: 348: 338: 337: 333: 332: 326: 323: 318: 297: 295: 292: 291: 290: 287: 280: 252: 248: 243: 238: 233: 229: 226: 223: 220: 209: 202: 185: 181: 176: 172: 167: 105: 102: 97: 72:Martin's axiom 52: 49: 13: 10: 9: 6: 4: 3: 2: 363: 352: 349: 347: 344: 343: 341: 331: 327: 324: 321: 315: 311: 307: 303: 299: 298: 293: 288: 285: 281: 278: 274: 250: 241: 236: 227: 224: 221: 210: 207: 203: 200: 183: 174: 170: 154: 153:product space 150: 146: 145: 144: 142: 138: 134: 130: 126: 122: 118: 116: 111: 103: 101: 95: 90: 88: 84: 80: 75: 73: 68: 64: 62: 58: 50: 48: 46: 42: 38: 34: 30: 26: 23: 19: 346:Order theory 329: 305: 302:Jech, Thomas 276: 206:metric space 136: 128: 124: 121:open subsets 113: 107: 93: 91: 76: 69: 65: 60: 56: 54: 40: 32: 28: 24: 18:order theory 15: 155:of at most 35:, if every 31:, or to be 340:Categories 294:References 279:separable. 271:with the 247:ℵ 180:ℵ 117:Condition 61:downwards 45:countable 304:(2003), 284:Lindelöf 115:Suslin's 51:Overview 79:forcing 57:upwards 316:  147:Every 131:every 314:ISBN 129:i.e. 59:and 20:, a 277:not 123:of 47:. 43:is 39:in 33:ccc 16:In 342:: 312:, 204:A 143:. 108:A 89:. 74:. 286:. 251:0 242:2 237:2 232:} 228:1 225:, 222:0 219:{ 184:0 175:2 171:= 166:c 137:X 125:X 98:1 41:X 25:X

Index

order theory
partially ordered set
strong antichain
countable
Martin's axiom
forcing
iterated forcing
Forcing (set theory) § The countable chain condition
topological space
Suslin's
open subsets
pairwise disjoint
Suslin's Problem
separable topological space
product space
c = 2 0 {\displaystyle {\mathfrak {c}}=2^{\aleph _{0}}}
metric space
product topology
Lindelöf
Jech, Thomas
Springer-Verlag
ISBN
978-3-540-44085-7
Categories
Order theory
Forcing (mathematics)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.