Knowledge (XXG)

Covering system

Source đź“ť

1576:. It is easy to construct examples where the minimum of the moduli in such a system is 2, or 3 (Erdős gave an example where the moduli are in the set of the divisors of 120; a suitable cover is 0(3), 0(4), 0(5), 1(6), 1(8), 2(10), 11(12), 1(15), 14(20), 5(24), 8(30), 6(40), 58(60), 26(120) ) D. Swift gave an example where the minimum of the moduli is 4 (and the moduli are in the set of the divisors of 2880). S. L. G. Choi proved that it is possible to give an example for 1654:: an incongruent covering system (with the minimum modulus greater than 1) whose moduli are odd, does not exist. It is known that if such a system exists with square-free moduli, the overall modulus must have at least 22 prime factors. 637: 1095: 491: 1445: 1220: 254: 813: 140: 370: 1307: 1557:
is congruent to 1 mod 3. The progressions divisible by different primes form a covering system, showing that every number in the sequence is divisible by at least one prime.
937: 1609: 686: 497: 1330: 957: 899: 879: 856: 836: 2012: 965: 688:
are different (and bigger than 1). Hough and Nielsen (2019) proved that any distinct covering system has a modulus that is divisible by either 2 or 3.
1535: 1644: 376: 1338: 1101: 154: 714: 41: 1752: 1456: 280: 17: 1734: 1242: 1993: 1862: 1739:. With forewords by Branko GrĂĽnbaum, Peter D. Johnson, Jr. and Cecil Rousseau. New York: Springer. pp. 1–9. 1663: 1824: 1471:. However, Mirsky and Newman never published their proof. The same proof was also found independently by 1673: 1619: 1459:, states that there is no disjoint distinct covering system. This result was conjectured in 1950 by 1492: 904: 1935: 1890: 1702: 1488: 1546:
form an arithmetic progression; for instance, the even numbers in the sequence are the numbers
1748: 1542:
In this sequence, the positions at which the numbers in the sequence are divisible by a prime
632:{\displaystyle \{0{\pmod {2}},\ 0{\pmod {3}},\ 1{\pmod {4}},\ 5{\pmod {6}},\ 7{\pmod {12}}\}.} 1736:
The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators
1587: 1945: 1900: 1833: 1790: 1740: 1730: 1712: 1504: 1500: 1496: 1472: 1468: 1957: 1912: 1847: 1804: 1762: 664: 1997: 1953: 1908: 1843: 1800: 1758: 1651: 1315: 942: 884: 864: 841: 821: 2006: 1882: 1565: 1460: 268: 146: 1693:
R. D. Hough, P. P. Nielsen (2019). "Covering systems with restricted divisibility".
1572:
there exists an incongruent covering system the minimum of whose moduli is at least
1880:
Hough, Bob (2015). "Solution of the minimum modulus problem for covering systems".
1668: 1508: 1476: 1090:{\displaystyle \{1{\pmod {2}};\ 0{\pmod {3}};\ 2{\pmod {6}};\ 0,4,6,8{\pmod {10}};} 1312:
This is just one case of the following fact: For every positive integer modulus
1974: 1926:
Guo, Song; Sun, Zhi-Wei (2005). "On odd covering systems with distinct moduli".
1904: 1782: 1464: 1233: 24: 1716: 1949: 1838: 1819: 1744: 486:{\displaystyle \{1{\pmod {2}},\ 2{\pmod {4}},\ 4{\pmod {8}},\ 0{\pmod {8}}\},} 1440:{\displaystyle \{0{\pmod {m}},\ 1{\pmod {m}},\ \ldots ,\ {m-1}{\pmod {m}}\}.} 1618:
Erdős's question was resolved in the negative by Bob Hough. Hough used the
1978: 1215:{\displaystyle 1,2,4,7,10,13{\pmod {15}};\ 5,11,12,22,23,29{\pmod {30}}\}} 249:{\displaystyle a_{i}{\pmod {n_{i}}}=\{a_{i}+n_{i}x:\ x\in \mathbb {Z} \},} 1989: 808:{\displaystyle \{a_{1}{\pmod {n_{1}}},\ \ldots ,\ a_{k}{\pmod {n_{k}}}\}} 135:{\displaystyle \{a_{1}{\pmod {n_{1}}},\ \ldots ,\ a_{k}{\pmod {n_{k}}}\}} 1778:"Covering the set of integers by congruence classes of distinct moduli" 1633: 1611:
congruences. Tyler Owens demonstrates the existence of an example with
1580:= 20, and Pace P Nielsen demonstrates the existence of an example with 959:-covers which cannot be written as a union of two covers. For example, 1940: 1795: 1777: 1707: 1895: 699:) if all the residue classes are required to cover the integers. 365:{\displaystyle \{0{\pmod {3}},\ 1{\pmod {3}},\ 2{\pmod {3}}\},} 1982: 1626:<10 which can be the minimum modulus on a covering system. 1641:
Does there exist a covering system with odd distinct moduli?
1228:
The first example above is an exact 1-cover (also called an
1530: 1232:). Another exact cover in common use is that of odd and 1225:
is an exact 2-cover which is not a union of two covers.
1650:
There is a famous unsolved conjecture from Erdős and
1590: 1341: 1318: 1245: 1104: 968: 945: 907: 887: 867: 844: 824: 717: 667: 500: 379: 283: 157: 44: 1499:, such that consecutive numbers in the sequence are 1603: 1439: 1324: 1301: 1214: 1089: 951: 931: 893: 873: 850: 830: 807: 680: 631: 485: 364: 248: 134: 1507:. For instance, a sequence of this type found by 1455:The Mirsky–Newman theorem, a special case of the 1820:"A covering system whose smallest modulus is 40" 1302:{\displaystyle \{0{\pmod {2}},\ 1{\pmod {2}}\}.} 274:The following are examples of covering systems: 267:The notion of covering system was introduced by 818:of finitely many residue classes is called an 8: 1491:, sequences of integers satisfying the same 1431: 1342: 1293: 1246: 1209: 969: 802: 718: 623: 501: 477: 380: 356: 284: 240: 194: 129: 45: 1990:Classified Publications on Covering Systems 1863:"A Covering System with Minimum Modulus 42" 838:-cover if it covers every integer at least 1939: 1894: 1837: 1794: 1706: 1595: 1589: 1415: 1404: 1373: 1348: 1340: 1317: 1277: 1252: 1244: 1193: 1138: 1103: 1068: 1025: 1000: 975: 967: 944: 906: 886: 881:-cover if it covers each integer exactly 866: 843: 823: 792: 779: 773: 744: 731: 725: 716: 672: 666: 607: 582: 557: 532: 507: 499: 461: 436: 411: 386: 378: 340: 315: 290: 282: 236: 235: 214: 201: 181: 168: 162: 156: 119: 106: 100: 71: 58: 52: 43: 1979:Problems and Results on Covering Systems 1568:asked whether for any arbitrarily large 708:A system (i.e., an unordered multi-set) 1685: 1645:(more unsolved problems in mathematics) 1487:Covering systems can be used to find 702:The first two examples are disjoint. 7: 1503:but all numbers in the sequence are 259:whose union contains every integer. 1622:to show that there is some maximum 1561:Boundedness of the smallest modulus 1423: 1381: 1356: 1285: 1260: 1201: 1146: 1076: 1033: 1008: 983: 787: 739: 615: 590: 565: 540: 515: 469: 444: 419: 394: 348: 323: 298: 176: 114: 66: 2013:Unsolved problems in number theory 14: 901:times. It is known that for each 18:Complete residue system modulo m 1636:Unsolved problem in mathematics 1416: 1374: 1349: 1278: 1253: 1194: 1139: 1069: 1026: 1001: 976: 780: 732: 705:The third example is distinct. 608: 583: 558: 533: 508: 462: 437: 412: 387: 341: 316: 291: 169: 107: 59: 1584:= 40, consisting of more than 1463:and proved soon thereafter by 1427: 1417: 1385: 1375: 1360: 1350: 1289: 1279: 1264: 1254: 1205: 1195: 1150: 1140: 1080: 1070: 1037: 1027: 1012: 1002: 987: 977: 798: 781: 750: 733: 619: 609: 594: 584: 569: 559: 544: 534: 519: 509: 473: 463: 448: 438: 423: 413: 398: 388: 352: 342: 327: 317: 302: 292: 187: 170: 125: 108: 77: 60: 1: 1528:= 3794765361567513 (sequence 932:{\displaystyle m=2,3,\ldots } 650:) if no two members overlap. 691:A covering system is called 653:A covering system is called 642:A covering system is called 1905:10.4007/annals.2015.181.1.6 1861:Owens, Tyler (2014-12-01). 1457:Herzog–Schönheim conjecture 1332:, there is an exact cover: 2029: 1717:10.1215/00127094-2019-0058 15: 1950:10.1016/j.aam.2005.01.004 1839:10.1016/j.jnt.2008.09.016 1818:Nielsen, Pace P. (2009). 1745:10.1007/978-0-387-74642-5 1664:Chinese remainder theorem 1825:Journal of Number Theory 263:Examples and definitions 16:Not to be confused with 1776:Choi, S. L. G. (1971). 1604:{\displaystyle 10^{50}} 33:complete residue system 1605: 1441: 1326: 1303: 1216: 1091: 953: 933: 895: 875: 852: 832: 809: 682: 633: 487: 366: 250: 136: 1674:Residue number system 1630:Systems of odd moduli 1606: 1521:= 20615674205555510, 1451:Mirsky–Newman theorem 1442: 1327: 1304: 1217: 1092: 954: 934: 896: 876: 853: 833: 810: 683: 681:{\displaystyle n_{i}} 634: 488: 367: 251: 137: 1588: 1339: 1316: 1243: 1102: 966: 943: 905: 885: 865: 842: 822: 715: 665: 661:) if all the moduli 498: 377: 281: 271:in the early 1930s. 155: 42: 1867:BYU ScholarsArchive 1511:has initial terms 1493:recurrence relation 1489:primefree sequences 1483:Primefree sequences 1996:2007-09-29 at the 1620:Lovász local lemma 1601: 1437: 1322: 1299: 1212: 1087: 949: 929: 891: 871: 848: 828: 805: 678: 629: 483: 362: 246: 132: 35:) is a collection 1754:978-0-387-74640-1 1731:Soifer, Alexander 1701:(17): 3261–3295. 1505:composite numbers 1497:Fibonacci numbers 1403: 1394: 1369: 1325:{\displaystyle m} 1273: 1159: 1046: 1021: 996: 952:{\displaystyle m} 894:{\displaystyle m} 874:{\displaystyle m} 851:{\displaystyle m} 831:{\displaystyle m} 768: 759: 603: 578: 553: 528: 457: 432: 407: 336: 311: 228: 145:of finitely many 95: 86: 2020: 1962: 1961: 1943: 1923: 1917: 1916: 1898: 1877: 1871: 1870: 1858: 1852: 1851: 1841: 1815: 1809: 1808: 1798: 1789:(116): 885–895. 1773: 1767: 1766: 1727: 1721: 1720: 1710: 1690: 1637: 1610: 1608: 1607: 1602: 1600: 1599: 1533: 1501:relatively prime 1473:Harold Davenport 1469:Donald J. Newman 1446: 1444: 1443: 1438: 1430: 1414: 1401: 1392: 1388: 1367: 1363: 1331: 1329: 1328: 1323: 1308: 1306: 1305: 1300: 1292: 1271: 1267: 1221: 1219: 1218: 1213: 1208: 1157: 1153: 1096: 1094: 1093: 1088: 1083: 1044: 1040: 1019: 1015: 994: 990: 958: 956: 955: 950: 939:there are exact 938: 936: 935: 930: 900: 898: 897: 892: 880: 878: 877: 872: 857: 855: 854: 849: 837: 835: 834: 829: 814: 812: 811: 806: 801: 797: 796: 778: 777: 766: 757: 753: 749: 748: 730: 729: 687: 685: 684: 679: 677: 676: 638: 636: 635: 630: 622: 601: 597: 576: 572: 551: 547: 526: 522: 492: 490: 489: 484: 476: 455: 451: 430: 426: 405: 401: 371: 369: 368: 363: 355: 334: 330: 309: 305: 255: 253: 252: 247: 239: 226: 219: 218: 206: 205: 190: 186: 185: 167: 166: 141: 139: 138: 133: 128: 124: 123: 105: 104: 93: 84: 80: 76: 75: 57: 56: 2028: 2027: 2023: 2022: 2021: 2019: 2018: 2017: 2003: 2002: 1998:Wayback Machine 1971: 1966: 1965: 1928:Adv. Appl. Math 1925: 1924: 1920: 1879: 1878: 1874: 1860: 1859: 1855: 1817: 1816: 1812: 1796:10.2307/2004353 1775: 1774: 1770: 1755: 1729: 1728: 1724: 1692: 1691: 1687: 1682: 1660: 1648: 1647: 1642: 1639: 1635: 1632: 1591: 1586: 1585: 1563: 1551: 1529: 1527: 1520: 1485: 1453: 1337: 1336: 1314: 1313: 1241: 1240: 1100: 1099: 964: 963: 941: 940: 903: 902: 883: 882: 863: 862: 840: 839: 820: 819: 788: 769: 740: 721: 713: 712: 668: 663: 662: 496: 495: 375: 374: 279: 278: 265: 210: 197: 177: 158: 153: 152: 147:residue classes 115: 96: 67: 48: 40: 39: 31:(also called a 29:covering system 21: 12: 11: 5: 2026: 2024: 2016: 2015: 2005: 2004: 2001: 2000: 1986: 1970: 1969:External links 1967: 1964: 1963: 1934:(2): 182–187. 1918: 1889:(1): 361–382. 1872: 1853: 1832:(3): 640–666. 1810: 1768: 1753: 1722: 1684: 1683: 1681: 1678: 1677: 1676: 1671: 1666: 1659: 1656: 1643: 1640: 1634: 1631: 1628: 1598: 1594: 1562: 1559: 1549: 1540: 1539: 1525: 1518: 1484: 1481: 1452: 1449: 1448: 1447: 1436: 1433: 1429: 1426: 1422: 1419: 1413: 1410: 1407: 1400: 1397: 1391: 1387: 1384: 1380: 1377: 1372: 1366: 1362: 1359: 1355: 1352: 1347: 1344: 1321: 1310: 1309: 1298: 1295: 1291: 1288: 1284: 1281: 1276: 1270: 1266: 1263: 1259: 1256: 1251: 1248: 1223: 1222: 1211: 1207: 1204: 1200: 1197: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1156: 1152: 1149: 1145: 1142: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1107: 1097: 1086: 1082: 1079: 1075: 1072: 1067: 1064: 1061: 1058: 1055: 1052: 1049: 1043: 1039: 1036: 1032: 1029: 1024: 1018: 1014: 1011: 1007: 1004: 999: 993: 989: 986: 982: 979: 974: 971: 948: 928: 925: 922: 919: 916: 913: 910: 890: 870: 858:times, and an 847: 827: 816: 815: 804: 800: 795: 791: 786: 783: 776: 772: 765: 762: 756: 752: 747: 743: 738: 735: 728: 724: 720: 675: 671: 640: 639: 628: 625: 621: 618: 614: 611: 606: 600: 596: 593: 589: 586: 581: 575: 571: 568: 564: 561: 556: 550: 546: 543: 539: 536: 531: 525: 521: 518: 514: 511: 506: 503: 493: 482: 479: 475: 472: 468: 465: 460: 454: 450: 447: 443: 440: 435: 429: 425: 422: 418: 415: 410: 404: 400: 397: 393: 390: 385: 382: 372: 361: 358: 354: 351: 347: 344: 339: 333: 329: 326: 322: 319: 314: 308: 304: 301: 297: 294: 289: 286: 264: 261: 257: 256: 245: 242: 238: 234: 231: 225: 222: 217: 213: 209: 204: 200: 196: 193: 189: 184: 180: 175: 172: 165: 161: 143: 142: 131: 127: 122: 118: 113: 110: 103: 99: 92: 89: 83: 79: 74: 70: 65: 62: 55: 51: 47: 13: 10: 9: 6: 4: 3: 2: 2025: 2014: 2011: 2010: 2008: 1999: 1995: 1991: 1988:Zhi-Wei Sun: 1987: 1984: 1980: 1976: 1973: 1972: 1968: 1959: 1955: 1951: 1947: 1942: 1937: 1933: 1929: 1922: 1919: 1914: 1910: 1906: 1902: 1897: 1892: 1888: 1885: 1884: 1883:Ann. of Math. 1876: 1873: 1868: 1864: 1857: 1854: 1849: 1845: 1840: 1835: 1831: 1827: 1826: 1821: 1814: 1811: 1806: 1802: 1797: 1792: 1788: 1785: 1784: 1779: 1772: 1769: 1764: 1760: 1756: 1750: 1746: 1742: 1738: 1737: 1732: 1726: 1723: 1718: 1714: 1709: 1704: 1700: 1696: 1689: 1686: 1679: 1675: 1672: 1670: 1667: 1665: 1662: 1661: 1657: 1655: 1653: 1646: 1629: 1627: 1625: 1621: 1616: 1614: 1596: 1592: 1583: 1579: 1575: 1571: 1567: 1560: 1558: 1556: 1552: 1545: 1537: 1532: 1524: 1517: 1514: 1513: 1512: 1510: 1506: 1502: 1498: 1494: 1490: 1482: 1480: 1478: 1474: 1470: 1466: 1462: 1458: 1450: 1434: 1424: 1420: 1411: 1408: 1405: 1398: 1395: 1389: 1382: 1378: 1370: 1364: 1357: 1353: 1345: 1335: 1334: 1333: 1319: 1296: 1286: 1282: 1274: 1268: 1261: 1257: 1249: 1239: 1238: 1237: 1235: 1231: 1226: 1202: 1198: 1190: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1154: 1147: 1143: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1098: 1084: 1077: 1073: 1065: 1062: 1059: 1056: 1053: 1050: 1047: 1041: 1034: 1030: 1022: 1016: 1009: 1005: 997: 991: 984: 980: 972: 962: 961: 960: 946: 926: 923: 920: 917: 914: 911: 908: 888: 868: 861: 845: 825: 793: 789: 784: 774: 770: 763: 760: 754: 745: 741: 736: 726: 722: 711: 710: 709: 706: 703: 700: 698: 694: 689: 673: 669: 660: 656: 651: 649: 645: 626: 616: 612: 604: 598: 591: 587: 579: 573: 566: 562: 554: 548: 541: 537: 529: 523: 516: 512: 504: 494: 480: 470: 466: 458: 452: 445: 441: 433: 427: 420: 416: 408: 402: 395: 391: 383: 373: 359: 349: 345: 337: 331: 324: 320: 312: 306: 299: 295: 287: 277: 276: 275: 272: 270: 262: 260: 243: 232: 229: 223: 220: 215: 211: 207: 202: 198: 191: 182: 178: 173: 163: 159: 151: 150: 149: 148: 120: 116: 111: 101: 97: 90: 87: 81: 72: 68: 63: 53: 49: 38: 37: 36: 34: 30: 26: 19: 1981:(a survey) ( 1941:math/0412217 1931: 1927: 1921: 1886: 1881: 1875: 1866: 1856: 1829: 1823: 1813: 1786: 1781: 1771: 1735: 1725: 1698: 1695:Duke Math. J 1694: 1688: 1669:Covering set 1649: 1623: 1617: 1612: 1581: 1577: 1573: 1569: 1564: 1554: 1547: 1543: 1541: 1522: 1515: 1509:Herbert Wilf 1486: 1477:Richard Rado 1454: 1311: 1234:even numbers 1229: 1227: 1224: 859: 817: 707: 704: 701: 696: 692: 690: 658: 654: 652: 647: 643: 641: 273: 266: 258: 144: 32: 28: 22: 1975:Zhi-Wei Sun 1783:Math. Comp. 1465:Leon Mirsky 1230:exact cover 693:irredundant 659:incongruent 25:mathematics 1708:1703.02133 1680:References 1566:Paul ErdĹ‘s 1461:Paul ErdĹ‘s 269:Paul ErdĹ‘s 1896:1307.0874 1652:Selfridge 1409:− 1396:… 927:… 761:… 233:∈ 88:… 2007:Category 1994:Archived 1733:(2009). 1658:See also 655:distinct 644:disjoint 1958:2152886 1913:3272928 1848:2488595 1805:0297692 1763:2458293 1534:in the 1531:A083216 1495:as the 697:minimal 1992:(PDF) 1956:  1911:  1846:  1803:  1761:  1751:  1613:N = 42 1553:where 1402:  1393:  1368:  1272:  1158:  1045:  1020:  995:  767:  758:  602:  577:  552:  527:  456:  431:  406:  335:  310:  227:  94:  85:  1936:arXiv 1891:arXiv 1703:arXiv 1236:, or 860:exact 648:exact 1749:ISBN 1536:OEIS 1475:and 1467:and 695:(or 657:(or 646:(or 27:, a 1983:PDF 1946:doi 1901:doi 1887:181 1834:doi 1830:129 1791:doi 1741:doi 1713:doi 1699:168 1421:mod 1379:mod 1354:mod 1283:mod 1258:mod 1199:mod 1144:mod 1074:mod 1031:mod 1006:mod 981:mod 785:mod 737:mod 613:mod 588:mod 563:mod 538:mod 513:mod 467:mod 442:mod 417:mod 392:mod 346:mod 321:mod 296:mod 174:mod 112:mod 64:mod 23:In 2009:: 1977:: 1954:MR 1952:. 1944:. 1932:35 1930:. 1909:MR 1907:. 1899:. 1865:. 1844:MR 1842:. 1828:. 1822:. 1801:MR 1799:. 1787:25 1780:. 1759:MR 1757:. 1747:. 1711:. 1697:. 1615:. 1597:50 1593:10 1538:). 1479:. 1203:30 1191:29 1185:23 1179:22 1173:12 1167:11 1148:15 1136:13 1130:10 1078:10 617:12 1985:) 1960:. 1948:: 1938:: 1915:. 1903:: 1893:: 1869:. 1850:. 1836:: 1807:. 1793:: 1765:. 1743:: 1719:. 1715:: 1705:: 1638:: 1624:N 1582:N 1578:N 1574:N 1570:N 1555:i 1550:i 1548:a 1544:p 1526:2 1523:a 1519:1 1516:a 1435:. 1432:} 1428:) 1425:m 1418:( 1412:1 1406:m 1399:, 1390:, 1386:) 1383:m 1376:( 1371:1 1365:, 1361:) 1358:m 1351:( 1346:0 1343:{ 1320:m 1297:. 1294:} 1290:) 1287:2 1280:( 1275:1 1269:, 1265:) 1262:2 1255:( 1250:0 1247:{ 1210:} 1206:) 1196:( 1188:, 1182:, 1176:, 1170:, 1164:, 1161:5 1155:; 1151:) 1141:( 1133:, 1127:, 1124:7 1121:, 1118:4 1115:, 1112:2 1109:, 1106:1 1085:; 1081:) 1071:( 1066:8 1063:, 1060:6 1057:, 1054:4 1051:, 1048:0 1042:; 1038:) 1035:6 1028:( 1023:2 1017:; 1013:) 1010:3 1003:( 998:0 992:; 988:) 985:2 978:( 973:1 970:{ 947:m 924:, 921:3 918:, 915:2 912:= 909:m 889:m 869:m 846:m 826:m 803:} 799:) 794:k 790:n 782:( 775:k 771:a 764:, 755:, 751:) 746:1 742:n 734:( 727:1 723:a 719:{ 674:i 670:n 627:. 624:} 620:) 610:( 605:7 599:, 595:) 592:6 585:( 580:5 574:, 570:) 567:4 560:( 555:1 549:, 545:) 542:3 535:( 530:0 524:, 520:) 517:2 510:( 505:0 502:{ 481:, 478:} 474:) 471:8 464:( 459:0 453:, 449:) 446:8 439:( 434:4 428:, 424:) 421:4 414:( 409:2 403:, 399:) 396:2 389:( 384:1 381:{ 360:, 357:} 353:) 350:3 343:( 338:2 332:, 328:) 325:3 318:( 313:1 307:, 303:) 300:3 293:( 288:0 285:{ 244:, 241:} 237:Z 230:x 224:: 221:x 216:i 212:n 208:+ 203:i 199:a 195:{ 192:= 188:) 183:i 179:n 171:( 164:i 160:a 130:} 126:) 121:k 117:n 109:( 102:k 98:a 91:, 82:, 78:) 73:1 69:n 61:( 54:1 50:a 46:{ 20:.

Index

Complete residue system modulo m
mathematics
residue classes
Paul Erdős
even numbers
Herzog–Schönheim conjecture
Paul Erdős
Leon Mirsky
Donald J. Newman
Harold Davenport
Richard Rado
primefree sequences
recurrence relation
Fibonacci numbers
relatively prime
composite numbers
Herbert Wilf
A083216
OEIS
Paul Erdős
Lovász local lemma
(more unsolved problems in mathematics)
Selfridge
Chinese remainder theorem
Covering set
Residue number system
arXiv
1703.02133
doi
10.1215/00127094-2019-0058

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑