Knowledge (XXG)

Cre recombinase

Source 📝

565:. This is done through the fusion of a mutated ligand binding domain of the estrogen receptor to the Cre recombinase, resulting in Cre becoming specifically activated by tamoxifen. In the absence of tamoxifen, CreER will result in the shuttling of the mutated recombinase into the cytoplasm. The protein will stay in this location in its inactivated state until tamoxifen is given. Once tamoxifen is introduced, it is metabolized into 4-hydroxytamoxifen, which then binds to the ER and results in the translocation of the CreER into the nucleus, where it is then able to cleave the lox sites. Importantly, sometimes fluorescent reporters can be activated in the absence of tamoxifen, due to leakage of a few Cre recombinase molecules into the nucleus which, in combination with very sensitive reporters, results in unintended cell labelling. CreER(T2) was developed to minimize tamoxifen-independent recombination and maximize tamoxifen-sensitivity. 335: 343: 430: 35: 215:". In this case the products of Cre mediated recombination depends upon the orientation of the loxP sites. DNA found between two loxP sites oriented in the same direction will be excised as a circular loop of DNA whilst intervening DNA between two loxP sites that are opposingly orientated will be inverted. The enzyme requires no additional 417:
of other enzymes of the same family such as λ Integrase and HP1 Integrase. This domain is predominantly helical in structure with 9 distinct helices (F−N). The terminal helix (N) protrudes from the main body of the carboxy domain and this helix is reputed to play a role in mediating interactions with
521:
occupies this site in other tyrosine recombinase family members and performs the same function). This reaction cleaves the DNA and frees a 5’ hydroxyl group. This process occurs in the active site of two out of the four recombinase subunits present at the synapse tetramer. If the 5’ hydroxyl groups
469:
315. Unlike some recombinase enzymes such as Flp recombinase, Cre does not form a shared active site between separate subunits and all the residues that contribute to the active site are found on a single subunit. Consequently, when two Cre molecules bind at a single loxP site two active sites are
404:
segments linked by a series of short loops. Helices A & E are involved in the formation of the recombinase tetramer with the C terminus region of helix E known to form contacts with the C terminal domain of adjacent subunits. Helices B & D form direct contacts with the major groove of the
249:
studies. The enzyme's ability to operate efficiently in a wide range of cellular environments (including mammals, plants, bacteria, and yeast) enables the Cre-Lox recombination system to be used in a vast number of organisms, making it a particularly useful tool in scientific research.
210:
at loxP sites are dependent upon the location and relative orientation of the loxP sites. Two separate DNA species both containing loxP sites can undergo fusion as the result of Cre mediated recombination. DNA sequences found between two loxP sites are said to be
322:
or accessory proteins are required for the recombinase activity of the purified protein. Early studies also demonstrated that Cre binds to non specific DNA sequences whilst having a 20 fold higher affinity for loxP sequences and results of early
547:. Upon infection of a cell the Cre-loxP system is used to cause circularization of the P1 DNA. In addition to this Cre is also used to resolve dimeric lysogenic P1 DNA that forms during the cell division of the phage. 470:
present. Cre mediated recombination requires the formation of a synapse in which two Cre-LoxP complexes associate to form what is known as the synapse tetramer in which 4 distinct active sites are present.
278:. A 6.5kb EcoRI fragment (Fragment 7) was found to permit efficient recombination events. The mechanism of these recombination events was known to be unique as they occurred in the absence of bacterial 433:
This cartoon model of Cre recombinase bound to its substrate (DNA) shows the amino acids involved in the active site in red and labelled. This image is generated following cleavage of the DNA.
1116:
Shimshek DR, Kim J, Hübner MR, Spergel DJ, Buchholz F, Casanova E, Stewart AF, Seeburg PH, Sprengel R (Jan 2002). "Codon-improved Cre recombinase (iCre) expression in the mouse".
290:
studies. These studies showed that a P1 gene product and a recombination site were both required for efficient recombination events to occur. The P1 gene product was named
771:"Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation" 82: 346:
Cartoon model of Cre recombinase bound to its substrate (DNA). The amino terminal domain is shown in blue whilst the carboxyl domain is green. (A head on view)
418:
other subunits. Crystal structures demonstrate that this terminal N helix buries its hydrophobic surface into an acceptor pocket of an adjacent Cre subunit.
338:
Cartoon model of Cre recombinase bound to its substrate (DNA). The amino terminal domain is shown in blue whilst the carboxyl domain is green. (A side view)
129: 226:
The enzyme plays important roles in the life cycle of the P1 bacteriophage, such as cyclization of the linear genome and resolution of dimeric
241:. The enzyme's unique and specific recombination system is exploited to manipulate genes and chromosomes in a huge range of research, such as 859:
Guo F, Gopaul DN, van Duyne GD (Sep 1997). "Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse".
656: 639: 976: 75: 821:
Sternberg N, Hamilton D (Aug 1981). "Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites".
1238: 561:
Inducible Cre activation is achieved using CreER (estrogen receptor) variant, which is only activated after delivery of
482:
phosphate (phosphate targeted for nucleophilic attack at the cleavage site) is coordinated by the side chains of the 3
195: 187: 318:
1). The Cre protein was purified in 1983 and was found to be a 35,000 Da protein. No high energy cofactors such as
1222: 111: 54: 421:
The effect of the two-domain structure is to form a C-shaped clamp that grasps the DNA from opposite sides.
216: 688:"Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein" 319: 220: 413:
of the enzyme. The overall structure of this domain shares a great deal of structural resemblance to the
405:
loxP DNA. These two helices are thought to make three direct contacts to DNA bases at the loxP site. The
611: 606: 556: 207: 203: 199: 20: 1172: 868: 183: 1141: 1067:Álvarez-Aznar A, Martínez-Corral I, Daubel N, Betsholtz C, Mäkinen T, Gaengel K (February 2020). 1049: 892: 1198: 1133: 1098: 1041: 992: 972: 933: 884: 838: 800: 751: 709: 661: 523: 271: 238: 1243: 1188: 1180: 1125: 1088: 1080: 1031: 1023: 982: 964: 923: 876: 830: 790: 782: 743: 699: 651: 324: 1218: 258:
Studies carried out in 1981 by Sternberg and Hamilton demonstrated that the bacteriophage '
34: 573:
In recent years, Cre recombinase has been improved with conversion to preferred mammalian
522:
attack the 3’-phosphotyrosine linkage one pair of the DNA strands will exchange to form a
487: 442: 334: 231: 149: 116: 1176: 872: 342: 1193: 1160: 1093: 1068: 1036: 1011: 987: 952: 616: 590: 968: 795: 770: 704: 687: 1232: 834: 514: 479: 328: 286:
proteins. The components of this recombination system were elucidated using deletion
242: 1145: 747: 1053: 896: 578: 540: 429: 275: 246: 87: 734:
Van Duyne GD (2001). "A structural view of cre-loxp site-specific recombination".
475: 458: 438: 414: 410: 401: 393: 287: 227: 159: 1084: 1027: 582: 510: 499: 483: 466: 406: 397: 123: 94: 562: 518: 495: 450: 191: 1202: 1137: 1102: 1045: 996: 928: 911: 804: 755: 665: 937: 888: 842: 713: 1010:
Kristianto J, Johnson MG, Zastrow RK, Radcliff AB, Blank RD (June 2017).
786: 586: 544: 506: 491: 471: 462: 454: 446: 409:
domain of the enzyme consists of amino acids 132–341 and it harbours the
259: 179: 99: 657:
10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B
597:. A number of mutants with enhanced accuracy have also been identified. 478:
to form a covalent 3’-phosphotyrosine linkage to the DNA substrate. The
39:
Structure of a Cre recombinase enzyme (dimer) bound to its substrate DNA
1184: 1129: 594: 212: 202:). This 34 base pair (bp) loxP recognition site consists of two 13 bp 574: 503: 283: 267: 175: 70: 194:
family of site specific recombinase and it is known to catalyse the
880: 263: 769:
Ennifar E, Meyer JE, Buchholz F, Stewart AF, Suck D (Sep 2003).
279: 400:
domain encompasses residues 20–129 and this domain contains 5
640:"Cre recombinase: the universal reagent for genome tailoring" 327:
studies also suggested that Cre molecules bind loxP sites as
953:"Genetically engineered mouse models in cancer research" 306:
combination) and the recombination site was named loxP (
1012:"Spontaneous recombinase activity of Cre-ERT2 in vivo" 736:
Annual Review of Biophysics and Biomolecular Structure
237:
Cre recombinase is a widely used tool in the field of
951:
Walrath JC, Hawes JJ, Van Dyke T, Reilly KM (2010).
681: 679: 677: 675: 1161:"Mutants of Cre recombinase with improved accuracy" 912:"The Cre recombinase cleaves the lox site in trans" 262:' had a unique site specific recombination system. 155: 145: 140: 122: 110: 105: 93: 81: 69: 61: 49: 44: 27: 206:which flank an 8bp spacer region. The products of 190:events. The enzyme (38 kDa) is a member of the 539:Cre recombinase plays important roles in the 8: 816: 814: 441:of the Cre enzyme consists of the conserved 223:) or accessory proteins for its function. 137: 33: 1221:at the U.S. National Library of Medicine 1192: 1092: 1035: 986: 927: 794: 703: 655: 198:event between two DNA recognition sites ( 428: 349: 341: 333: 729: 727: 725: 723: 630: 24: 854: 852: 7: 396:that form two distinct domains. The 353:Tyrosine recombinase family members 1159:Eroshenko N, Church GM (Sep 2013). 916:The Journal of Biological Chemistry 910:Shaikh AC, Sadowski PD (Feb 1997). 692:The Journal of Biological Chemistry 517:to this scissile phosphate. (n.b A 577:, the removal of reported cryptic 266:fragments of the P1 bacteriophage 14: 589:to reduce the risk of epigenetic 686:Abremski K, Hoess R (Feb 1984). 392:Cre recombinase consists of 343 748:10.1146/annurev.biophys.30.1.87 1: 969:10.1016/S0065-230X(10)06004-5 705:10.1016/S0021-9258(17)43437-5 457:292 as well as the conserved 186:-like mechanism to carry out 835:10.1016/0022-2836(81)90375-2 823:Journal of Molecular Biology 16:Genetic recombination enzyme 957:Advances in Cancer Research 371:Bacterial XerD recombinase 366:Bacterial XerC recombinase 196:site specific recombination 188:site specific recombination 1260: 1085:10.1007/s11248-019-00177-8 554: 208:Cre-mediated recombination 174:is a tyrosine recombinase 18: 1028:10.1007/s11248-017-0018-1 136: 32: 1223:Medical Subject Headings 535:Role in bacteriophage P1 55:Enterobacteria phage P1 929:10.1074/jbc.272.9.5695 775:Nucleic Acids Research 434: 381:HP1 integrase protein 347: 339: 1165:Nature Communications 612:FLP-FRT recombination 607:Cre-Lox recombination 557:Cre-Lox recombination 432: 345: 337: 204:palindromic sequences 21:Cre-Lox recombination 376:λ integrase protein 182:. The enzyme uses a 1239:Genetics techniques 1177:2013NatCo...4.2509E 1073:Transgenic Research 1016:Transgenic Research 873:1997Natur.389...40G 638:Nagy A (Feb 2000). 270:were generated and 1185:10.1038/ncomms3509 1130:10.1002/gene.10023 787:10.1093/nar/gkg732 435: 348: 340: 781:(18): 5449–5460. 524:Holliday junction 513:315 also forms a 385: 384: 310:cus of crossing ( 239:molecular biology 178:derived from the 169: 168: 165: 164: 1251: 1207: 1206: 1196: 1156: 1150: 1149: 1113: 1107: 1106: 1096: 1064: 1058: 1057: 1039: 1007: 1001: 1000: 990: 948: 942: 941: 931: 922:(9): 5695–5702. 907: 901: 900: 856: 847: 846: 818: 809: 808: 798: 766: 760: 759: 731: 718: 717: 707: 698:(3): 1509–1514. 683: 670: 669: 659: 635: 621: 545:P1 bacteriophage 486:residues of the 415:catalytic domain 407:carboxy terminal 361:Flp recombinase 350: 325:DNA footprinting 230:that form after 180:P1 bacteriophage 138: 130:genome: 0 - 0 Mb 57: 37: 25: 1259: 1258: 1254: 1253: 1252: 1250: 1249: 1248: 1229: 1228: 1219:Cre recombinase 1215: 1210: 1158: 1157: 1153: 1115: 1114: 1110: 1066: 1065: 1061: 1009: 1008: 1004: 979: 950: 949: 945: 909: 908: 904: 867:(6646): 40–46. 858: 857: 850: 820: 819: 812: 768: 767: 763: 733: 732: 721: 685: 684: 673: 637: 636: 632: 628: 619: 617:Cre/loxP-System 603: 571: 559: 553: 551:Use in research 537: 532: 488:catalytic triad 443:catalytic triad 427: 390: 256: 232:DNA replication 184:topoisomerase I 172:Cre recombinase 53: 40: 28:Cre recombinase 23: 17: 12: 11: 5: 1257: 1255: 1247: 1246: 1241: 1231: 1230: 1227: 1226: 1214: 1213:External links 1211: 1209: 1208: 1151: 1108: 1059: 1022:(3): 411–417. 1002: 977: 943: 902: 848: 829:(4): 467–486. 810: 761: 719: 671: 629: 627: 624: 623: 622: 614: 609: 602: 599: 585:, and reduced 570: 567: 555:Main article: 552: 549: 536: 533: 531: 528: 526:intermediate. 474:324 acts as a 426: 423: 398:amino terminal 389: 386: 383: 382: 378: 377: 373: 372: 368: 367: 363: 362: 355: 354: 276:lambda vectors 255: 252: 243:gene knock out 167: 166: 163: 162: 157: 153: 152: 147: 143: 142: 134: 133: 126: 120: 119: 114: 108: 107: 103: 102: 97: 91: 90: 85: 79: 78: 73: 67: 66: 63: 59: 58: 51: 47: 46: 42: 41: 38: 30: 29: 15: 13: 10: 9: 6: 4: 3: 2: 1256: 1245: 1242: 1240: 1237: 1236: 1234: 1224: 1220: 1217: 1216: 1212: 1204: 1200: 1195: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1155: 1152: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1112: 1109: 1104: 1100: 1095: 1090: 1086: 1082: 1078: 1074: 1070: 1063: 1060: 1055: 1051: 1047: 1043: 1038: 1033: 1029: 1025: 1021: 1017: 1013: 1006: 1003: 998: 994: 989: 984: 980: 978:9780123747716 974: 970: 966: 962: 958: 954: 947: 944: 939: 935: 930: 925: 921: 917: 913: 906: 903: 898: 894: 890: 886: 882: 881:10.1038/37925 878: 874: 870: 866: 862: 855: 853: 849: 844: 840: 836: 832: 828: 824: 817: 815: 811: 806: 802: 797: 792: 788: 784: 780: 776: 772: 765: 762: 757: 753: 749: 745: 741: 737: 730: 728: 726: 724: 720: 715: 711: 706: 701: 697: 693: 689: 682: 680: 678: 676: 672: 667: 663: 658: 653: 650:(2): 99–109. 649: 645: 641: 634: 631: 625: 618: 615: 613: 610: 608: 605: 604: 600: 598: 596: 592: 588: 584: 581:, an altered 580: 576: 568: 566: 564: 558: 550: 548: 546: 542: 534: 529: 527: 525: 520: 516: 515:hydrogen bond 512: 508: 505: 501: 497: 493: 489: 485: 481: 477: 473: 468: 464: 460: 456: 452: 448: 444: 440: 431: 424: 422: 419: 416: 412: 408: 403: 402:alpha helical 399: 395: 387: 380: 379: 375: 374: 370: 369: 365: 364: 360: 357: 356: 352: 351: 344: 336: 332: 330: 326: 321: 317: 313: 309: 305: 304: 299: 298: 293: 289: 285: 281: 277: 273: 269: 265: 261: 253: 251: 248: 244: 240: 235: 233: 229: 224: 222: 218: 214: 209: 205: 201: 197: 193: 189: 185: 181: 177: 173: 161: 158: 154: 151: 148: 144: 139: 135: 132: 131: 127: 125: 121: 118: 115: 113: 109: 104: 101: 98: 96: 92: 89: 86: 84: 83:RefSeq (Prot) 80: 77: 74: 72: 68: 64: 60: 56: 52: 48: 43: 36: 31: 26: 22: 1168: 1164: 1154: 1124:(1): 19–26. 1121: 1117: 1111: 1079:(1): 53–68. 1076: 1072: 1062: 1019: 1015: 1005: 960: 956: 946: 919: 915: 905: 864: 860: 826: 822: 778: 774: 764: 739: 735: 695: 691: 647: 643: 633: 579:splice sites 572: 569:Improvements 560: 538: 530:Applications 459:nucleophilic 436: 420: 391: 359:S.cerevisiae 358: 315: 311: 307: 302: 301: 296: 295: 291: 257: 236: 225: 171: 170: 128: 620:(in German) 587:CpG content 476:nucleophile 439:active site 425:Active site 411:active site 394:amino acids 300:yclization 288:mutagenesis 228:chromosomes 150:Swiss-model 88:YP_006472.1 45:Identifiers 1233:Categories 1069:"T2 lines" 963:: 113–64. 742:: 87–104. 626:References 583:stop codon 541:life cycle 511:tryptophan 502:315). The 498:289 & 484:amino acid 200:LoxP sites 146:Structures 141:Search for 124:Chromosome 106:Other data 19:See also: 591:silencing 563:tamoxifen 519:Histidine 461:residues 445:residues 388:Structure 254:Discovery 219:(such as 217:cofactors 192:integrase 112:EC number 1203:24056590 1171:: 2509. 1146:46000513 1138:11835670 1103:31641921 1046:28409408 997:20399958 805:12954782 756:11340053 666:10686599 601:See also 507:nitrogen 480:scissile 465:324 and 314:) over, 247:knock in 160:InterPro 50:Organism 1244:Enzymes 1194:3972015 1173:Bibcode 1118:Genesis 1094:7000517 1054:4377498 1037:9474299 988:3533445 938:9038180 897:4401434 889:9288963 869:Bibcode 843:6276557 714:6319400 644:Genesis 595:mammals 543:of the 156:Domains 117:2.7.7.- 95:UniProt 76:2777477 1225:(MeSH) 1201:  1191:  1144:  1136:  1101:  1091:  1052:  1044:  1034:  995:  985:  975:  936:  895:  887:  861:Nature 841:  803:  796:203317 793:  754:  712:  664:  575:codons 504:indole 329:dimers 284:RecBCD 272:cloned 268:genome 213:floxed 176:enzyme 100:P06956 71:Entrez 62:Symbol 1142:S2CID 1050:S2CID 893:S2CID 494:173, 453:289, 449:173, 274:into 264:EcoRI 1199:PMID 1134:PMID 1099:PMID 1042:PMID 993:PMID 973:ISBN 934:PMID 885:PMID 839:PMID 801:PMID 752:PMID 710:PMID 662:PMID 437:The 282:and 280:RecA 1189:PMC 1181:doi 1126:doi 1089:PMC 1081:doi 1032:PMC 1024:doi 983:PMC 965:doi 961:106 924:doi 920:272 877:doi 865:389 831:doi 827:150 791:PMC 783:doi 744:doi 700:doi 696:259 652:doi 593:in 509:of 500:Trp 496:His 492:Arg 472:Tyr 467:Trp 463:Tyr 455:Arg 451:His 447:Arg 320:ATP 292:Cre 245:or 221:ATP 65:cre 1235:: 1197:. 1187:. 1179:. 1167:. 1163:. 1140:. 1132:. 1122:32 1120:. 1097:. 1087:. 1077:29 1075:. 1071:. 1048:. 1040:. 1030:. 1020:26 1018:. 1014:. 991:. 981:. 971:. 959:. 955:. 932:. 918:. 914:. 891:. 883:. 875:. 863:. 851:^ 837:. 825:. 813:^ 799:. 789:. 779:31 777:. 773:. 750:. 740:30 738:. 722:^ 708:. 694:. 690:. 674:^ 660:. 648:26 646:. 642:. 331:. 308:lo 303:re 260:P1 234:. 1205:. 1183:: 1175:: 1169:4 1148:. 1128:: 1105:. 1083:: 1056:. 1026:: 999:. 967:: 940:. 926:: 899:. 879:: 871:: 845:. 833:: 807:. 785:: 758:. 746:: 716:. 702:: 668:. 654:: 490:( 316:P 312:x 297:c 294:( 211:"

Index

Cre-Lox recombination

Enterobacteria phage P1
Entrez
2777477
RefSeq (Prot)
YP_006472.1
UniProt
P06956
EC number
2.7.7.-
Chromosome
genome: 0 - 0 Mb
Swiss-model
InterPro
enzyme
P1 bacteriophage
topoisomerase I
site specific recombination
integrase
site specific recombination
LoxP sites
palindromic sequences
Cre-mediated recombination
floxed
cofactors
ATP
chromosomes
DNA replication
molecular biology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.