Knowledge

Darcy–Weisbach equation

Source 📝

2034: 1678: 2557: 4860:. Doubling the diameter of a pipe of a given schedule (say, ANSI schedule 40) roughly doubles the amount of material required per unit length and thus its installed cost. Meanwhile, the head loss is decreased by a factor of 32 (about a 97% reduction). Thus the energy consumed in moving a given volumetric flow of the fluid is cut down dramatically for a modest increase in capital cost. 4255: 3820:
is consistent with the measurements on commercial pipes. Indeed, such pipes are very different from those carefully prepared by Nikuradse: their surfaces are characterized by many different roughness heights and random spatial distribution of roughness points, while those of Nikuradse have surfaces with uniform roughness height, with the points extremely closely packed.
3645: 3459: 2412: 3256: 3094: 5107: 3796: 4454: 4117: 4816:
are parallel to the length of the pipe, the velocity of the fluid on the inner surface of the pipe is zero due to viscosity, and the velocity in the center of the pipe must therefore be larger than the average velocity obtained by dividing the volumetric flow rate by the wet area. The average kinetic
3819:
is small, it is consistent with smooth pipe flow, when large, it is consistent with rough pipe flow. However its performance in the transitional domain overestimates the friction factor by a substantial margin. Colebrook acknowledges the discrepancy with Nikuradze's data but argues that his relation
2448:
is significant (typically at high Reynolds number), the friction factor departs from the smooth pipe curve, ultimately approaching an asymptotic value ("rough pipe" regime). In this regime, the resistance to flow varies according to the square of the mean flow velocity and is insensitive to Reynolds
5425: 435:
and the flow regime (laminar, transitional, or turbulent), tended to obscure its dependence on the quantities in Weisbach's formula, leading many researchers to derive irrational and dimensionally inconsistent empirical formulas. It was understood not long after Weisbach's work that the friction
2715: 3469: 3283: 2004:
In effect, the friction loss in the laminar regime is more accurately characterized as being proportional to flow velocity, rather than proportional to the square of that velocity: one could regard the Darcy–Weisbach equation as not truly applicable in the laminar flow regime.
562: 2008:
In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height
2540: 2190: 4784: 2255: 4097: 3105: 2943: 1937: 1779:
as measured by experimenters for many different fluids, over a wide range of Reynolds numbers, and for pipes of various roughness heights. There are three broad regimes of fluid flow encountered in these data: laminar, critical, and turbulent.
4990: 4825:, the fluid acquires random velocity components in all directions, including perpendicular to the length of the pipe, and thus turbulence contributes to the kinetic energy per unit volume but not to the average lengthwise velocity of the fluid. 2098:
When the pipe surface is smooth (the "smooth pipe" curve in Figure 2), the friction factor's variation with Re can be modeled by the Kármán–Prandtl resistance equation for turbulent flow in smooth pipes with the parameters suitably adjusted
3669: 4327: 1276: 4250:{\displaystyle {\begin{aligned}R_{*}&={\frac {\varepsilon }{D}}\cdot \mathrm {Re} {\sqrt {f_{\mathrm {D} }}}\cdot {\frac {1}{\sqrt {8}}}\\&={\frac {1}{2}}{\frac {\sqrt {g}}{\nu }}\varepsilon {\sqrt {S}}{\sqrt {D}}\end{aligned}}} 117:(1718-1798), in fact, had published a formula in 1770 that, although referring to open channels (i.e., not under pressure), was formally identical to the one Weisbach would later introduce, provided it was reformulated in terms of the 1563: 909: 4585:
The procedure above is similar for any available Reynolds number that is an integer power of ten. It is not necessary to remember the value 1000 for this procedure—only that an integer power of ten is of interest for this purpose.
1177: 5320: 3991: 2070:
For Reynolds number greater than 4000, the flow is turbulent; the resistance to flow follows the Darcy–Weisbach equation: it is proportional to the square of the mean flow velocity. Over a domain of many orders of magnitude of
4558:
If the value of the friction factor is 0.016, then the Fanning friction factor is plotted in the Moody diagram. Note that the nonzero digits in 0.016 are the numerator in the formula for the laminar Fanning friction factor:
109:
would provide the head losses but in terms of quantities not known a priori, such as pressure. Therefore, empirical relationships were sought to correlate the head loss with quantities like pipe diameter and fluid velocity.
4529:
If the value of the friction factor is 0.064, then the Darcy friction factor is plotted in the Moody diagram. Note that the nonzero digits in 0.064 are the numerator in the formula for the laminar Darcy friction factor:
1652: 4619:
with velocity was lacking, so the Darcy–Weisbach equation was outperformed at first by the empirical Prony equation in many cases. In later years it was eschewed in many special-case situations in favor of a variety of
427:, which had a polynomial form in terms of velocity (often approximated by the square of the velocity), continued to be used. Beyond the historical developments, Weisbach's formula had the objective merit of adhering to 2609: 2025:, the flow is unsteady (varies grossly with time) and varies from one section of the pipe to another (is not "fully developed"). The flow involves the incipient formation of vortices; it is not well understood. 5679: 3640:{\displaystyle {\frac {1}{\sqrt {f_{\mathrm {D} }}}}=-1.93\,\log _{10}\left({\frac {1.91}{\mathrm {Re} {\sqrt {f_{\mathrm {D} }}}}}\left\{1+0.34R_{*}\;\left(1-\exp {\frac {-R_{*}}{26}}\right)\right\}\right),} 3454:{\displaystyle {\frac {1}{\sqrt {f_{\mathrm {D} }}}}=-2.0\,\log _{10}\left({\frac {2.51}{\mathrm {Re} {\sqrt {f_{\mathrm {D} }}}}}\left\{1+0.305R_{*}\;\left(1-\exp {\frac {-R_{*}}{26}}\right)\right\}\right),} 1460: 1847: 469: 370: 191: 4122: 4693:
as the pressure drop per unit length is a constant. To turn the relationship into a proportionality coefficient of dimensionless quantity, we can divide by the hydraulic diameter of the pipe,
2458: 2105: 4644:
Away from the ends of the pipe, the characteristics of the flow are independent of the position along the pipe. The key quantities are then the pressure drop along the pipe per unit length,
2090:). Within the turbulent flow regime, the nature of the flow can be further divided into a regime where the pipe wall is effectively smooth, and one where its roughness height is salient. 2407:{\displaystyle {\frac {1}{\sqrt {f_{\mathrm {D} }}}}={\frac {1.930}{\ln(10)}}W\left(10^{\frac {-0.537}{1.930}}{\frac {\ln(10)}{1.930}}\mathrm {Re} \right)=0.838\ W(0.629\ \mathrm {Re} )} 1340: 4703: 1980: 1062: 5949: 3251:{\displaystyle {\frac {1}{\sqrt {f_{\mathrm {D} }}}}=-1.930\log \left({\frac {1.90}{\mathrm {Re} {\sqrt {f_{\mathrm {D} }}}}}\left(1+0.34R_{*}\exp {\frac {-11}{R_{*}}}\right)\right),} 830:) which itself can be expressed in terms of easily measured or published physical quantities (see section below). Making this substitution the Darcy–Weisbach equation is rewritten as 4017: 3089:{\displaystyle {\frac {1}{\sqrt {f_{\mathrm {D} }}}}=-2\log \left({\frac {2.51}{\mathrm {Re} {\sqrt {f_{\mathrm {D} }}}}}\left(1+0.305R_{*}\exp {\frac {-11}{R_{*}}}\right)\right),} 708: 5102:{\displaystyle {\frac {1}{\sqrt {f_{\mathrm {D} }}}}=-2.00\log \left(2.51{\frac {1}{\mathrm {Re} {\sqrt {f_{\mathrm {D} }}}}}+{\frac {1}{3.7}}{\frac {\varepsilon }{D}}\right)} 1865: 754: 3649:
This function shares the same values for its term in common with the Kármán–Prandtl resistance equation, plus one parameter 0.305 or 0.34 to fit the asymptotic behavior for
3261:
This function shares the same values for its term in common with the Kármán–Prandtl resistance equation, plus one parameter 0.305 or 0.34 to fit the asymptotic behavior for
5936: 2792:
is identically zero: flow is always in the smooth pipe regime. The data for these points lie to the left extreme of the abscissa and are not within the frame of the graph.
4459:
Most charts or tables indicate the type of friction factor, or at least provide the formula for the friction factor with laminar flow. If the formula for laminar flow is
6212: 3791:{\displaystyle {\frac {1}{\sqrt {f_{\mathrm {D} }}}}=-2.00\log \left({\frac {2.51}{\mathrm {Re} {\sqrt {f_{\mathrm {D} }}}}}\left(1+{\frac {R_{*}}{3.3}}\right)\right).} 2033: 5718: 4449:{\displaystyle \Delta p=f_{\mathrm {D} }\cdot {\frac {L}{D}}\cdot {\frac {\rho {\langle v\rangle }^{2}}{2}}=f\cdot {\frac {L}{D}}\cdot {2\rho {\langle v\rangle }^{2}}} 220: 2417:
In this flow regime, many small vortices are responsible for the transfer of momentum between the bulk of the fluid to the pipe wall. As the friction Reynolds number
1677: 393: 413: 1396: 1199: 798: 648: 619: 1475: 836: 316: 290: 264: 242: 5840:
18. Afzal, Noor (2013) "Roughness effects of commercial steel pipe in turbulent flow: Universal scaling". Canadian Journal of Civil Engineering 40, 188-193.
1997:
of the pipe, which, for a cylindrical pipe flowing full, equals the inside diameter. In Figures 1 and 2 of friction factor versus Reynolds number, the regime
5420:{\displaystyle {\frac {1}{\sqrt {f_{\mathrm {D} }}}}=2\log \left(\mathrm {Re} {\sqrt {f_{\mathrm {D} }}}\right)-0.8\quad {\text{for }}\mathrm {Re} >3000.} 4305:, so attention must be paid to note which one of these is meant in any "friction factor" chart or equation being used. Of the two, the Darcy–Weisbach factor 1105: 125:(a former student of his) published an account describing his results. It is likely that Weisbach was aware of Chézy's formula through Prony's publications. 3931: 5919: 4868:
The Darcy-Weisbach's accuracy and universal applicability makes it the ideal formula for flow in pipes. The advantages of the equation are as follows:
2210:(called the "friction Reynolds number") can be considered, like the Reynolds number, to be a (dimensionless) parameter of the flow: at fixed values of 113:
Julius Weisbach was certainly not the first to introduce a formula correlating the length and diameter of a pipe to the square of the fluid velocity.
105:. However, the development of these formulas and charts also involved other scientists and engineers over its historical development. Generally, the 5594:
Colebrook, C. F. (February 1939). "Turbulent flow in pipes, with particular reference to the transition region between smooth and rough pipe laws".
2432:
increases, the profile of the fluid velocity approaches the wall asymptotically, thereby transferring more momentum to the pipe wall, as modeled in
1590: 6217: 4813: 4522:
Which friction factor is plotted in a Moody diagram may be determined by inspection if the publisher did not include the formula described above:
5806: 2710:{\displaystyle B(R_{*})={\frac {1}{1.930{\sqrt {f_{\mathrm {D} }}}}}+\log \left({\frac {1.90}{\sqrt {8}}}\cdot {\frac {\varepsilon }{D}}\right)} 1751:
and may be evaluated by the use of various empirical relations, or it may be read from published charts. These charts are often referred to as
4845:(the concomitant power consumption) to be the critical important factors. The practical consequence is that, for a fixed volumetric flow rate 5946: 5828: 5447: 5142: 6222: 5995: 2595:
approaches a constant value. Phenomenological functions attempting to fit these data, including the Afzal and Colebrook–White are shown.
4808:
Note that the dynamic pressure is not the kinetic energy of the fluid per unit volume, for the following reasons. Even in the case of
6181: 5887: 5859: 5175: 1405: 1802: 4260:
we have the two parameters needed to substitute into the Colebrook–White relation, or any other function, for the friction factor
81:. This is also variously called the Darcy–Weisbach friction factor, friction factor, resistance coefficient, or flow coefficient. 4636:, ease of calculation is no longer a major issue, and so the Darcy–Weisbach equation's generality has made it the preferred one. 4318:
by chemical engineers, but care should be taken to identify the correct factor regardless of the source of the chart or formula.
5933: 54:
along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after
4972:
The data exhibit, however, a systematic departure of up to 50% from the theoretical Hagen–Poiseuille equation in the region of
4685:
Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the
6186: 4902: 4790: 3829: 757: 557:{\displaystyle {\frac {\Delta p}{L}}=f_{\mathrm {D} }\cdot {\frac {\rho }{2}}\cdot {\frac {{\langle v\rangle }^{2}}{D_{H}}},} 4922: 1793: 981: 5258: 2535:{\displaystyle R_{*}={\frac {1}{\sqrt {8}}}\left(\mathrm {Re} {\sqrt {f_{\mathrm {D} }}}\,\right){\frac {\varepsilon }{D}}} 2195:
The numbers 1.930 and 0.537 are phenomenological; these specific values provide a fairly good fit to the data. The product
2185:{\displaystyle {\frac {1}{\sqrt {f_{\mathrm {D} }}}}=1.930\log \left(\mathrm {Re} {\sqrt {f_{\mathrm {D} }}}\right)-0.537.} 2917:
Afzal's fit to these data in the transition from smooth pipe flow to rough pipe flow employs an exponential expression in
1764: 332: 134: 3852: 1015:) expresses the pressure loss due to friction in terms of the equivalent height of a column of the working fluid, so the 6064: 4917: 4625: 3271:
along with one further parameter, 11, to govern the transition from smooth to rough flow. It is exhibited in Figure 3.
985: 62:. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the 6191: 4779:{\displaystyle \Delta p\propto {\frac {L}{D}}q={\frac {L}{D}}\cdot {\frac {\rho }{2}}\cdot {\langle v\rangle }^{2}} 3882:
In typical engineering applications, there will be a set of given or known quantities. The acceleration of gravity
3859:. While the Colebrook–White relation is, in the general case, an iterative method, the Swamee–Jain equation allows 5928: 440:(and thus the velocity) only in the case of rough pipes in a turbulent flow regime (Prandtl-von Kármán equation). 6069: 6059: 1304: 3856: 1952: 1025: 5988: 4676: 4092:{\displaystyle \mathrm {Re} {\sqrt {f_{\mathrm {D} }}}={\frac {1}{\nu }}{\sqrt {2g}}{\sqrt {S}}{\sqrt {D^{3}}}} 416: 6049: 5916: 4897: 6140: 4947: 4797:, the Reynolds number and (outside the laminar regime) the relative roughness of the pipe (the ratio of the 4299: 106: 4793:" or "flow coefficient". This dimensionless coefficient will be a combination of geometric factors such as 6160: 6125: 4907: 4818: 2433: 5776:"Turbulent flow in a machine honed rough pipe for large Reynolds numbers: General roughness scaling laws" 1932:{\displaystyle \mathrm {Re} ={\frac {\rho }{\mu }}\langle v\rangle D={\frac {\langle v\rangle D}{\nu }},} 431:, resulting in a dimensionless friction factor f. The complexity of f, dependent on the mechanics of the 6105: 6084: 6033: 5527: 4834: 2041: 1685: 687: 4798: 730: 5694: 5644: 5482: 3911:
can be calculated directly from the chosen fitting function. Solving the Darcy–Weisbach equation for
940: 715: 428: 4689:
q. We also know that pressure must be proportional to the length of the pipe between the two points
6100: 5981: 4632:, most of which were significantly easier to use in calculations. However, since the advent of the 1986: 419:
in 1848 and soon became well known there. In contrast, it did not initially gain much traction in
326:
However, the friction factor f was expressed by Weisbach through the following empirical formula:
6130: 6120: 5710: 5660: 5635:
Shockling, M. A.; Allen, J. J.; Smits, A. J. (2006). "Roughness effects in turbulent pipe flow".
5498: 4802: 4672: 4621: 2242: 1994: 722: 651: 74: 67: 39: 5544: 1092: 6115: 6074: 5883: 5855: 5824: 5443: 5171: 5148: 5138: 4884:
It is useful in the transition region between laminar flow and fully developed turbulent flow.
1756: 1574: 1271:{\displaystyle S=f_{\text{D}}\cdot {\frac {1}{2g}}\cdot {\frac {{\langle v\rangle }^{2}}{D}}.} 924: 202: 102: 378: 5816: 5787: 5756: 5702: 5652: 5599: 5573: 5490: 4686: 4629: 398: 319: 122: 118: 114: 3659:
along with one further parameter, 26, to govern the transition from smooth to rough flow.
1558:{\displaystyle S=f_{\text{D}}\cdot {\frac {8}{\pi ^{2}g}}\cdot {\frac {Q^{2}}{D_{c}^{5}}}.} 1374: 776: 626: 604: 6227: 6145: 6135: 6110: 6078: 6023: 5953: 5940: 5923: 5810: 5467: 5463: 4603: 2449:
number. Here, it is useful to employ yet another dimensionless parameter of the flow, the
2001:
demonstrates laminar flow; the friction factor is well represented by the above equation.
1857: 1727:
is not a constant: it depends on such things as the characteristics of the pipe (diameter
1689: 904:{\displaystyle {\frac {\Delta p}{L}}={\frac {128}{\pi }}\cdot {\frac {\mu Q}{D_{c}^{4}}},} 802: 437: 415:
depending on the diameter and the type of pipe wall. Weisbach's work was published in the
98: 59: 5745:"Erratum: Friction factor directly from transitional roughness in a turbulent pipe flow" 5698: 5648: 5486: 6165: 6150: 5276: 5261:
from the original on October 20, 2020 – via Defense Technical Information Center.
4960: 4822: 4667:, and the volumetric flow rate. The flow rate can be converted to a mean flow velocity 4595: 4526:
Observe the value of the friction factor for laminar flow at a Reynolds number of 1000.
3835: 2883:
constitutes a transition from one behavior to the other. The data depart from the line
1752: 1172:{\displaystyle S={\frac {\Delta h}{L}}={\frac {1}{\rho g}}\cdot {\frac {\Delta p}{L}},} 997: 432: 424: 301: 275: 249: 227: 31: 17: 6206: 6155: 5898: 5744: 5664: 5561: 4912: 1748: 1666: 711: 591: 63: 5714: 5502: 3986:{\displaystyle {\sqrt {f_{\mathrm {D} }}}={\frac {\sqrt {2gSD}}{\langle v\rangle }}} 5257:. Vol. I. Redondo Beach CA: TRW Systems Group. p. 87, equation 3.9.2.1e. 4809: 1789: 1658: 1581: 769: 3663:
The Colebrook–White relation fits the friction factor with a function of the form
2556: 1193:
Therefore, the Darcy–Weisbach equation can also be written in terms of head loss:
1083:= The head loss due to pipe friction over the given length of pipe (SI units: m); 6028: 5252: 4599: 4314:
is more commonly used by civil and mechanical engineers, and the Fanning factor
3848: 94: 90: 55: 5791: 5562:"Friction Factor Directly From Transitional Roughness in a Turbulent Pipe Flow" 6018: 6004: 5869:
Shah, R. K.; London, A. L. (1978). "Laminar Flow Forced Convection in Ducts".
5706: 5656: 5494: 4927: 4633: 2838:, the data asymptotically approach a horizontal line; they are independent of 5820: 5603: 5314:(8th ed.). John Wiley & Sons. p. 379; Eq. 10:23, 10:24, paragraph 4. 5152: 1647:{\displaystyle \tau ={\frac {1}{8}}f_{\text{D}}\rho {\langle v\rangle }^{2}.} 4841:
within a pipe (that is, its productivity) and the head loss per unit length
2572:. The data fall on a single trajectory when plotted in this way. The regime 2066:. Data are from Nikuradse (1932, 1933), Colebrook (1939), and McKeon (2004). 1714:. Data are from Nikuradse (1932, 1933), Colebrook (1939), and McKeon (2004). 43: 1016: 293: 267: 51: 47: 128:
Weisbach's formula was proposed in 1845 in the form we still use today:
2937:(the transition from the smooth pipe regime to the rough pipe regime): 1796:(which stems from an exact classical solution for the fluid flow) that 1662: 5969:
ThermoTurb – A web application for thermal and turbulent flow analysis
5760: 5577: 1099:
It is useful to present head loss per length of pipe (dimensionless):
5899:"The History of the Darcy-Weisbach Equation for Pipe Flow Resistance" 5807:"The History of the Darcy-Weisbach Equation for Pipe Flow Resistance" 4607: 420: 93:
for calculating head losses in pipes, is traditionally attributed to
5775: 5137:(3rd ed.). Burlington, MA: Butterworth-Heinemann. p. 3.5. 2733:
for the rough pipe data of Nikuradse, Shockling, and Langelandsvik.
1989:. In this expression for Reynolds number, the characteristic length 5964:
Web application with pressure drop calculations for pipes and ducts
4878:
It is useful for any fluid, including oil, gas, brine, and sludges.
980:
Note that this laminar form of Darcy–Weisbach is equivalent to the
5468:"A new friction factor relationship for fully developed pipe flow" 2555: 2032: 2013:: the flow velocity in the neighborhood of the pipe wall is zero. 1759:, and hence the factor itself is sometimes erroneously called the 1676: 943:, used here to measure flow instead of mean velocity according to 928: 595: 4946:
The value of the Darcy friction factor is four times that of the
5958: 5310:
Crowe, Clayton T.; Elger, Donald F.; Robertson, John A. (2005).
4679: 2079:), the friction factor varies less than one order of magnitude ( 436:
factor f depended on the flow regime and was independent of the
5977: 5296:(5th ed.). John Wiley & Sons. p. 470 paragraph 3. 1584:
is expressed in terms of the Darcy–Weisbach friction factor as
1455:{\displaystyle Q={\frac {\pi }{4}}D_{c}^{2}\langle v\rangle .} 5973: 3274:
The friction factor for another analogous roughness becomes
1842:{\displaystyle f_{\mathrm {D} }={\frac {64}{\mathrm {Re} }},} 1735:), the characteristics of the fluid (its kinematic viscosity 5968: 3801:
This relation has the correct behavior at extreme values of
2048:
for smooth pipe and a range of values of relative roughness
1767:
friction factor, after the approximate formula he proposed.
1696:
for smooth pipe and a range of values of relative roughness
4602:
of France, and further refined into the form used today by
2237:
can be expressed in closed form as an analytic function of
5963: 5678:
Langelandsvik, L. I.; Kunkel, G. J.; Smits, A. J. (2008).
4881:
It can be derived analytically in the laminar flow region.
4821:, which always exceeds the mean velocity. In the case of 654:
of the pipe (for a pipe of circular section, this equals
463:
and can be characterized by the Darcy–Weisbach equation:
452:, flowing full, the pressure loss due to viscous effects 5878:
Rohsenhow, W. M.; Hartnett, J. P.; Ganić, E. N. (1985).
5543:
In translation, NACA TM 1292. The data are available in
3824:
Calculating the friction factor from its parametrization
5815:. American Society of Civil Engineers. pp. 34–43. 3868:
to be found directly for full flow in a circular pipe.
801:, the friction factor is inversely proportional to the 4789:
The proportionality coefficient is the dimensionless "
5323: 5168:
Oilfield Processing of Petroleum. Vol. 1: Natural Gas
4993: 4706: 4594:
Historically this equation arose as a variant on the
4330: 4120: 4020: 3934: 3672: 3472: 3286: 3108: 2946: 2612: 2461: 2258: 2108: 1955: 1868: 1805: 1593: 1478: 1408: 1377: 1307: 1202: 1108: 1028: 839: 779: 733: 690: 629: 607: 472: 401: 381: 335: 304: 278: 252: 230: 205: 137: 121:. However, Chézy's formula was lost until 1800, when 4697:, which is also constant along the pipe. Therefore, 2736:
In this view, the data at different roughness ratio
365:{\displaystyle f=\alpha +{\beta \over {\sqrt {V}}}} 186:{\displaystyle \Delta H=f\cdot {LV^{2} \over {2gD}}} 6174: 6093: 6042: 6011: 4856:with the inverse fifth power of the pipe diameter, 4837:application, it is typical for the volumetric flow 2582:is effectively that of smooth pipe flow. For large 5947:Pipe pressure drop calculator for two phase flows. 5419: 5166:Manning, Francis S.; Thompson, Richard E. (1991). 5101: 4778: 4448: 4249: 4091: 3985: 3810:, as shown by the labeled curve in Figure 3: when 3790: 3639: 3453: 3250: 3088: 2709: 2599:It is illustrative to plot the roughness function 2563:Roughness function B vs. friction Reynolds number 2534: 2406: 2184: 1974: 1931: 1841: 1646: 1557: 1454: 1390: 1334: 1270: 1171: 1056: 903: 792: 748: 702: 642: 613: 556: 407: 387: 364: 310: 284: 258: 236: 214: 185: 4887:The friction factor variation is well documented. 4624:valid only for certain flow regimes, notably the 5630: 5628: 5589: 5587: 5521: 5519: 89:The Darcy-Weisbach equation, combined with the 3902:is a known quantity, then the friction factor 3855:(upon which the Moody chart is based), or the 5989: 5596:Journal of the Institution of Civil Engineers 5292:Incopera, Frank P.; Dewitt, David P. (2002). 5254:Aerospace Fluid Component Designers' Handbook 4610:in 1845. Initially, data on the variation of 1465:Then the Darcy–Weisbach equation in terms of 1370:In a full-flowing, circular pipe of diameter 8: 5809:. In Rogers, J. R.; Fredrich, A. J. (eds.). 5774:Afzal, Noor; Seena, Abu; Bushra, A. (2013). 5555: 5553: 5305: 5303: 5270: 5268: 4766: 4760: 4435: 4429: 4382: 4376: 3977: 3971: 1914: 1908: 1896: 1890: 1631: 1625: 1446: 1440: 1326: 1320: 1286:The relationship between mean flow velocity 1250: 1244: 697: 691: 529: 523: 4682:of the pipe if the pipe is full of fluid). 3898:. If as well the head loss per unit length 3890:are known, as are the diameter of the pipe 2228:In the Kármán–Prandtl resistance equation, 1335:{\displaystyle Q=A\cdot \langle v\rangle ,} 5996: 5982: 5974: 5959:Open source pipe pressure drop calculator. 5917:The History of the Darcy–Weisbach Equation 5882:(2nd ed.). McGraw–Hill Book Company. 4285:Confusion with the Fanning friction factor 3838:, methods for finding the friction factor 3579: 3393: 1975:{\displaystyle \nu ={\frac {\mu }{\rho }}} 1057:{\displaystyle \Delta p=\rho g\,\Delta h,} 448:In a cylindrical pipe of uniform diameter 5871:Supplement 1 to Advances in Heat Transfer 5812:Environmental and Water Resources History 5403: 5398: 5377: 5376: 5370: 5362: 5335: 5334: 5324: 5322: 5084: 5074: 5059: 5058: 5052: 5044: 5038: 5005: 5004: 4994: 4992: 4770: 4759: 4745: 4732: 4716: 4705: 4485:, and if the formula for laminar flow is 4439: 4428: 4420: 4407: 4386: 4375: 4368: 4355: 4345: 4344: 4329: 4236: 4229: 4214: 4204: 4182: 4170: 4169: 4163: 4155: 4142: 4129: 4121: 4119: 4102:Expressing the roughness Reynolds number 4081: 4075: 4068: 4058: 4048: 4036: 4035: 4029: 4021: 4019: 3954: 3942: 3941: 3935: 3933: 3886:and the kinematic viscosity of the fluid 3764: 3758: 3735: 3734: 3728: 3720: 3714: 3684: 3683: 3673: 3671: 3607: 3597: 3573: 3543: 3542: 3536: 3528: 3522: 3508: 3503: 3484: 3483: 3473: 3471: 3421: 3411: 3387: 3357: 3356: 3350: 3342: 3336: 3322: 3317: 3298: 3297: 3287: 3285: 3227: 3213: 3201: 3171: 3170: 3164: 3156: 3150: 3120: 3119: 3109: 3107: 3065: 3051: 3039: 3009: 3008: 3002: 2994: 2988: 2958: 2957: 2947: 2945: 2692: 2677: 2651: 2650: 2644: 2635: 2623: 2611: 2522: 2516: 2507: 2506: 2500: 2492: 2475: 2466: 2460: 2444:When the pipe surface's roughness height 2393: 2359: 2335: 2319: 2283: 2270: 2269: 2259: 2257: 2162: 2161: 2155: 2147: 2120: 2119: 2109: 2107: 1962: 1954: 1905: 1880: 1869: 1867: 1826: 1821: 1811: 1810: 1804: 1749:high accuracy within certain flow regimes 1635: 1624: 1614: 1600: 1592: 1544: 1539: 1529: 1523: 1508: 1498: 1489: 1477: 1434: 1429: 1415: 1407: 1382: 1376: 1306: 1254: 1243: 1240: 1222: 1213: 1201: 1151: 1133: 1115: 1107: 1044: 1027: 984:, which is analytically derived from the 890: 885: 871: 858: 840: 838: 784: 778: 739: 738: 732: 689: 634: 628: 606: 543: 533: 522: 519: 506: 496: 495: 473: 471: 400: 380: 353: 348: 334: 303: 277: 251: 229: 204: 170: 163: 153: 136: 6213:Dimensionless numbers of fluid mechanics 2763:, demonstrating scaling in the variable 567:where the pressure loss per unit length 5693:. Cambridge University Press: 323–339. 5481:. Cambridge University Press: 429–443. 5466:; Zagarola, M. V; Smits, A. J. (2005). 5122: 4950:, with which it should not be confused. 4939: 73:The Darcy–Weisbach equation contains a 5880:Handbook of Heat Transfer Fundamentals 5442:(3rd ed.). Springer. p. 45. 5294:Fundamentals of Heat and Mass Transfer 3872:Direct calculation when friction loss 2772:. The following features are present: 1739:), and the velocity of the fluid flow 1366:= The cross-sectional wetted area (m). 5780:Journal of Hydro-environment Research 5238: 5226: 5214: 5202: 5190: 3847:include using a diagram, such as the 2825:; flow is in the smooth pipe regime. 2225:, the friction factor is also fixed. 7: 5251:Howell, Glen (1970-02-01). "3.9.2". 5128: 5126: 4289:The Darcy–Weisbach friction factor 3851:, or solving equations such as the 2754:fall together when plotted against 1946:is the viscosity of the fluid and 674:for a pipe of cross-sectional area 5929:Darcy–Weisbach equation calculator 5528:"Strömungsgesetze in rauen Rohren" 5407: 5404: 5378: 5366: 5363: 5336: 5060: 5048: 5045: 5006: 4985:In its originally published form, 4707: 4640:Derivation by dimensional analysis 4510:, it is the Darcy–Weisbach factor 4346: 4331: 4171: 4159: 4156: 4037: 4025: 4022: 3943: 3736: 3724: 3721: 3685: 3544: 3532: 3529: 3485: 3358: 3346: 3343: 3299: 3172: 3160: 3157: 3121: 3010: 2998: 2995: 2959: 2903:very slowly, reach a maximum near 2652: 2508: 2496: 2493: 2397: 2394: 2363: 2360: 2271: 2163: 2151: 2148: 2121: 2021:For Reynolds numbers in the range 1873: 1870: 1830: 1827: 1812: 1763:. It is also sometimes called the 1154: 1118: 1045: 1029: 843: 740: 621:, the density of the fluid (kg/m); 497: 476: 206: 138: 25: 5680:"Flow in a commercial steel pipe" 4976:up to the onset of critical flow. 2926:that ensures proper behavior for 714:, experimentally measured as the 703:{\displaystyle \langle v\rangle } 4598:; this variant was developed by 2913:, then fall to a constant value. 1091:= The local acceleration due to 749:{\displaystyle f_{\mathrm {D} }} 5397: 5170:. PennWell Books. p. 293. 4875:It is dimensionally consistent. 4277:, and the volumetric flow rate 2549:is scaled to the pipe diameter 772:in a circular pipe of diameter 6218:Eponymous equations of physics 5278:Elementary Mechanics of Fluids 4903:Darcy friction factor formulae 4675:of the flow (which equals the 3830:Darcy friction factor formulae 2629: 2616: 2401: 2384: 2350: 2344: 2301: 2295: 760:(also called flow coefficient 77:friction factor, known as the 1: 5934:Pipe pressure drop calculator 5749:Journal of Fluids Engineering 5566:Journal of Fluids Engineering 5440:Applied Hydraulic Transients 5133:Jones, Garr M., ed. (2006). 4872:It is based on fundamentals. 1770:Figure 1 shows the value of 1358:= The volumetric flow (m/s), 6223:Equations of fluid dynamics 5312:Engineering Fluid Mechanics 4481:, it is the Fanning factor 4298:is 4 times larger than the 2805:, the data lie on the line 2545:where the roughness height 2044:versus Reynolds number for 1282:In terms of volumetric flow 320:acceleration due to gravity 6244: 5792:10.1016/j.jher.2011.08.002 5687:Journal of Fluid Mechanics 5637:Journal of Fluid Mechanics 5475:Journal of Fluid Mechanics 3827: 2872:The intermediate range of 1747:. It has been measured to 931:(Pa·s = N·s/m = kg/(m·s)); 459:is proportional to length 42:equation that relates the 27:Equation in fluid dynamics 6070:Hydrological optimization 6060:Groundwater flow equation 5707:10.1017/S0022112007009305 5657:10.1017/S0022112006001467 5495:10.1017/S0022112005005501 4923:Hagen–Poiseuille equation 4819:root mean-square velocity 4817:energy then involves the 3894:and its roughness height 2591:, the roughness function 2451:roughness Reynolds number 1792:, it is a consequence of 1294:and volumetric flow rate 982:Hagen–Poiseuille equation 721:per unit cross-sectional 5617:Schlichting, H. (1955). 5604:10.1680/ijoti.1939.14509 5438:Chaudhry, M. H. (2013). 5281:. John Wiley & Sons. 3853:Colebrook–White equation 417:United States of America 215:{\displaystyle \Delta H} 6065:Hazen–Williams equation 6055:Darcy–Weisbach equation 5943:for single phase flows. 5897:Glenn O. Brown (2002). 5572:(10). ASME: 1255–1267. 5535:V. D. I. Forschungsheft 4959:This is related to the 4948:Fanning friction factor 4918:Hazen–Williams equation 4626:Hazen–Williams equation 4300:Fanning friction factor 2241:through the use of the 986:Navier–Stokes equations 388:{\displaystyle \alpha } 36:Darcy–Weisbach equation 18:Darcy-Weisbach equation 5786:(1). Elsevier: 81–90. 5526:Nikuradse, J. (1933). 5421: 5135:Pumping station design 5103: 4780: 4450: 4251: 4093: 3987: 3792: 3641: 3455: 3252: 3090: 2711: 2596: 2536: 2434:Blasius boundary layer 2408: 2186: 2067: 2023:2000 < Re < 4000 1976: 1933: 1843: 1790:laminar (smooth) flows 1715: 1648: 1559: 1456: 1392: 1336: 1272: 1173: 1058: 905: 794: 750: 704: 644: 615: 558: 444:Pressure-loss equation 409: 408:{\displaystyle \beta } 389: 366: 312: 286: 260: 238: 216: 187: 6085:Pipe network analysis 6050:Bernoulli's principle 6034:Hydraulic engineering 5873:. New York: Academic. 5805:Brown, G. O. (2003). 5619:Boundary Layer Theory 5422: 5104: 4898:Bernoulli's principle 4835:hydraulic engineering 4829:Practical application 4791:Darcy friction factor 4781: 4451: 4252: 4094: 3988: 3793: 3642: 3456: 3253: 3091: 2712: 2559: 2537: 2409: 2187: 2042:Darcy friction factor 2036: 1977: 1934: 1844: 1761:Moody friction factor 1731:and roughness height 1686:Darcy friction factor 1680: 1673:Darcy friction factor 1649: 1560: 1457: 1393: 1391:{\displaystyle D_{c}} 1337: 1273: 1174: 1059: 906: 795: 793:{\displaystyle D_{c}} 758:Darcy friction factor 751: 705: 645: 643:{\displaystyle D_{H}} 616: 614:{\displaystyle \rho } 598:) is a function of: 559: 410: 390: 367: 313: 287: 261: 244:: length of the pipe. 239: 217: 188: 85:Historical background 79:Darcy friction factor 5821:10.1061/40650(2003)4 5755:(10). ASME: 107001. 5743:Afzal, Noor (2011). 5560:Afzal, Noor (2007). 5321: 4991: 4704: 4328: 4269:, the flow velocity 4118: 4018: 3932: 3857:Swamee–Jain equation 3670: 3470: 3284: 3106: 2944: 2610: 2459: 2256: 2106: 2077:4000 < Re < 10 2046:1000 < Re < 10 1953: 1866: 1803: 1718:The friction factor 1591: 1476: 1406: 1375: 1305: 1200: 1186:is the pipe length ( 1106: 1026: 941:volumetric flow rate 837: 777: 731: 716:volumetric flow rate 688: 627: 605: 470: 429:dimensional analysis 399: 379: 333: 302: 276: 250: 228: 203: 135: 107:Bernoulli's equation 5699:2008JFM...595..323L 5649:2006JFM...564..267S 5487:2005JFM...538..429M 4671:by dividing by the 4622:empirical equations 3996:we can now express 1993:is taken to be the 1987:kinematic viscosity 1549: 1439: 895: 5952:2019-07-13 at the 5939:2019-07-13 at the 5922:2011-07-20 at the 5854:. Addison–Wesley. 5850:De Nevers (1970). 5417: 5275:Rouse, H. (1946). 5099: 4803:hydraulic diameter 4776: 4446: 4247: 4245: 4089: 3983: 3788: 3637: 3451: 3248: 3086: 2707: 2597: 2532: 2404: 2182: 2094:Smooth-pipe regime 2068: 1995:hydraulic diameter 1972: 1929: 1839: 1716: 1694:10 < Re < 10 1644: 1555: 1535: 1452: 1425: 1388: 1332: 1268: 1169: 1054: 901: 881: 790: 746: 700: 652:hydraulic diameter 640: 611: 554: 405: 385: 362: 308: 282: 256: 234: 212: 183: 68:Colebrook equation 6200: 6199: 6075:Open-channel flow 5830:978-0-7844-0650-2 5761:10.1115/1.4004961 5724:on 16 August 2016 5578:10.1115/1.2776961 5449:978-1-4614-8538-4 5401: 5384: 5343: 5342: 5144:978-0-08-094106-6 5092: 5082: 5069: 5066: 5013: 5012: 4753: 4740: 4724: 4415: 4396: 4363: 4241: 4234: 4224: 4220: 4212: 4192: 4191: 4177: 4150: 4087: 4073: 4066: 4056: 4043: 3981: 3969: 3949: 3773: 3745: 3742: 3692: 3691: 3617: 3553: 3550: 3492: 3491: 3431: 3367: 3364: 3306: 3305: 3233: 3181: 3178: 3128: 3127: 3071: 3019: 3016: 2966: 2965: 2700: 2687: 2686: 2661: 2658: 2530: 2514: 2485: 2484: 2440:Rough-pipe regime 2392: 2380: 2357: 2332: 2305: 2278: 2277: 2169: 2128: 2127: 1970: 1924: 1888: 1834: 1617: 1608: 1575:wall shear stress 1569:Shear-stress form 1550: 1518: 1492: 1423: 1263: 1235: 1216: 1164: 1146: 1128: 992:Head-loss formula 925:dynamic viscosity 896: 866: 853: 549: 514: 486: 360: 358: 311:{\displaystyle g} 285:{\displaystyle V} 259:{\displaystyle D} 237:{\displaystyle L} 181: 103:Lewis Ferry Moody 16:(Redirected from 6235: 5998: 5991: 5984: 5975: 5906: 5903:researchgate.net 5893: 5874: 5865: 5835: 5834: 5802: 5796: 5795: 5771: 5765: 5764: 5740: 5734: 5733: 5731: 5729: 5723: 5717:. Archived from 5684: 5675: 5669: 5668: 5632: 5623: 5622: 5614: 5608: 5607: 5591: 5582: 5581: 5557: 5548: 5542: 5532: 5523: 5514: 5513: 5511: 5509: 5472: 5460: 5454: 5453: 5435: 5429: 5426: 5424: 5423: 5418: 5410: 5402: 5399: 5390: 5386: 5385: 5383: 5382: 5381: 5371: 5369: 5344: 5341: 5340: 5339: 5329: 5325: 5315: 5307: 5298: 5297: 5289: 5283: 5282: 5272: 5263: 5262: 5248: 5242: 5236: 5230: 5224: 5218: 5212: 5206: 5200: 5194: 5188: 5182: 5181: 5163: 5157: 5156: 5130: 5111: 5108: 5106: 5105: 5100: 5098: 5094: 5093: 5085: 5083: 5075: 5070: 5068: 5067: 5065: 5064: 5063: 5053: 5051: 5039: 5014: 5011: 5010: 5009: 4999: 4995: 4983: 4977: 4975: 4970: 4964: 4961:piezometric head 4957: 4951: 4944: 4859: 4852: 4848: 4844: 4840: 4812:, where all the 4799:roughness height 4796: 4785: 4783: 4782: 4777: 4775: 4774: 4769: 4754: 4746: 4741: 4733: 4725: 4717: 4696: 4692: 4687:dynamic pressure 4670: 4666: 4665: 4663: 4662: 4657: 4654: 4630:Manning equation 4618: 4580: 4579: 4577: 4576: 4573: 4570: 4554: 4553: 4551: 4550: 4547: 4544: 4518: 4509: 4508: 4506: 4505: 4502: 4499: 4484: 4480: 4479: 4477: 4476: 4473: 4470: 4455: 4453: 4452: 4447: 4445: 4444: 4443: 4438: 4416: 4408: 4397: 4392: 4391: 4390: 4385: 4369: 4364: 4356: 4351: 4350: 4349: 4317: 4313: 4304: 4297: 4280: 4276: 4268: 4256: 4254: 4253: 4248: 4246: 4242: 4237: 4235: 4230: 4225: 4216: 4215: 4213: 4205: 4197: 4193: 4187: 4183: 4178: 4176: 4175: 4174: 4164: 4162: 4151: 4143: 4134: 4133: 4110: 4098: 4096: 4095: 4090: 4088: 4086: 4085: 4076: 4074: 4069: 4067: 4059: 4057: 4049: 4044: 4042: 4041: 4040: 4030: 4028: 4010: 4009: 4008: 3992: 3990: 3989: 3984: 3982: 3980: 3956: 3955: 3950: 3948: 3947: 3946: 3936: 3924: 3923: 3922: 3910: 3901: 3897: 3893: 3889: 3885: 3876: 3867: 3846: 3818: 3809: 3797: 3795: 3794: 3789: 3784: 3780: 3779: 3775: 3774: 3769: 3768: 3759: 3746: 3744: 3743: 3741: 3740: 3739: 3729: 3727: 3715: 3693: 3690: 3689: 3688: 3678: 3674: 3658: 3646: 3644: 3643: 3638: 3633: 3629: 3628: 3624: 3623: 3619: 3618: 3613: 3612: 3611: 3598: 3578: 3577: 3554: 3552: 3551: 3549: 3548: 3547: 3537: 3535: 3523: 3513: 3512: 3493: 3490: 3489: 3488: 3478: 3474: 3460: 3458: 3457: 3452: 3447: 3443: 3442: 3438: 3437: 3433: 3432: 3427: 3426: 3425: 3412: 3392: 3391: 3368: 3366: 3365: 3363: 3362: 3361: 3351: 3349: 3337: 3327: 3326: 3307: 3304: 3303: 3302: 3292: 3288: 3270: 3257: 3255: 3254: 3249: 3244: 3240: 3239: 3235: 3234: 3232: 3231: 3222: 3214: 3206: 3205: 3182: 3180: 3179: 3177: 3176: 3175: 3165: 3163: 3151: 3129: 3126: 3125: 3124: 3114: 3110: 3095: 3093: 3092: 3087: 3082: 3078: 3077: 3073: 3072: 3070: 3069: 3060: 3052: 3044: 3043: 3020: 3018: 3017: 3015: 3014: 3013: 3003: 3001: 2989: 2967: 2964: 2963: 2962: 2952: 2948: 2936: 2925: 2912: 2902: 2882: 2868: 2867: 2865: 2864: 2861: 2858: 2850: 2841: 2837: 2824: 2804: 2791: 2782: 2771: 2762: 2753: 2752: 2750: 2749: 2746: 2743: 2732: 2723: 2716: 2714: 2713: 2708: 2706: 2702: 2701: 2693: 2688: 2682: 2678: 2662: 2660: 2659: 2657: 2656: 2655: 2645: 2636: 2628: 2627: 2602: 2594: 2590: 2581: 2571: 2552: 2548: 2541: 2539: 2538: 2533: 2531: 2523: 2521: 2517: 2515: 2513: 2512: 2511: 2501: 2499: 2486: 2480: 2476: 2471: 2470: 2447: 2431: 2430: 2429: 2413: 2411: 2410: 2405: 2400: 2390: 2378: 2371: 2367: 2366: 2358: 2353: 2336: 2334: 2333: 2328: 2320: 2306: 2304: 2284: 2279: 2276: 2275: 2274: 2264: 2260: 2246: 2240: 2236: 2224: 2223: 2222: 2209: 2208: 2207: 2191: 2189: 2188: 2183: 2175: 2171: 2170: 2168: 2167: 2166: 2156: 2154: 2129: 2126: 2125: 2124: 2114: 2110: 2089: 2078: 2074: 2065: 2064: 2062: 2061: 2058: 2055: 2047: 2029:Turbulent regime 2024: 2012: 2000: 1992: 1985:is known as the 1981: 1979: 1978: 1973: 1971: 1963: 1945: 1938: 1936: 1935: 1930: 1925: 1920: 1906: 1889: 1881: 1876: 1855: 1848: 1846: 1845: 1840: 1835: 1833: 1822: 1817: 1816: 1815: 1794:Poiseuille's law 1778: 1746: 1738: 1734: 1730: 1726: 1713: 1712: 1710: 1709: 1706: 1703: 1695: 1653: 1651: 1650: 1645: 1640: 1639: 1634: 1619: 1618: 1615: 1609: 1601: 1579: 1564: 1562: 1561: 1556: 1551: 1548: 1543: 1534: 1533: 1524: 1519: 1517: 1513: 1512: 1499: 1494: 1493: 1490: 1468: 1461: 1459: 1458: 1453: 1438: 1433: 1424: 1416: 1398: 1397: 1395: 1394: 1389: 1387: 1386: 1364: 1356: 1341: 1339: 1338: 1333: 1297: 1293: 1277: 1275: 1274: 1269: 1264: 1259: 1258: 1253: 1241: 1236: 1234: 1223: 1218: 1217: 1214: 1185: 1178: 1176: 1175: 1170: 1165: 1160: 1152: 1147: 1145: 1134: 1129: 1124: 1116: 1089: 1081: 1063: 1061: 1060: 1055: 1014: 1005: 975: 963: 961: 960: 957: 954: 938: 922: 910: 908: 907: 902: 897: 894: 889: 880: 872: 867: 859: 854: 849: 841: 829: 828: 826: 825: 822: 819: 800: 799: 797: 796: 791: 789: 788: 763: 755: 753: 752: 747: 745: 744: 743: 720: 709: 707: 706: 701: 681: 677: 673: 659: 649: 647: 646: 641: 639: 638: 620: 618: 617: 612: 589: 588: 586: 585: 580: 577: 563: 561: 560: 555: 550: 548: 547: 538: 537: 532: 520: 515: 507: 502: 501: 500: 487: 482: 474: 462: 458: 451: 414: 412: 411: 406: 394: 392: 391: 386: 371: 369: 368: 363: 361: 359: 354: 349: 317: 315: 314: 309: 291: 289: 288: 283: 265: 263: 262: 257: 243: 241: 240: 235: 221: 219: 218: 213: 192: 190: 189: 184: 182: 180: 169: 168: 167: 154: 123:Gaspard de Prony 119:hydraulic radius 21: 6243: 6242: 6238: 6237: 6236: 6234: 6233: 6232: 6203: 6202: 6201: 6196: 6175:Public networks 6170: 6089: 6079:Manning formula 6038: 6024:Hydraulic fluid 6007: 6002: 5954:Wayback Machine 5941:Wayback Machine 5924:Wayback Machine 5913: 5896: 5890: 5877: 5868: 5862: 5852:Fluid Mechanics 5849: 5846: 5844:Further reading 5838: 5831: 5804: 5803: 5799: 5773: 5772: 5768: 5742: 5741: 5737: 5727: 5725: 5721: 5682: 5677: 5676: 5672: 5634: 5633: 5626: 5616: 5615: 5611: 5593: 5592: 5585: 5559: 5558: 5551: 5541:. Berlin: 1–22. 5530: 5525: 5524: 5517: 5507: 5505: 5470: 5462: 5461: 5457: 5450: 5437: 5436: 5432: 5372: 5361: 5357: 5330: 5319: 5318: 5309: 5308: 5301: 5291: 5290: 5286: 5274: 5273: 5266: 5250: 5249: 5245: 5237: 5233: 5225: 5221: 5217:, p. 35-36 5213: 5209: 5205:, p. 36-37 5201: 5197: 5193:, p. 35-36 5189: 5185: 5178: 5165: 5164: 5160: 5145: 5132: 5131: 5124: 5120: 5115: 5114: 5054: 5043: 5034: 5030: 5000: 4989: 4988: 4984: 4980: 4973: 4971: 4967: 4963:along the pipe. 4958: 4954: 4945: 4941: 4936: 4894: 4866: 4857: 4850: 4846: 4842: 4838: 4831: 4794: 4758: 4702: 4701: 4694: 4690: 4677:cross-sectional 4668: 4658: 4655: 4649: 4648: 4646: 4645: 4642: 4617: 4611: 4604:Julius Weisbach 4592: 4574: 4571: 4568: 4567: 4565: 4560: 4548: 4545: 4542: 4541: 4539: 4537: 4531: 4517: 4511: 4503: 4500: 4497: 4496: 4494: 4492: 4486: 4482: 4474: 4471: 4468: 4467: 4465: 4460: 4427: 4374: 4370: 4340: 4326: 4325: 4315: 4312: 4306: 4302: 4296: 4290: 4287: 4278: 4270: 4267: 4261: 4244: 4243: 4195: 4194: 4165: 4135: 4125: 4116: 4115: 4109: 4103: 4077: 4031: 4016: 4015: 4007: 4001: 3999: 3997: 3970: 3937: 3930: 3929: 3921: 3915: 3913: 3912: 3909: 3903: 3899: 3895: 3891: 3887: 3883: 3880: 3874: 3866: 3860: 3845: 3839: 3832: 3826: 3817: 3811: 3808: 3802: 3760: 3751: 3747: 3730: 3719: 3713: 3709: 3679: 3668: 3667: 3662: 3656: 3650: 3647: 3603: 3599: 3584: 3580: 3569: 3559: 3555: 3538: 3527: 3521: 3517: 3504: 3479: 3468: 3467: 3461: 3417: 3413: 3398: 3394: 3383: 3373: 3369: 3352: 3341: 3335: 3331: 3318: 3293: 3282: 3281: 3277: 3268: 3262: 3223: 3215: 3197: 3187: 3183: 3166: 3155: 3149: 3145: 3115: 3104: 3103: 3061: 3053: 3035: 3025: 3021: 3004: 2993: 2987: 2983: 2953: 2942: 2941: 2934: 2927: 2924: 2918: 2910: 2904: 2901: 2894: 2884: 2880: 2873: 2862: 2859: 2856: 2855: 2853: 2852: 2849: 2843: 2839: 2835: 2829: 2823: 2816: 2806: 2802: 2796: 2790: 2784: 2777: 2770: 2764: 2761: 2755: 2747: 2744: 2741: 2740: 2738: 2737: 2731: 2725: 2721: 2720:Figure 3 shows 2676: 2672: 2646: 2640: 2619: 2608: 2607: 2600: 2592: 2589: 2583: 2579: 2573: 2570: 2564: 2550: 2546: 2502: 2491: 2487: 2462: 2457: 2456: 2445: 2442: 2428: 2422: 2420: 2418: 2337: 2321: 2315: 2314: 2310: 2288: 2265: 2254: 2253: 2244: 2238: 2235: 2229: 2221: 2215: 2213: 2211: 2206: 2200: 2198: 2196: 2157: 2146: 2142: 2115: 2104: 2103: 2096: 2087: 2080: 2076: 2072: 2059: 2056: 2053: 2052: 2050: 2049: 2045: 2031: 2022: 2019: 2017:Critical regime 2010: 1998: 1990: 1951: 1950: 1943: 1907: 1864: 1863: 1858:Reynolds number 1853: 1806: 1801: 1800: 1786: 1777: 1771: 1740: 1736: 1732: 1728: 1725: 1719: 1707: 1704: 1701: 1700: 1698: 1697: 1693: 1690:Reynolds number 1675: 1623: 1610: 1589: 1588: 1577: 1571: 1525: 1504: 1503: 1485: 1474: 1473: 1466: 1404: 1403: 1378: 1373: 1372: 1371: 1362: 1354: 1303: 1302: 1295: 1287: 1284: 1242: 1227: 1209: 1198: 1197: 1183: 1153: 1138: 1117: 1104: 1103: 1087: 1076: 1024: 1023: 1013: 1007: 1000: 994: 969: 958: 955: 952: 951: 949: 944: 934: 918: 873: 842: 835: 834: 823: 820: 817: 816: 814: 812: 806: 803:Reynolds number 780: 775: 774: 773: 761: 734: 729: 728: 718: 686: 685: 679: 675: 669: 661: 655: 630: 625: 624: 603: 602: 581: 578: 572: 571: 569: 568: 539: 521: 491: 475: 468: 467: 460: 453: 449: 446: 438:Reynolds number 397: 396: 377: 376: 331: 330: 300: 299: 274: 273: 248: 247: 226: 225: 201: 200: 159: 155: 133: 132: 99:Julius Weisbach 87: 60:Julius Weisbach 28: 23: 22: 15: 12: 11: 5: 6241: 6239: 6231: 6230: 6225: 6220: 6215: 6205: 6204: 6198: 6197: 6195: 6194: 6189: 6184: 6178: 6176: 6172: 6171: 6169: 6168: 6163: 6158: 6153: 6148: 6143: 6138: 6133: 6128: 6123: 6118: 6113: 6108: 6103: 6097: 6095: 6091: 6090: 6088: 6087: 6082: 6072: 6067: 6062: 6057: 6052: 6046: 6044: 6040: 6039: 6037: 6036: 6031: 6026: 6021: 6015: 6013: 6009: 6008: 6003: 6001: 6000: 5993: 5986: 5978: 5972: 5971: 5966: 5961: 5956: 5944: 5931: 5926: 5912: 5911:External links 5909: 5908: 5907: 5894: 5888: 5875: 5866: 5860: 5845: 5842: 5837: 5836: 5829: 5797: 5766: 5735: 5670: 5624: 5621:. McGraw-Hill. 5609: 5583: 5549: 5515: 5455: 5448: 5430: 5428: 5427: 5416: 5413: 5409: 5406: 5396: 5393: 5389: 5380: 5375: 5368: 5365: 5360: 5356: 5353: 5350: 5347: 5338: 5333: 5328: 5299: 5284: 5264: 5243: 5231: 5219: 5207: 5195: 5183: 5176: 5158: 5143: 5121: 5119: 5116: 5113: 5112: 5110: 5109: 5097: 5091: 5088: 5081: 5078: 5073: 5062: 5057: 5050: 5047: 5042: 5037: 5033: 5029: 5026: 5023: 5020: 5017: 5008: 5003: 4998: 4978: 4965: 4952: 4938: 4937: 4935: 4932: 4931: 4930: 4925: 4920: 4915: 4910: 4905: 4900: 4893: 4890: 4889: 4888: 4885: 4882: 4879: 4876: 4873: 4865: 4862: 4830: 4827: 4823:turbulent flow 4787: 4786: 4773: 4768: 4765: 4762: 4757: 4752: 4749: 4744: 4739: 4736: 4731: 4728: 4723: 4720: 4715: 4712: 4709: 4641: 4638: 4615: 4596:Prony equation 4591: 4588: 4583: 4582: 4556: 4535: 4527: 4515: 4490: 4457: 4456: 4442: 4437: 4434: 4431: 4426: 4423: 4419: 4414: 4411: 4406: 4403: 4400: 4395: 4389: 4384: 4381: 4378: 4373: 4367: 4362: 4359: 4354: 4348: 4343: 4339: 4336: 4333: 4310: 4294: 4286: 4283: 4265: 4258: 4257: 4240: 4233: 4228: 4223: 4219: 4211: 4208: 4203: 4200: 4198: 4196: 4190: 4186: 4181: 4173: 4168: 4161: 4158: 4154: 4149: 4146: 4141: 4138: 4136: 4132: 4128: 4124: 4123: 4107: 4100: 4099: 4084: 4080: 4072: 4065: 4062: 4055: 4052: 4047: 4039: 4034: 4027: 4024: 4005: 3994: 3993: 3979: 3976: 3973: 3968: 3965: 3962: 3959: 3953: 3945: 3940: 3919: 3907: 3879: 3870: 3864: 3843: 3836:turbulent flow 3828:Main article: 3825: 3822: 3815: 3806: 3799: 3798: 3787: 3783: 3778: 3772: 3767: 3763: 3757: 3754: 3750: 3738: 3733: 3726: 3723: 3718: 3712: 3708: 3705: 3702: 3699: 3696: 3687: 3682: 3677: 3654: 3636: 3632: 3627: 3622: 3616: 3610: 3606: 3602: 3596: 3593: 3590: 3587: 3583: 3576: 3572: 3568: 3565: 3562: 3558: 3546: 3541: 3534: 3531: 3526: 3520: 3516: 3511: 3507: 3502: 3499: 3496: 3487: 3482: 3477: 3465: 3450: 3446: 3441: 3436: 3430: 3424: 3420: 3416: 3410: 3407: 3404: 3401: 3397: 3390: 3386: 3382: 3379: 3376: 3372: 3360: 3355: 3348: 3345: 3340: 3334: 3330: 3325: 3321: 3316: 3313: 3310: 3301: 3296: 3291: 3279: 3266: 3259: 3258: 3247: 3243: 3238: 3230: 3226: 3221: 3218: 3212: 3209: 3204: 3200: 3196: 3193: 3190: 3186: 3174: 3169: 3162: 3159: 3154: 3148: 3144: 3141: 3138: 3135: 3132: 3123: 3118: 3113: 3097: 3096: 3085: 3081: 3076: 3068: 3064: 3059: 3056: 3050: 3047: 3042: 3038: 3034: 3031: 3028: 3024: 3012: 3007: 3000: 2997: 2992: 2986: 2982: 2979: 2976: 2973: 2970: 2961: 2956: 2951: 2932: 2922: 2915: 2914: 2908: 2899: 2892: 2878: 2870: 2847: 2833: 2826: 2821: 2814: 2800: 2793: 2788: 2768: 2759: 2729: 2718: 2717: 2705: 2699: 2696: 2691: 2685: 2681: 2675: 2671: 2668: 2665: 2654: 2649: 2643: 2639: 2634: 2631: 2626: 2622: 2618: 2615: 2587: 2577: 2568: 2543: 2542: 2529: 2526: 2520: 2510: 2505: 2498: 2495: 2490: 2483: 2479: 2474: 2469: 2465: 2441: 2438: 2426: 2415: 2414: 2403: 2399: 2396: 2389: 2386: 2383: 2377: 2374: 2370: 2365: 2362: 2356: 2352: 2349: 2346: 2343: 2340: 2331: 2327: 2324: 2318: 2313: 2309: 2303: 2300: 2297: 2294: 2291: 2287: 2282: 2273: 2268: 2263: 2233: 2219: 2204: 2193: 2192: 2181: 2178: 2174: 2165: 2160: 2153: 2150: 2145: 2141: 2138: 2135: 2132: 2123: 2118: 2113: 2095: 2092: 2085: 2030: 2027: 2018: 2015: 1983: 1982: 1969: 1966: 1961: 1958: 1940: 1939: 1928: 1923: 1919: 1916: 1913: 1910: 1904: 1901: 1898: 1895: 1892: 1887: 1884: 1879: 1875: 1872: 1850: 1849: 1838: 1832: 1829: 1825: 1820: 1814: 1809: 1785: 1784:Laminar regime 1782: 1775: 1753:Moody diagrams 1723: 1674: 1671: 1655: 1654: 1643: 1638: 1633: 1630: 1627: 1622: 1613: 1607: 1604: 1599: 1596: 1570: 1567: 1566: 1565: 1554: 1547: 1542: 1538: 1532: 1528: 1522: 1516: 1511: 1507: 1502: 1497: 1488: 1484: 1481: 1463: 1462: 1451: 1448: 1445: 1442: 1437: 1432: 1428: 1422: 1419: 1414: 1411: 1385: 1381: 1368: 1367: 1359: 1343: 1342: 1331: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1283: 1280: 1279: 1278: 1267: 1262: 1257: 1252: 1249: 1246: 1239: 1233: 1230: 1226: 1221: 1212: 1208: 1205: 1180: 1179: 1168: 1163: 1159: 1156: 1150: 1144: 1141: 1137: 1132: 1127: 1123: 1120: 1114: 1111: 1097: 1096: 1084: 1065: 1064: 1053: 1050: 1047: 1043: 1040: 1037: 1034: 1031: 1011: 993: 990: 978: 977: 967: 932: 912: 911: 900: 893: 888: 884: 879: 876: 870: 865: 862: 857: 852: 848: 845: 810: 787: 783: 766: 765: 742: 737: 726: 699: 696: 693: 683: 678:and perimeter 665: 637: 633: 622: 610: 565: 564: 553: 546: 542: 536: 531: 528: 525: 518: 513: 510: 505: 499: 494: 490: 485: 481: 478: 445: 442: 433:boundary layer 425:Prony equation 404: 384: 373: 372: 357: 352: 347: 344: 341: 338: 324: 323: 307: 297: 281: 271: 255: 245: 233: 223: 211: 208: 194: 193: 179: 176: 173: 166: 162: 158: 152: 149: 146: 143: 140: 86: 83: 32:fluid dynamics 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6240: 6229: 6226: 6224: 6221: 6219: 6216: 6214: 6211: 6210: 6208: 6193: 6190: 6188: 6185: 6183: 6180: 6179: 6177: 6173: 6167: 6164: 6162: 6159: 6157: 6154: 6152: 6149: 6147: 6144: 6142: 6141:Power network 6139: 6137: 6134: 6132: 6129: 6127: 6124: 6122: 6119: 6117: 6114: 6112: 6109: 6107: 6104: 6102: 6099: 6098: 6096: 6092: 6086: 6083: 6080: 6076: 6073: 6071: 6068: 6066: 6063: 6061: 6058: 6056: 6053: 6051: 6048: 6047: 6045: 6041: 6035: 6032: 6030: 6027: 6025: 6022: 6020: 6017: 6016: 6014: 6010: 6006: 5999: 5994: 5992: 5987: 5985: 5980: 5979: 5976: 5970: 5967: 5965: 5962: 5960: 5957: 5955: 5951: 5948: 5945: 5942: 5938: 5935: 5932: 5930: 5927: 5925: 5921: 5918: 5915: 5914: 5910: 5904: 5900: 5895: 5891: 5889:0-07-053554-X 5885: 5881: 5876: 5872: 5867: 5863: 5861:0-201-01497-1 5857: 5853: 5848: 5847: 5843: 5841: 5832: 5826: 5822: 5818: 5814: 5813: 5808: 5801: 5798: 5793: 5789: 5785: 5781: 5777: 5770: 5767: 5762: 5758: 5754: 5750: 5746: 5739: 5736: 5720: 5716: 5712: 5708: 5704: 5700: 5696: 5692: 5688: 5681: 5674: 5671: 5666: 5662: 5658: 5654: 5650: 5646: 5642: 5638: 5631: 5629: 5625: 5620: 5613: 5610: 5605: 5601: 5597: 5590: 5588: 5584: 5579: 5575: 5571: 5567: 5563: 5556: 5554: 5550: 5546: 5540: 5536: 5529: 5522: 5520: 5516: 5504: 5500: 5496: 5492: 5488: 5484: 5480: 5476: 5469: 5465: 5464:McKeon, B. J. 5459: 5456: 5451: 5445: 5441: 5434: 5431: 5414: 5411: 5394: 5391: 5387: 5373: 5358: 5354: 5351: 5348: 5345: 5331: 5326: 5317: 5316: 5313: 5306: 5304: 5300: 5295: 5288: 5285: 5280: 5279: 5271: 5269: 5265: 5260: 5256: 5255: 5247: 5244: 5240: 5235: 5232: 5228: 5223: 5220: 5216: 5211: 5208: 5204: 5199: 5196: 5192: 5187: 5184: 5179: 5177:0-87814-343-2 5173: 5169: 5162: 5159: 5154: 5150: 5146: 5140: 5136: 5129: 5127: 5123: 5117: 5095: 5089: 5086: 5079: 5076: 5071: 5055: 5040: 5035: 5031: 5027: 5024: 5021: 5018: 5015: 5001: 4996: 4987: 4986: 4982: 4979: 4969: 4966: 4962: 4956: 4953: 4949: 4943: 4940: 4933: 4929: 4926: 4924: 4921: 4919: 4916: 4914: 4913:Friction loss 4911: 4909: 4906: 4904: 4901: 4899: 4896: 4895: 4891: 4886: 4883: 4880: 4877: 4874: 4871: 4870: 4869: 4863: 4861: 4855: 4836: 4828: 4826: 4824: 4820: 4815: 4811: 4806: 4804: 4800: 4792: 4771: 4763: 4755: 4750: 4747: 4742: 4737: 4734: 4729: 4726: 4721: 4718: 4713: 4710: 4700: 4699: 4698: 4688: 4683: 4681: 4678: 4674: 4661: 4653: 4639: 4637: 4635: 4631: 4627: 4623: 4614: 4609: 4605: 4601: 4597: 4589: 4587: 4563: 4557: 4534: 4528: 4525: 4524: 4523: 4520: 4514: 4489: 4463: 4440: 4432: 4424: 4421: 4417: 4412: 4409: 4404: 4401: 4398: 4393: 4387: 4379: 4371: 4365: 4360: 4357: 4352: 4341: 4337: 4334: 4324: 4323: 4322: 4319: 4309: 4301: 4293: 4284: 4282: 4274: 4264: 4238: 4231: 4226: 4221: 4217: 4209: 4206: 4201: 4199: 4188: 4184: 4179: 4166: 4152: 4147: 4144: 4139: 4137: 4130: 4126: 4114: 4113: 4112: 4106: 4082: 4078: 4070: 4063: 4060: 4053: 4050: 4045: 4032: 4014: 4013: 4012: 4004: 3974: 3966: 3963: 3960: 3957: 3951: 3938: 3928: 3927: 3926: 3918: 3906: 3877: 3871: 3869: 3863: 3858: 3854: 3850: 3842: 3837: 3831: 3823: 3821: 3814: 3805: 3785: 3781: 3776: 3770: 3765: 3761: 3755: 3752: 3748: 3731: 3716: 3710: 3706: 3703: 3700: 3697: 3694: 3680: 3675: 3666: 3665: 3664: 3660: 3653: 3634: 3630: 3625: 3620: 3614: 3608: 3604: 3600: 3594: 3591: 3588: 3585: 3581: 3574: 3570: 3566: 3563: 3560: 3556: 3539: 3524: 3518: 3514: 3509: 3505: 3500: 3497: 3494: 3480: 3475: 3464: 3448: 3444: 3439: 3434: 3428: 3422: 3418: 3414: 3408: 3405: 3402: 3399: 3395: 3388: 3384: 3380: 3377: 3374: 3370: 3353: 3338: 3332: 3328: 3323: 3319: 3314: 3311: 3308: 3294: 3289: 3278: 3275: 3272: 3265: 3245: 3241: 3236: 3228: 3224: 3219: 3216: 3210: 3207: 3202: 3198: 3194: 3191: 3188: 3184: 3167: 3152: 3146: 3142: 3139: 3136: 3133: 3130: 3116: 3111: 3102: 3101: 3100: 3083: 3079: 3074: 3066: 3062: 3057: 3054: 3048: 3045: 3040: 3036: 3032: 3029: 3026: 3022: 3005: 2990: 2984: 2980: 2977: 2974: 2971: 2968: 2954: 2949: 2940: 2939: 2938: 2931: 2921: 2907: 2898: 2891: 2887: 2877: 2871: 2846: 2832: 2827: 2820: 2813: 2809: 2799: 2794: 2787: 2780: 2775: 2774: 2773: 2767: 2758: 2734: 2728: 2703: 2697: 2694: 2689: 2683: 2679: 2673: 2669: 2666: 2663: 2647: 2641: 2637: 2632: 2624: 2620: 2613: 2606: 2605: 2604: 2586: 2576: 2567: 2562: 2558: 2554: 2527: 2524: 2518: 2503: 2488: 2481: 2477: 2472: 2467: 2463: 2455: 2454: 2453: 2452: 2439: 2437: 2435: 2425: 2387: 2381: 2375: 2372: 2368: 2354: 2347: 2341: 2338: 2329: 2325: 2322: 2316: 2311: 2307: 2298: 2292: 2289: 2285: 2280: 2266: 2261: 2252: 2251: 2250: 2248: 2232: 2226: 2218: 2203: 2179: 2176: 2172: 2158: 2143: 2139: 2136: 2133: 2130: 2116: 2111: 2102: 2101: 2100: 2093: 2091: 2084: 2043: 2039: 2035: 2028: 2026: 2016: 2014: 2006: 2002: 1996: 1988: 1967: 1964: 1959: 1956: 1949: 1948: 1947: 1926: 1921: 1917: 1911: 1902: 1899: 1893: 1885: 1882: 1877: 1862: 1861: 1860: 1859: 1836: 1823: 1818: 1807: 1799: 1798: 1797: 1795: 1791: 1783: 1781: 1774: 1768: 1766: 1762: 1758: 1754: 1750: 1744: 1722: 1691: 1687: 1683: 1679: 1672: 1670: 1668: 1664: 1660: 1641: 1636: 1628: 1620: 1611: 1605: 1602: 1597: 1594: 1587: 1586: 1585: 1583: 1580:in a pipe or 1576: 1568: 1552: 1545: 1540: 1536: 1530: 1526: 1520: 1514: 1509: 1505: 1500: 1495: 1486: 1482: 1479: 1472: 1471: 1470: 1449: 1443: 1435: 1430: 1426: 1420: 1417: 1412: 1409: 1402: 1401: 1400: 1383: 1379: 1365: 1360: 1357: 1352: 1351: 1350: 1349: 1348: 1329: 1323: 1317: 1314: 1311: 1308: 1301: 1300: 1299: 1291: 1281: 1265: 1260: 1255: 1247: 1237: 1231: 1228: 1224: 1219: 1210: 1206: 1203: 1196: 1195: 1194: 1191: 1189: 1166: 1161: 1157: 1148: 1142: 1139: 1135: 1130: 1125: 1121: 1112: 1109: 1102: 1101: 1100: 1094: 1090: 1085: 1082: 1080: 1074: 1073: 1072: 1071: 1070: 1051: 1048: 1041: 1038: 1035: 1032: 1022: 1021: 1020: 1018: 1010: 1004: 999: 991: 989: 987: 983: 973: 966: 947: 942: 937: 933: 930: 926: 921: 917: 916: 915: 898: 891: 886: 882: 877: 874: 868: 863: 860: 855: 850: 846: 833: 832: 831: 813: =  809: 804: 785: 781: 771: 759: 735: 727: 724: 717: 713: 712:flow velocity 694: 684: 672: 668: 664: 658: 653: 635: 631: 623: 608: 601: 600: 599: 597: 593: 584: 576: 551: 544: 540: 534: 526: 516: 511: 508: 503: 492: 488: 483: 479: 466: 465: 464: 457: 443: 441: 439: 434: 430: 426: 422: 418: 402: 382: 355: 350: 345: 342: 339: 336: 329: 328: 327: 321: 305: 298: 296:of the fluid. 295: 279: 272: 269: 253: 246: 231: 224: 209: 199: 198: 197: 177: 174: 171: 164: 160: 156: 150: 147: 144: 141: 131: 130: 129: 126: 124: 120: 116: 115:Antoine Chézy 111: 108: 104: 100: 96: 92: 84: 82: 80: 76: 75:dimensionless 71: 69: 65: 64:Moody diagram 61: 57: 53: 50:loss, due to 49: 45: 41: 37: 33: 19: 6161:Rescue tools 6126:Drive system 6094:Technologies 6054: 5902: 5879: 5870: 5851: 5839: 5811: 5800: 5783: 5779: 5769: 5752: 5748: 5738: 5726:. Retrieved 5719:the original 5690: 5686: 5673: 5640: 5636: 5618: 5612: 5595: 5569: 5565: 5545:digital form 5538: 5534: 5506:. Retrieved 5478: 5474: 5458: 5439: 5433: 5311: 5293: 5287: 5277: 5253: 5246: 5241:, p. 39 5234: 5229:, p. 37 5222: 5210: 5198: 5186: 5167: 5161: 5134: 4981: 4968: 4955: 4942: 4908:Euler number 4867: 4853: 4849:, head loss 4832: 4810:laminar flow 4807: 4788: 4684: 4659: 4651: 4643: 4612: 4593: 4584: 4561: 4532: 4521: 4512: 4487: 4461: 4458: 4320: 4307: 4291: 4288: 4272: 4262: 4259: 4104: 4101: 4002: 3995: 3916: 3904: 3881: 3873: 3861: 3840: 3833: 3812: 3803: 3800: 3661: 3651: 3648: 3462: 3276: 3273: 3263: 3260: 3098: 2929: 2919: 2916: 2905: 2896: 2889: 2885: 2875: 2844: 2830: 2818: 2811: 2807: 2797: 2785: 2778: 2765: 2756: 2735: 2726: 2719: 2598: 2584: 2574: 2565: 2560: 2544: 2450: 2443: 2423: 2416: 2230: 2227: 2216: 2201: 2194: 2097: 2082: 2069: 2037: 2020: 2007: 2003: 1999:Re < 2000 1984: 1941: 1851: 1787: 1772: 1769: 1760: 1742: 1720: 1717: 1681: 1659:shear stress 1656: 1582:open channel 1572: 1464: 1369: 1361: 1353: 1346: 1345: 1344: 1289: 1285: 1192: 1187: 1181: 1098: 1086: 1078: 1075: 1068: 1067: 1066: 1008: 1002: 995: 979: 971: 964: 945: 935: 919: 913: 807: 770:laminar flow 767: 670: 666: 662: 660:; otherwise 656: 582: 574: 566: 455: 447: 374: 325: 270:of the pipe. 222:: head loss. 195: 127: 112: 88: 78: 72: 35: 29: 6106:Accumulator 6029:Fluid power 5643:: 267–285. 4974:Re > 500 4673:wetted area 4600:Henry Darcy 3849:Moody chart 2081:0.006 < 1757:L. F. Moody 723:wetted area 710:, the mean 590:(SI units: 95:Henry Darcy 91:Moody chart 56:Henry Darcy 6207:Categories 6192:Manchester 6019:Hydraulics 6005:Hydraulics 5598:. London. 5239:Brown 2002 5227:Brown 2002 5215:Brown 2002 5203:Brown 2002 5191:Brown 2002 5118:References 4928:Water pipe 4864:Advantages 4814:flow lines 4634:calculator 4321:Note that 1942:and where 6182:Liverpool 6101:Machinery 5665:120958504 5400:for  5392:− 5355:⁡ 5153:144609617 5087:ε 5028:⁡ 5019:− 4854:decreases 4767:⟩ 4761:⟨ 4756:⋅ 4748:ρ 4743:⋅ 4714:∝ 4708:Δ 4436:⟩ 4430:⟨ 4425:ρ 4418:⋅ 4405:⋅ 4383:⟩ 4377:⟨ 4372:ρ 4366:⋅ 4353:⋅ 4332:Δ 4227:ε 4222:ν 4180:⋅ 4153:⋅ 4145:ε 4131:∗ 4054:ν 3978:⟩ 3972:⟨ 3766:∗ 3707:⁡ 3698:− 3609:∗ 3601:− 3595:⁡ 3589:− 3575:∗ 3515:⁡ 3498:− 3423:∗ 3415:− 3409:⁡ 3403:− 3389:∗ 3329:⁡ 3312:− 3229:∗ 3217:− 3211:⁡ 3203:∗ 3143:⁡ 3134:− 3067:∗ 3055:− 3049:⁡ 3041:∗ 2981:⁡ 2972:− 2695:ε 2690:⋅ 2670:⁡ 2625:∗ 2561:Figure 3. 2525:ε 2468:∗ 2342:⁡ 2323:− 2293:⁡ 2177:− 2140:⁡ 2088:< 0.06 2038:Figure 2. 1968:ρ 1965:μ 1957:ν 1922:ν 1915:⟩ 1909:⟨ 1897:⟩ 1891:⟨ 1886:μ 1883:ρ 1682:Figure 1. 1657:The wall 1632:⟩ 1626:⟨ 1621:ρ 1595:τ 1573:The mean 1521:⋅ 1506:π 1496:⋅ 1447:⟩ 1441:⟨ 1418:π 1327:⟩ 1321:⟨ 1318:⋅ 1251:⟩ 1245:⟨ 1238:⋅ 1220:⋅ 1155:Δ 1149:⋅ 1140:ρ 1119:Δ 1046:Δ 1039:ρ 1030:Δ 998:head loss 875:μ 869:⋅ 864:π 844:Δ 698:⟩ 692:⟨ 609:ρ 530:⟩ 524:⟨ 517:⋅ 509:ρ 504:⋅ 477:Δ 403:β 383:α 351:β 343:α 207:Δ 151:⋅ 139:Δ 44:head loss 40:empirical 6131:Manifold 6121:Cylinder 6043:Modeling 6012:Concepts 5950:Archived 5937:Archived 5920:Archived 5715:59433444 5503:15642454 5259:Archived 4892:See also 3878:is known 3280: : 2881:< 100 2836:> 100 2436:theory. 2247:function 2243:Lambert 1755:, after 1661:has the 1019:drop is 1017:pressure 423:, where 294:velocity 268:diameter 52:friction 48:pressure 6116:Circuit 5728:25 June 5695:Bibcode 5645:Bibcode 5508:25 June 5483:Bibcode 4801:to the 4664:⁠ 4647:⁠ 4628:or the 4590:History 4578:⁠ 4566:⁠ 4552:⁠ 4540:⁠ 4507:⁠ 4495:⁠ 4478:⁠ 4466:⁠ 4000:√ 3914:√ 2935:< 50 2928:1 < 2874:5 < 2866:⁠ 2854:⁠ 2783:, then 2751:⁠ 2739:⁠ 2724:versus 2421:√ 2214:√ 2199:√ 2063:⁠ 2051:⁠ 1856:is the 1765:Blasius 1711:⁠ 1699:⁠ 1688:versus 1667:pascals 1663:SI unit 1093:gravity 962:⁠ 950:⁠ 939:is the 927:of the 923:is the 827:⁠ 815:⁠ 805:alone ( 587:⁠ 570:⁠ 196:where: 6228:Piping 6187:London 5886:  5858:  5827:  5713:  5663:  5501:  5446:  5174:  5151:  5141:  4608:Saxony 2851:, and 2803:< 5 2580:< 1 2391:  2379:  2180:0.537. 1852:where 1669:(Pa). 1347:where: 1182:where 1095:(m/s). 1069:where: 976:(m/s). 914:where 756:, the 725:(m/s); 682:) (m); 671:= 4A/P 650:, the 421:France 101:, and 38:is an 34:, the 6146:Press 6136:Motor 6111:Brake 5722:(PDF) 5711:S2CID 5683:(PDF) 5661:S2CID 5531:(PDF) 5499:S2CID 5471:(PDF) 5415:3000. 4934:Notes 4833:In a 3381:0.305 3137:1.930 3099:and 3033:0.305 2828:When 2795:When 2776:When 2642:1.930 2388:0.629 2376:0.838 2355:1.930 2330:1.930 2326:0.537 2286:1.930 2134:1.930 929:fluid 375:with 46:, or 6166:Seal 6151:Pump 5884:ISBN 5856:ISBN 5825:ISBN 5730:2016 5510:2016 5444:ISBN 5412:> 5172:ISBN 5149:OCLC 5139:ISBN 5036:2.51 5022:2.00 4680:area 3834:For 3717:2.51 3701:2.00 3567:0.34 3525:1.91 3501:1.93 3463:and 3339:2.51 3195:0.34 3153:1.90 2991:2.51 2911:= 10 2895:) = 2817:) = 2680:1.90 2040:The 1788:For 1692:for 1684:The 1292:> 1288:< 1006:(or 996:The 974:> 970:< 768:For 395:and 58:and 6156:Ram 5817:doi 5788:doi 5757:doi 5753:133 5703:doi 5691:595 5653:doi 5641:564 5600:doi 5574:doi 5570:129 5539:361 5491:doi 5479:538 5395:0.8 5352:log 5080:3.7 5025:log 4805:). 4606:of 3771:3.3 3704:log 3657:→ ∞ 3592:exp 3506:log 3406:exp 3320:log 3315:2.0 3269:→ ∞ 3208:exp 3140:log 3046:exp 2978:log 2781:= 0 2667:log 2137:log 1665:of 1469:is 1298:is 1190:). 861:128 66:or 30:In 6209:: 5901:. 5823:. 5782:. 5778:. 5751:. 5747:. 5709:. 5701:. 5689:. 5685:. 5659:. 5651:. 5639:. 5627:^ 5586:^ 5568:. 5564:. 5552:^ 5537:. 5533:. 5518:^ 5497:. 5489:. 5477:. 5473:. 5302:^ 5267:^ 5147:. 5125:^ 4575:Re 4569:16 4564:= 4549:Re 4543:64 4538:= 4519:. 4504:Re 4498:64 4493:= 4475:Re 4469:16 4464:= 4281:. 4111:, 4011:: 3998:Re 3925:, 3615:26 3510:10 3466:: 3429:26 3324:10 3220:11 3058:11 2842:, 2840:Re 2603:: 2553:. 2419:Re 2348:10 2339:ln 2317:10 2299:10 2290:ln 2249:: 2239:Re 2212:Re 2197:Re 2073:Re 1854:Re 1824:64 1399:, 988:. 948:= 824:Re 818:64 764:). 592:Pa 318:: 292:: 266:: 97:, 70:. 6081:) 6077:( 5997:e 5990:t 5983:v 5905:. 5892:. 5864:. 5833:. 5819:: 5794:. 5790:: 5784:7 5763:. 5759:: 5732:. 5705:: 5697:: 5667:. 5655:: 5647:: 5606:. 5602:: 5580:. 5576:: 5547:. 5512:. 5493:: 5485:: 5452:. 5408:e 5405:R 5388:) 5379:D 5374:f 5367:e 5364:R 5359:( 5349:2 5346:= 5337:D 5332:f 5327:1 5180:. 5155:. 5096:) 5090:D 5077:1 5072:+ 5061:D 5056:f 5049:e 5046:R 5041:1 5032:( 5016:= 5007:D 5002:f 4997:1 4858:D 4851:S 4847:Q 4843:S 4839:Q 4795:π 4772:2 4764:v 4751:2 4738:D 4735:L 4730:= 4727:q 4722:D 4719:L 4711:p 4695:D 4691:L 4669:V 4660:L 4656:/ 4652:p 4650:Δ 4616:D 4613:f 4581:. 4572:/ 4562:f 4555:. 4546:/ 4536:D 4533:f 4516:D 4513:f 4501:/ 4491:D 4488:f 4483:f 4472:/ 4462:f 4441:2 4433:v 4422:2 4413:D 4410:L 4402:f 4399:= 4394:2 4388:2 4380:v 4361:D 4358:L 4347:D 4342:f 4338:= 4335:p 4316:f 4311:D 4308:f 4303:f 4295:D 4292:f 4279:Q 4275:⟩ 4273:v 4271:⟨ 4266:D 4263:f 4239:D 4232:S 4218:g 4210:2 4207:1 4202:= 4189:8 4185:1 4172:D 4167:f 4160:e 4157:R 4148:D 4140:= 4127:R 4108:∗ 4105:R 4083:3 4079:D 4071:S 4064:g 4061:2 4051:1 4046:= 4038:D 4033:f 4026:e 4023:R 4006:D 4003:f 3975:v 3967:D 3964:S 3961:g 3958:2 3952:= 3944:D 3939:f 3920:D 3917:f 3908:D 3905:f 3900:S 3896:ε 3892:D 3888:ν 3884:g 3875:S 3865:D 3862:f 3844:D 3841:f 3816:∗ 3813:R 3807:∗ 3804:R 3786:. 3782:) 3777:) 3762:R 3756:+ 3753:1 3749:( 3737:D 3732:f 3725:e 3722:R 3711:( 3695:= 3686:D 3681:f 3676:1 3655:∗ 3652:R 3635:, 3631:) 3626:} 3621:) 3605:R 3586:1 3582:( 3571:R 3564:+ 3561:1 3557:{ 3545:D 3540:f 3533:e 3530:R 3519:( 3495:= 3486:D 3481:f 3476:1 3449:, 3445:) 3440:} 3435:) 3419:R 3400:1 3396:( 3385:R 3378:+ 3375:1 3371:{ 3359:D 3354:f 3347:e 3344:R 3333:( 3309:= 3300:D 3295:f 3290:1 3267:∗ 3264:R 3246:, 3242:) 3237:) 3225:R 3199:R 3192:+ 3189:1 3185:( 3173:D 3168:f 3161:e 3158:R 3147:( 3131:= 3122:D 3117:f 3112:1 3084:, 3080:) 3075:) 3063:R 3037:R 3030:+ 3027:1 3023:( 3011:D 3006:f 2999:e 2996:R 2985:( 2975:2 2969:= 2960:D 2955:f 2950:1 2933:∗ 2930:R 2923:∗ 2920:R 2909:∗ 2906:R 2900:∗ 2897:R 2893:∗ 2890:R 2888:( 2886:B 2879:∗ 2876:R 2869:. 2863:D 2860:/ 2857:ε 2848:D 2845:f 2834:∗ 2831:R 2822:∗ 2819:R 2815:∗ 2812:R 2810:( 2808:B 2801:∗ 2798:R 2789:∗ 2786:R 2779:ε 2769:∗ 2766:R 2760:∗ 2757:R 2748:D 2745:/ 2742:ε 2730:∗ 2727:R 2722:B 2704:) 2698:D 2684:8 2674:( 2664:+ 2653:D 2648:f 2638:1 2633:= 2630:) 2621:R 2617:( 2614:B 2601:B 2593:B 2588:∗ 2585:R 2578:∗ 2575:R 2569:∗ 2566:R 2551:D 2547:ε 2528:D 2519:) 2509:D 2504:f 2497:e 2494:R 2489:( 2482:8 2478:1 2473:= 2464:R 2446:ε 2427:D 2424:f 2402:) 2398:e 2395:R 2385:( 2382:W 2373:= 2369:) 2364:e 2361:R 2351:) 2345:( 2312:( 2308:W 2302:) 2296:( 2281:= 2272:D 2267:f 2262:1 2245:W 2234:D 2231:f 2220:D 2217:f 2205:D 2202:f 2173:) 2164:D 2159:f 2152:e 2149:R 2144:( 2131:= 2122:D 2117:f 2112:1 2086:D 2083:f 2075:( 2060:D 2057:/ 2054:ε 2011:ε 1991:D 1960:= 1944:μ 1927:, 1918:D 1912:v 1903:= 1900:D 1894:v 1878:= 1874:e 1871:R 1837:, 1831:e 1828:R 1819:= 1813:D 1808:f 1776:D 1773:f 1745:⟩ 1743:v 1741:⟨ 1737:ν 1733:ε 1729:D 1724:D 1721:f 1708:D 1705:/ 1702:ε 1642:. 1637:2 1629:v 1616:D 1612:f 1606:8 1603:1 1598:= 1578:τ 1553:. 1546:5 1541:c 1537:D 1531:2 1527:Q 1515:g 1510:2 1501:8 1491:D 1487:f 1483:= 1480:S 1467:Q 1450:. 1444:v 1436:2 1431:c 1427:D 1421:4 1413:= 1410:Q 1384:c 1380:D 1363:A 1355:Q 1330:, 1324:v 1315:A 1312:= 1309:Q 1296:Q 1290:v 1266:. 1261:D 1256:2 1248:v 1232:g 1229:2 1225:1 1215:D 1211:f 1207:= 1204:S 1188:m 1184:L 1167:, 1162:L 1158:p 1143:g 1136:1 1131:= 1126:L 1122:h 1113:= 1110:S 1088:g 1079:h 1077:Δ 1052:, 1049:h 1042:g 1036:= 1033:p 1012:f 1009:h 1003:h 1001:Δ 972:v 968:c 965:D 959:4 956:/ 953:π 946:Q 936:Q 920:μ 899:, 892:4 887:c 883:D 878:Q 856:= 851:L 847:p 821:/ 811:D 808:f 786:c 782:D 762:λ 741:D 736:f 719:Q 695:v 680:P 676:A 667:H 663:D 657:D 636:H 632:D 596:m 594:/ 583:L 579:/ 575:p 573:Δ 552:, 545:H 541:D 535:2 527:v 512:2 498:D 493:f 489:= 484:L 480:p 461:L 456:p 454:Δ 450:D 356:V 346:+ 340:= 337:f 322:. 306:g 280:V 254:D 232:L 210:H 178:D 175:g 172:2 165:2 161:V 157:L 148:f 145:= 142:H 20:)

Index

Darcy-Weisbach equation
fluid dynamics
empirical
head loss
pressure
friction
Henry Darcy
Julius Weisbach
Moody diagram
Colebrook equation
dimensionless
Moody chart
Henry Darcy
Julius Weisbach
Lewis Ferry Moody
Bernoulli's equation
Antoine Chézy
hydraulic radius
Gaspard de Prony
diameter
velocity
acceleration due to gravity
United States of America
France
Prony equation
dimensional analysis
boundary layer
Reynolds number
Pa
m

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.