Knowledge (XXG)

Dark-field microscopy

Source đź“ť

382: 401: 133: 363: 347: 466: 888: 235: 1675: 989: 532: 36: 1687: 1001: 292: 141: 570:
This a mathematical technique intermediate between direct and reciprocal (Fourier-transform) space for exploring images with well-defined periodicities, like electron microscope lattice-fringe images. As with analog dark-field imaging in a transmission electron microscope, it allows one to "light up"
332:
While the dark-field image may first appear to be a negative of the bright-field image, different effects are visible in each. In bright-field microscopy, features are visible where either a shadow is cast on the surface by the incident light or a part of the surface is less reflective, possibly by
515:
This animation illustrates movement of an aperture (centered in the orange figure at left) over the power spectrum (a digital substitute for the back focal-plane's optical diffraction pattern) shown with the DC peak (or unscattered beam) below center. Only nanocrystals with projected periodicities
484:
Briefly, imaging involves tilting the incident illumination until a diffracted, rather than the incident, beam passes through a small objective aperture in the objective lens back focal plane. Dark-field images, under these conditions, allow one to map the diffracted intensity coming from a single
492:
allow one to "light up" only those lattice defects, like dislocations or precipitates, that bend a single set of lattice planes in their neighborhood. Analysis of intensities in such images may then be used to estimate the amount of that bending. In polycrystalline specimens, on the other hand,
219:. It works by illuminating the sample with light that will not be collected by the objective lens and thus will not form part of the image. This produces the classic appearance of a dark, almost black, background with bright objects on it. 195:(NA) of the objective lens must be less than 1.0. Objective lenses with a higher NA can be used but only if they have an adjustable diaphragm, which reduces the NA. Often these objective lenses have a NA that is variable from 0.7 to 1.25. 144: 148: 147: 143: 142: 149: 333:
the presence of pits or scratches. Raised features that are too smooth to cast shadows will not appear in bright-field images, but the light that reflects off the sides of the feature will be visible in the dark-field images.
400: 381: 303:
biological samples, such as a smear from a tissue culture or individual, water-borne, single-celled organisms. Considering the simplicity of the setup, the quality of images obtained from this technique is impressive.
146: 307:
One limitation of dark-field microscopy is the low light levels seen in the final image. This means that the sample must be very strongly illuminated, which can cause damage to the sample.
362: 516:
that diffract into the aperture light up in the dark-field image at right. The aperture is moving by 1.25° increments around the ring associated with diffraction from gold 2.3 
191:
lens must be used, which directs a cone of light away from the objective lens. To maximize the scattered light-gathering power of the objective lens, oil immersion is used and the
1319: 346: 254:(see figure), blocks some light from the light source, leaving an outer ring of illumination. A wide phase annulus can also be reasonably substituted at low magnification. 145: 931: 476:
Dark-field studies in transmission electron microscopy play a powerful role in the study of crystals and crystal defects, as well as in the imaging of individual atoms.
1302: 1297: 554:
requires one to form images with electrons diffracted into an annular aperture centered on, but not including, the unscattered beam. For large scattering angles in a
625:
S. Patskovsky; et al. (2014). "Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy".
1446: 1149: 1436: 1039: 842: 311: 1339: 1312: 770: 1247: 1307: 555: 1451: 1718: 1267: 974: 969: 837: 53: 1391: 1257: 1204: 571:
those objects in the field of view where periodicities of interest reside. Unlike analog dark-field imaging it may also allow one to map the
1646: 1374: 1359: 1285: 684: 509: 936: 872: 852: 180:, which exclude the unscattered beam from the image. Consequently, the field around the specimen (i.e., where there is no specimen to 1396: 1229: 1082: 1032: 668: 119: 100: 72: 1384: 1379: 1277: 1252: 1219: 916: 912: 763: 460: 543:
rather than the diffracted beam itself. In this way, much higher resolution of strained regions around defects can be obtained.
1456: 1441: 1421: 410: 1159: 1224: 1067: 941: 79: 57: 1691: 1401: 1364: 1209: 1005: 485:
collection of diffracting planes as a function of projected position on the specimen and as a function of specimen tilt.
1713: 1679: 1239: 1025: 86: 993: 756: 1426: 1344: 959: 584: 551: 493:
dark-field images serve to light up only that subset of crystals that are Bragg-reflecting at a given orientation.
387: 443:
embedded in cells. In a recent publication, Patskovsky et al. used this technique to study the attachment of gold
68: 46: 832: 703: 613: 406: 154: 1651: 1605: 1431: 1641: 575:
of periodicities, and hence phase gradients, which provide quantitative information on vector lattice strain.
427:
to allow the mouse to work on transparent glass by imaging microscopic flaws and dust on the glass's surface.
132: 1354: 1290: 1164: 1123: 920: 902: 817: 713: 372: 368: 318: 299:
Dark-field microscopy is a very simple yet effective technique and well suited for uses involving live and
1544: 822: 589: 1549: 436: 310:
Dark-field microscopy techniques are almost entirely free of halo or relief-style artifacts typical of
282:
Only the scattered light goes on to produce the image, while the directly transmitted light is omitted.
1554: 1113: 391: 1519: 1504: 1411: 1406: 1349: 1214: 1196: 1128: 1118: 1062: 1048: 907: 847: 488:
In single-crystal specimens, single-reflection dark-field images of a specimen tilted just off the
353: 264:
The light enters the sample. Most is directly transmitted, while some is scattered from the sample.
228: 177: 93: 1590: 1169: 1133: 798: 539:
Weak-beam imaging involves optics similar to conventional dark-field, but uses a diffracted beam
317:
The interpretation of dark-field images must be done with great care, as common dark features of
300: 204: 192: 188: 742: 723: 465: 1534: 1529: 664: 642: 322: 216: 212: 1484: 1416: 887: 877: 728: 698: 634: 326: 173: 1539: 964: 531: 489: 1494: 1108: 857: 321:
images may be invisible, and vice versa. In general the dark-field image lacks the low
258: 234: 1707: 1570: 1514: 1174: 926: 444: 440: 424: 1621: 562:-contrast imaging because of the enhanced scattering from high-atomic-number atoms. 337:
Comparison of transillumination techniques used to generate contrast in a sample of
17: 1631: 1595: 1489: 1479: 1154: 1103: 732: 338: 1575: 1509: 1499: 508: 35: 1656: 1077: 1072: 862: 791: 779: 659:
P. Hirsch, A. Howie, R. Nicholson, D. W. Pashley and M. J. Whelan (1965/1977)
244: 181: 169: 512:
Digital dark-field simulation of 2 nm metal particles on a nano-cylinder
1524: 1179: 470: 439:, dark-field microscopy becomes a powerful tool for the characterization of 646: 638: 1626: 1092: 594: 208: 1636: 1580: 1262: 291: 1017: 1600: 867: 748: 238:
Diagram illustrating the light path through a dark-field microscope
530: 507: 464: 314:. This comes at the expense of sensitivity to phase information. 290: 233: 139: 131: 1585: 517: 448: 1021: 752: 733:
Modern dark-field microscopy and the history of its development
718: 295:
Dark-field microscopy produces an image with a dark background
29: 325:
associated with the bright-field image, making the image a
352:
Dark-field illumination, sample contrast comes from light
431:
Dark-field microscopy combined with hyperspectral imaging
932:
Total internal reflection fluorescence microscopy (TIRF)
136:
Red blood cells as seen by darkfield microscopy x 1000
495: 413:
of different path lengths of light through the sample
390:
illumination, sample contrast comes from rotation of
275:
simply misses the lens and is not collected due to a
970:
Photo-activated localization microscopy (PALM/STORM)
714:
Nikon - Stereomicroscopy > Darkfield Illumination
1614: 1563: 1472: 1465: 1332: 1276: 1238: 1195: 1188: 1142: 1091: 1055: 950: 895: 808: 423:Dark-field microscopy has recently been applied in 60:. Unsourced material may be challenged and removed. 737:Transactions of the American Microscopical Society 227:The steps are illustrated in the figure where an 341:(1.559 ÎĽm/pixel when viewed at full resolution) 1447:Serial block-face scanning electron microscopy 1150:Detectors for transmission electron microscopy 547:Low- and high-angle annular dark-field imaging 1033: 873:Interference reflection microscopy (IRM/RICM) 764: 455:Transmission electron microscope applications 312:differential interference contrast microscopy 8: 1469: 1192: 1040: 1026: 1018: 771: 757: 749: 663:(Butterworths/Krieger, London/Malabar FL) 535:Digital dark-field image of internal twins 743:Dark field and phase contrast microscopes 556:scanning transmission electron microscope 409:illumination, sample contrast comes from 371:illumination, sample contrast comes from 120:Learn how and when to remove this message 843:Differential interference contrast (DIC) 606: 335: 838:Quantitative phase-contrast microscopy 329:version of the underlying structure. 153:Operating principle of dark-field and 271:enters the objective lens, while the 261:focuses the light towards the sample. 7: 1686: 1000: 965:Stimulated emission depletion (STED) 661:Electron microscopy of thin crystals 58:adding citations to reliable sources 187:In optical microscopes a darkfield 25: 1083:Timeline of microscope technology 937:Lightsheet microscopy (LSFM/SPIM) 1685: 1674: 1673: 999: 988: 987: 886: 461:transmission electron microscopy 399: 380: 361: 345: 34: 1442:Precession electron diffraction 502:dark-field imaging of crystals 480:Conventional dark-field imaging 425:computer mouse pointing devices 247:for illumination of the sample. 45:needs additional citations for 942:Lattice light-sheet microscopy 853:Second harmonic imaging (SHIM) 469:Weak-beam DF of strain around 211:technique used to enhance the 1: 1719:Optical microscopy techniques 724:Darkfield Illumination Primer 614:Nikon: Darkfield Illumination 199:Light microscopy applications 184:the beam) is generally dark. 704:Resources in other libraries 287:Advantages and disadvantages 250:A specially sized disc, the 566:Digital dark-field analysis 558:, this is sometimes called 1735: 1427:Immune electron microscopy 1345:Annular dark-field imaging 1160:Everhart–Thornley detector 585:Annular dark-field imaging 552:Annular dark-field imaging 458: 273:directly transmitted light 207:, dark-field describes an 1669: 1581:Hitachi High-Technologies 983: 884: 786: 699:Resources in your library 277:direct-illumination block 1606:Thermo Fisher Scientific 1432:Geometric phase analysis 1320:Aberration-Corrected TEM 520:(111) lattice spacings. 394:light through the sample 1355:Charge contrast imaging 1165:Field electron emission 903:Fluorescence microscopy 863:Structured illumination 818:Bright-field microscopy 627:Journal of Biophotonics 319:bright-field microscopy 69:"Dark-field microscopy" 1545:Thomas Eugene Everhart 975:Near-field (NSOM/SNOM) 913:Multiphoton microscopy 745:(UniversitĂ© Paris Sud) 719:Molecular Expressions 639:10.1002/jbio.201400025 590:Light field microscopy 536: 513: 473: 375:of light in the sample 296: 239: 166:dark-ground microscopy 158: 137: 1550:Vernon Ellis Cosslett 1370:Dark-field microscopy 828:Dark-field microscopy 690:Dark-field microscopy 534: 511: 468: 437:hyperspectral imaging 388:Cross-polarized light 294: 237: 162:Dark-field microscopy 152: 135: 1555:Vladimir K. Zworykin 1205:Correlative light EM 1114:Electron diffraction 896:Fluorescence methods 222: 54:improve this article 27:Laboratory technique 18:Darkfield microscope 1714:Electron microscopy 1520:Manfred von Ardenne 1505:Gerasimos Danilatos 1412:Electron tomography 1407:Electron holography 1350:Cathodoluminescence 1129:Secondary electrons 1119:Electron scattering 1063:Electron microscopy 1049:Electron microscopy 927:Image deconvolution 908:Confocal microscopy 848:Dispersion staining 823:Köhler illumination 471:nuclear track cores 323:spatial frequencies 229:inverted microscope 178:electron microscopy 1642:Digital Micrograph 1248:Environmental SEM 1170:Field emission gun 1134:X-ray fluorescence 799:Optical microscopy 780:Optical microscopy 537: 514: 474: 447:(AuNPs) targeting 297: 240: 205:optical microscopy 193:numerical aperture 159: 138: 1701: 1700: 1665: 1664: 1535:Nestor J. Zaluzec 1530:Maximilian Haider 1328: 1327: 1015: 1014: 960:Diffraction limit 685:Library resources 527:Weak-beam imaging 524: 523: 243:Light enters the 172:methods, in both 150: 130: 129: 122: 104: 16:(Redirected from 1726: 1689: 1688: 1677: 1676: 1485:Bodo von Borries 1470: 1230:Photoemission EM 1193: 1042: 1035: 1028: 1019: 1003: 1002: 991: 990: 953:limit techniques 890: 811:contrast methods 809:Illumination and 773: 766: 759: 750: 672: 657: 651: 650: 622: 616: 611: 496: 451:+ cancer cells. 435:When coupled to 419:Use in computing 403: 384: 365: 349: 223:The light's path 151: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 1734: 1733: 1729: 1728: 1727: 1725: 1724: 1723: 1704: 1703: 1702: 1697: 1661: 1610: 1559: 1540:Ondrej Krivanek 1461: 1324: 1272: 1234: 1220:Liquid-Phase EM 1184: 1143:Instrumentation 1138: 1096: 1087: 1051: 1046: 1016: 1011: 979: 952: 951:Sub-diffraction 946: 891: 882: 810: 804: 782: 777: 710: 709: 708: 693: 692: 688: 681: 676: 675: 658: 654: 624: 623: 619: 612: 608: 603: 581: 568: 549: 529: 490:Bragg condition 482: 463: 457: 433: 421: 414: 404: 395: 385: 376: 366: 357: 350: 289: 269:scattered light 225: 201: 140: 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 1732: 1730: 1722: 1721: 1716: 1706: 1705: 1699: 1698: 1696: 1695: 1683: 1670: 1667: 1666: 1663: 1662: 1660: 1659: 1654: 1649: 1647:Direct methods 1644: 1639: 1634: 1629: 1624: 1618: 1616: 1612: 1611: 1609: 1608: 1603: 1598: 1593: 1588: 1583: 1578: 1573: 1567: 1565: 1561: 1560: 1558: 1557: 1552: 1547: 1542: 1537: 1532: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1495:Ernst G. Bauer 1492: 1487: 1482: 1476: 1474: 1467: 1463: 1462: 1460: 1459: 1454: 1449: 1444: 1439: 1434: 1429: 1424: 1419: 1414: 1409: 1404: 1399: 1394: 1389: 1388: 1387: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1336: 1334: 1330: 1329: 1326: 1325: 1323: 1322: 1317: 1316: 1315: 1305: 1300: 1295: 1294: 1293: 1282: 1280: 1274: 1273: 1271: 1270: 1265: 1260: 1255: 1250: 1244: 1242: 1236: 1235: 1233: 1232: 1227: 1222: 1217: 1212: 1207: 1201: 1199: 1190: 1186: 1185: 1183: 1182: 1177: 1172: 1167: 1162: 1157: 1152: 1146: 1144: 1140: 1139: 1137: 1136: 1131: 1126: 1121: 1116: 1111: 1109:Bremsstrahlung 1106: 1100: 1098: 1089: 1088: 1086: 1085: 1080: 1075: 1070: 1065: 1059: 1057: 1053: 1052: 1047: 1045: 1044: 1037: 1030: 1022: 1013: 1012: 1010: 1009: 997: 984: 981: 980: 978: 977: 972: 967: 962: 956: 954: 948: 947: 945: 944: 939: 934: 929: 924: 910: 905: 899: 897: 893: 892: 885: 883: 881: 880: 875: 870: 865: 860: 858:4Pi microscope 855: 850: 845: 840: 835: 833:Phase contrast 830: 825: 820: 814: 812: 806: 805: 803: 802: 795: 787: 784: 783: 778: 776: 775: 768: 761: 753: 747: 746: 740: 726: 721: 716: 707: 706: 701: 695: 694: 683: 682: 680: 679:External links 677: 674: 673: 652: 617: 605: 604: 602: 599: 598: 597: 592: 587: 580: 577: 567: 564: 548: 545: 528: 525: 522: 521: 504: 503: 481: 478: 459:Main article: 456: 453: 432: 429: 420: 417: 416: 415: 407:Phase-contrast 405: 398: 396: 386: 379: 377: 367: 360: 358: 351: 344: 342: 288: 285: 284: 283: 280: 265: 262: 259:condenser lens 255: 248: 224: 221: 200: 197: 155:phase-contrast 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1731: 1720: 1717: 1715: 1712: 1711: 1709: 1694: 1693: 1684: 1682: 1681: 1672: 1671: 1668: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1619: 1617: 1613: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1579: 1577: 1574: 1572: 1571:Carl Zeiss AG 1569: 1568: 1566: 1564:Manufacturers 1562: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1515:James Hillier 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1477: 1475: 1471: 1468: 1464: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1386: 1383: 1382: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1337: 1335: 1331: 1321: 1318: 1314: 1311: 1310: 1309: 1306: 1304: 1301: 1299: 1296: 1292: 1289: 1288: 1287: 1284: 1283: 1281: 1279: 1275: 1269: 1268:Ultrafast SEM 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1245: 1243: 1241: 1237: 1231: 1228: 1226: 1225:Low-energy EM 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1202: 1200: 1198: 1194: 1191: 1187: 1181: 1178: 1176: 1175:Magnetic lens 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1147: 1145: 1141: 1135: 1132: 1130: 1127: 1125: 1124:Kikuchi lines 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1105: 1102: 1101: 1099: 1094: 1090: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1060: 1058: 1054: 1050: 1043: 1038: 1036: 1031: 1029: 1024: 1023: 1020: 1008: 1007: 998: 996: 995: 986: 985: 982: 976: 973: 971: 968: 966: 963: 961: 958: 957: 955: 949: 943: 940: 938: 935: 933: 930: 928: 925: 922: 918: 914: 911: 909: 906: 904: 901: 900: 898: 894: 889: 879: 876: 874: 871: 869: 866: 864: 861: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 815: 813: 807: 801: 800: 796: 794: 793: 789: 788: 785: 781: 774: 769: 767: 762: 760: 755: 754: 751: 744: 741: 739:39(2):95–141. 738: 734: 730: 727: 725: 722: 720: 717: 715: 712: 711: 705: 702: 700: 697: 696: 691: 686: 678: 670: 669:0-88275-376-2 666: 662: 656: 653: 648: 644: 640: 636: 632: 628: 621: 618: 615: 610: 607: 600: 596: 593: 591: 588: 586: 583: 582: 578: 576: 574: 573:Fourier-phase 565: 563: 561: 557: 553: 546: 544: 542: 533: 526: 519: 510: 506: 505: 501: 498: 497: 494: 491: 486: 479: 477: 472: 467: 462: 454: 452: 450: 446: 445:nanoparticles 442: 441:nanomaterials 438: 430: 428: 426: 418: 412: 408: 402: 397: 393: 389: 383: 378: 374: 370: 364: 359: 356:by the sample 355: 348: 343: 340: 336: 334: 330: 328: 324: 320: 315: 313: 308: 305: 302: 293: 286: 281: 279:(see figure). 278: 274: 270: 266: 263: 260: 256: 253: 249: 246: 242: 241: 236: 232: 230: 220: 218: 215:in unstained 214: 210: 206: 198: 196: 194: 190: 185: 183: 179: 175: 171: 167: 164:(also called 163: 156: 134: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: â€“  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 1690: 1678: 1632:EM Data Bank 1596:Nion Company 1490:Dennis Gabor 1480:Albert Crewe 1369: 1258:Confocal SEM 1155:Electron gun 1104:Auger effect 1004: 992: 921:Three-photon 827: 797: 790: 736: 689: 660: 655: 630: 626: 620: 609: 572: 569: 559: 550: 540: 538: 499: 487: 483: 475: 434: 422: 411:interference 369:Bright-field 339:tissue paper 331: 316: 309: 306: 298: 276: 272: 268: 251: 226: 209:illumination 202: 186: 168:) describes 165: 161: 160: 157:microscopies 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 1576:FEI Company 1510:Harald Rose 1500:Ernst Ruska 1189:Microscopes 1097:with matter 1095:interaction 373:attenuation 327:high-passed 1708:Categories 1657:Multislice 1473:Developers 1333:Techniques 1078:Microscope 1073:Micrograph 917:Two-photon 792:Microscope 633:(5): 1–7. 500:Animation: 252:patch stop 245:microscope 170:microscopy 110:March 2017 80:newspapers 1525:Max Knoll 1180:Stigmator 601:Footnotes 392:polarized 354:scattered 301:unstained 231:is used. 189:condenser 1680:Category 1627:CrysTBox 1615:Software 1286:Cryo-TEM 1093:Electron 994:Category 731:. 1920. 647:24961507 595:Wavelets 579:See also 541:harmonic 213:contrast 1692:Commons 1340:4D STEM 1313:4D STEM 1291:Cryo-ET 1263:SEM-XRF 1253:CryoSEM 1210:Cryo-EM 1068:History 1006:Commons 729:Gage SH 217:samples 182:scatter 94:scholar 1637:EMsoft 1622:CASINO 1601:TESCAN 1466:Others 1365:cryoEM 1056:Basics 868:Sarfus 687:about 667:  645:  96:  89:  82:  75:  67:  1591:Leica 1437:PINEM 1303:HRTEM 1298:EFTEM 878:Raman 174:light 101:JSTOR 87:books 1652:IUCr 1586:JEOL 1457:WBDF 1452:WDXS 1402:EBIC 1397:EELS 1392:ECCI 1380:EBSD 1360:CBED 1308:STEM 665:ISBN 643:PMID 449:CD44 267:The 257:The 176:and 73:news 1422:FEM 1417:FIB 1385:TKD 1375:EDS 1278:TEM 1240:SEM 1215:EMP 635:doi 203:In 56:by 1710:: 1197:EM 919:, 735:. 641:. 629:. 1041:e 1034:t 1027:v 923:) 915:( 772:e 765:t 758:v 671:. 649:. 637:: 631:8 560:Z 518:Ă… 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Darkfield microscope

verification
improve this article
adding citations to reliable sources
"Dark-field microscopy"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

phase-contrast
microscopy
light
electron microscopy
scatter
condenser
numerical aperture
optical microscopy
illumination
contrast
samples
inverted microscope

microscope
condenser lens

unstained

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑