Knowledge

Davenport–Schinzel Sequences and Their Geometric Applications

Source 📝

427:, as the second chapter shows; the third concerns higher orders. The fourth chapter applies this theory to line segments, and includes a proof that the bounds proven using these tools are tight: there exist systems of line segments whose arrangement complexity matches the bounds on Davenport–Schinzel sequence length. 430:
The remaining chapters concern more advanced applications of these methods. Three chapters concern arrangements of curves in the plane, algorithms for arrangements, and higher-dimensional arrangements, following which the final chapter (comprising a large fraction of the book) concerns applications
455:
Although primarily aimed at researchers, this book (and especially its earlier chapters) could also be used as the textbook for a graduate course in its material. Reviewer Peter Hajnal calls it "very important to any specialist in computational geometry" and "highly recommended to anybody who is
116:, constrained by forbidding pairs of symbols from appearing in alternation more than a given number of times (regardless of what other symbols might separate them). In a Davenport–Schinzel sequence of order 330:
can have complexity that is only slightly superlinear. The book is about this family of results, both on bounding the lengths of Davenport–Schinzel sequences and on their applications to discrete geometry.
296: 425: 258: 226: 364: 318:, can be only slightly longer than its number of distinct symbols. This phenomenon has been used to prove corresponding near-linear bounds on various problems in 384: 316: 194: 174: 154: 134: 334:
The first three chapters of the book provide bounds on the lengths of Davenport–Schinzel sequences whose superlinearity is described in terms of the
97: 632: 617: 113: 627: 622: 86: 50: 436: 263: 389: 109: 559: 323: 231: 199: 505: 440: 335: 340: 456:
interested in this new topic at the border of combinatorics, geometry, and algorithm theory".
319: 82: 74: 32: 594: 533: 497: 105: 101: 568: 564: 537: 444: 432: 447:. The topic remains an active area of research and the book poses many open questions. 369: 301: 179: 159: 139: 119: 611: 156:. For instance, a Davenport–Schinzel sequence of order three could have two symbols 327: 78: 28: 366:. For instance, the length of a Davenport–Schinzel sequence of order three, with 488: 598: 550: 298:
would be forbidden. The length of such a sequence, for a given choice of
509: 528: 501: 439:, the construction of transversal lines through systems of objects, 20:
Davenport–Schinzel Sequences and Their Geometric Applications
583:
Davenport–Schinzel Sequences and Their Geometric Applications
555:
Davenport–Schinzel Sequences and Their Geometric Applications
524:
Davenport–Schinzel Sequences and Their Geometric Applications
484:
Davenport–Schinzel Sequences and Their Geometric Applications
70:
Davenport–Schinzel Sequences and Their Geometric Applications
108:, who applied them to certain problems in the theory of 392: 372: 343: 322:, for instance showing that the unbounded face of an 304: 266: 234: 202: 182: 162: 142: 122: 431:
of these combinatorial bounds to problems including
112:. They are finite sequences of symbols from a given 56: 46: 38: 24: 419: 378: 358: 310: 290: 252: 220: 188: 168: 148: 128: 136:, the longest allowed alternations have length 8: 19: 89:in 1995, with a paperback reprint in 2010. 482:Hajnal, Peter (December 1996), "Review of 18: 391: 371: 342: 303: 265: 233: 201: 181: 161: 141: 121: 465: 291:{\displaystyle x\dots y\dots x\dots y} 581:Nagy, Zoltán (July 1998), "Review of 7: 477: 475: 473: 471: 469: 420:{\displaystyle \Theta (n\alpha (n))} 393: 14: 196:that appear either in the order 260:, but longer alternations like 253:{\displaystyle y\dots x\dots y} 221:{\displaystyle x\dots y\dots x} 522:Brönnimann, Hervé, "Review of 414: 411: 405: 396: 353: 347: 1: 98:Davenport–Schinzel sequences 649: 359:{\displaystyle \alpha (n)} 336:inverse Ackermann function 87:Cambridge University Press 51:Cambridge University Press 599:10.1017/s0263574798241087 386:symbols, can be at most 437:nearest neighbor search 633:1995 non-fiction books 618:Combinatorics on words 451:Audience and reception 421: 380: 360: 312: 292: 254: 222: 190: 170: 150: 130: 110:differential equations 16:Book published in 1995 445:robot motion planning 422: 381: 361: 313: 293: 255: 223: 191: 171: 151: 131: 560:Mathematical Reviews 390: 370: 341: 302: 264: 232: 200: 180: 160: 140: 120: 77:. It was written by 553:(1996), "Review of 441:visibility problems 85:, and published by 21: 417: 376: 356: 308: 288: 250: 218: 186: 166: 146: 126: 628:Mathematics books 623:Discrete geometry 379:{\displaystyle n} 320:discrete geometry 311:{\displaystyle k} 189:{\displaystyle y} 169:{\displaystyle x} 149:{\displaystyle k} 129:{\displaystyle k} 83:Pankaj K. Agarwal 75:discrete geometry 66: 65: 33:Pankaj K. Agarwal 640: 602: 601: 578: 572: 571: 547: 541: 540: 519: 513: 512: 479: 433:Voronoi diagrams 426: 424: 423: 418: 385: 383: 382: 377: 365: 363: 362: 357: 317: 315: 314: 309: 297: 295: 294: 289: 259: 257: 256: 251: 227: 225: 224: 219: 195: 193: 192: 187: 175: 173: 172: 167: 155: 153: 152: 147: 135: 133: 132: 127: 106:Andrzej Schinzel 102:Harold Davenport 100:are named after 58:Publication date 22: 648: 647: 643: 642: 641: 639: 638: 637: 608: 607: 606: 605: 580: 579: 575: 549: 548: 544: 521: 520: 516: 502:10.1137/1038138 481: 480: 467: 462: 453: 388: 387: 368: 367: 339: 338: 300: 299: 262: 261: 230: 229: 198: 197: 178: 177: 158: 157: 138: 137: 118: 117: 95: 59: 17: 12: 11: 5: 646: 644: 636: 635: 630: 625: 620: 610: 609: 604: 603: 593:(4): 475–476, 573: 542: 514: 496:(4): 689–691, 464: 463: 461: 458: 452: 449: 416: 413: 410: 407: 404: 401: 398: 395: 375: 355: 352: 349: 346: 307: 287: 284: 281: 278: 275: 272: 269: 249: 246: 243: 240: 237: 217: 214: 211: 208: 205: 185: 165: 145: 125: 94: 91: 64: 63: 60: 57: 54: 53: 48: 44: 43: 40: 36: 35: 26: 15: 13: 10: 9: 6: 4: 3: 2: 645: 634: 631: 629: 626: 624: 621: 619: 616: 615: 613: 600: 596: 592: 588: 584: 577: 574: 570: 566: 562: 561: 556: 552: 546: 543: 539: 535: 531: 530: 525: 518: 515: 511: 507: 503: 499: 495: 491: 490: 485: 478: 476: 474: 472: 470: 466: 459: 457: 450: 448: 446: 442: 438: 434: 428: 408: 402: 399: 373: 350: 344: 337: 332: 329: 328:line segments 325: 321: 305: 285: 282: 279: 276: 273: 270: 267: 247: 244: 241: 238: 235: 215: 212: 209: 206: 203: 183: 163: 143: 123: 115: 111: 107: 103: 99: 92: 90: 88: 84: 80: 76: 73:is a book in 72: 71: 61: 55: 52: 49: 45: 41: 37: 34: 30: 27: 23: 590: 586: 582: 576: 558: 554: 545: 527: 523: 517: 493: 487: 483: 454: 429: 333: 96: 79:Micha Sharir 69: 68: 67: 29:Micha Sharir 551:Rivin, Igor 489:SIAM Review 324:arrangement 42:Mathematics 612:Categories 538:0834.68113 460:References 403:α 394:Θ 345:α 283:… 277:… 271:… 245:… 239:… 213:… 207:… 47:Publisher 587:Robotica 114:alphabet 569:1329734 510:2132953 567:  536:  529:zbMATH 508:  443:, and 93:Topics 25:Author 506:JSTOR 39:Genre 435:and 176:and 104:and 81:and 62:1995 31:and 595:doi 585:", 557:", 534:Zbl 526:", 498:doi 486:", 326:of 228:or 614:: 591:16 589:, 565:MR 563:, 532:, 504:, 494:38 492:, 468:^ 597:: 500:: 415:) 412:) 409:n 406:( 400:n 397:( 374:n 354:) 351:n 348:( 306:k 286:y 280:x 274:y 268:x 248:y 242:x 236:y 216:x 210:y 204:x 184:y 164:x 144:k 124:k

Index

Micha Sharir
Pankaj K. Agarwal
Cambridge University Press
discrete geometry
Micha Sharir
Pankaj K. Agarwal
Cambridge University Press
Davenport–Schinzel sequences
Harold Davenport
Andrzej Schinzel
differential equations
alphabet
discrete geometry
arrangement
line segments
inverse Ackermann function
Voronoi diagrams
nearest neighbor search
visibility problems
robot motion planning





SIAM Review
doi
10.1137/1038138
JSTOR
2132953

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.