Knowledge (XXG)

de Rham theorem

Source đź“ť

86: 845: 1379: 1190:(a differential form with distributional coefficients) version of the de Rham theorem, which says the singular cohomology can be computed as the cohomology of the complex of currents. This version is weaker in the sense that the isomorphism is not a ring homomorphism (since currents cannot be multiplied and so the space of currents is not a ring). 1099: 673: 77:. Thus, for abstract reason, the de Rham cohomology is isomorphic as a group to the singular cohomology. But the de Rham theorem gives a more explicit isomorphism between the two cohomologies; thus, connecting analysis and topology more directly. 944: 1107:
This theorem has the following consequence (familiar from calculus); namely, a closed differential form is exact if and only if the integrations of it over arbitrary cycles are all zero. For a one-form, it means that a closed one-form
281: 503: 203: 434: 929: 136: 764: 344: 547: 1156: 579: 712: 75: 1176: 1126: 1094:{\displaystyle \operatorname {H} _{\mathrm {deRham} }^{*}(M)\to \operatorname {H} _{*}^{\mathrm {sing} }(M)^{*},\,\mapsto \left(\mapsto \int _{\sigma }\omega \right)} 301: 567: 823: 790: 1444: 453: 208: 1420: 141: 1306: 1251: 359: 886: 1325: 717: 92: 1413: 306: 85: 514: 880:
There is also a version of the theorem involving singular homology instead of cohomology. It says the pairing
1439: 1131: 832:
is isomorphic as a ring with the Čech cohomology of it. This Čech version is essentially due to André Weil.
668:{\displaystyle :\operatorname {H} _{\textrm {deRham}}^{*}(M)\to \operatorname {H} _{\mathrm {sing} }^{*}(M)} 1406: 1187: 17: 681: 33: 58: 1355: 29: 508: 1321: 1302: 1247: 48: 25: 1390: 1161: 1111: 286: 1347: 1294: 1239: 52: 1233: 935: 552: 844: 802: 769: 1433: 1359: 1335: 498:{\displaystyle \omega \mapsto \left(\sigma \mapsto \int _{\sigma }\omega \right).} 276:{\displaystyle \int _{\widetilde {c}}\omega -\int _{{\widetilde {c}}'}\omega =0'} 41: 349:
The key part of the theorem is a construction of the de Rham homomorphism. Let
1243: 570: 198:{\displaystyle {\widetilde {c}}-{\widetilde {c}}'=\partial {\widetilde {b}}} 938:
between the de Rham cohomology and the (smooth) singular homology; namely,
828:
There is also a variant of the theorem that says the de Rham cohomology of
1378: 1298: 1386: 37: 1351: 429:{\displaystyle k:\Omega ^{p}(M)\to S_{{\mathcal {C}}^{\infty }}^{p}(M)} 84: 924:{\displaystyle (\omega ,\sigma )\mapsto \int _{\sigma }\omega } 839: 1128:
is exact (i.e., admits a potential function) if and only if
729: 399: 799:
Finally, the theorem says that the induced homomorphism
89:
The deRham homomorphism is well defined because for any
1394: 856: 1318:
Foundations of Differentiable Manifolds and Lie Groups
1164: 1134: 1114: 947: 889: 805: 772: 720: 684: 582: 555: 517: 456: 362: 309: 289: 211: 144: 95: 61: 759:{\displaystyle S_{{\mathcal {C}}^{\infty }}^{*}(M)} 1170: 1150: 1120: 1093: 923: 817: 784: 758: 706: 667: 561: 541: 497: 428: 338: 295: 275: 197: 131:{\displaystyle {\widetilde {c}},{\widetilde {c}}'} 130: 69: 678:where these cohomologies are the cohomologies of 1278: 339:{\displaystyle \int _{\widetilde {c}}\omega =0} 1414: 8: 1289:Griffiths, Phillip; Harris, Joseph (1994). 1178:. This is exactly a statement in calculus. 51:implies that the de Rham cohomology is the 1421: 1407: 1163: 1139: 1133: 1113: 1077: 1043: 1034: 1005: 1004: 999: 974: 953: 952: 946: 912: 888: 804: 792:is a ring homomorphism and is called the 771: 741: 734: 728: 727: 725: 719: 689: 683: 647: 632: 631: 606: 600: 599: 581: 554: 542:{\displaystyle k\circ d=\partial \circ k} 516: 478: 455: 411: 404: 398: 397: 395: 373: 361: 315: 314: 308: 288: 242: 241: 239: 217: 216: 210: 184: 183: 162: 161: 146: 145: 143: 113: 112: 97: 96: 94: 63: 62: 60: 1338:(1952). "Sur les thĂ©orèmes de de Rham". 1199: 443:-forms to the space of smooth singular 1266: 1218: 1206: 1151:{\displaystyle \int _{\gamma }\omega } 825:is an isomorphism (i.e., bijective). 138:representing the same homology class 16:In mathematics, more specifically in 7: 1375: 1373: 1104:is an isomorphism of vector spaces. 353:be a manifold. Then there is a map 1393:. You can help Knowledge (XXG) by 1015: 1012: 1009: 1006: 996: 969: 966: 963: 960: 957: 954: 949: 735: 686: 642: 639: 636: 633: 628: 596: 530: 405: 370: 180: 14: 1445:Theorems in differential geometry 1340:Commentarii Mathematici Helvetici 766:, respectively. As it turns out, 1377: 1291:Principles of Algebraic Geometry 843: 439:from the space of differential 1070: 1067: 1061: 1053: 1050: 1044: 1031: 1024: 992: 989: 983: 905: 902: 890: 812: 806: 779: 773: 753: 747: 707:{\displaystyle \Omega ^{*}(M)} 701: 695: 662: 656: 624: 621: 615: 589: 583: 471: 460: 423: 417: 388: 385: 379: 1: 70:{\displaystyle \mathbb {R} } 1279:Griffiths & Harris 1994 1461: 1372: 1238:(2nd ed.). Springer. 1316:Warner, Frank W. (1983). 1244:10.1007/978-0-8176-4767-4 1232:Conlon, Lawrence (2001). 1158:is independent of a path 876:Singular-homology version 1235:Differentiable Manifolds 55:with the constant sheaf 1171:{\displaystyle \gamma } 1121:{\displaystyle \omega } 296:{\displaystyle \omega } 1320:. New York: Springer. 1172: 1152: 1122: 1095: 925: 819: 786: 760: 708: 669: 563: 543: 499: 430: 346: 340: 303:is an exact form then 297: 277: 199: 132: 71: 1299:10.1002/9781118032527 1173: 1153: 1123: 1096: 926: 820: 787: 761: 709: 670: 564: 544: 500: 431: 341: 298: 278: 200: 133: 88: 72: 18:differential geometry 1162: 1132: 1112: 945: 887: 803: 794:de Rham homomorphism 770: 718: 682: 580: 553: 515: 454: 360: 307: 287: 209: 142: 93: 59: 1020: 979: 746: 652: 611: 573:and so it induces: 447:-cochains given by 416: 34:singular cohomology 1352:10.1007/BF02564296 1168: 1148: 1118: 1091: 995: 948: 921: 855:. You can help by 815: 782: 756: 721: 704: 665: 627: 595: 559: 539: 495: 426: 391: 347: 336: 293: 273: 195: 128: 67: 30:de Rham cohomology 1402: 1401: 1308:978-0-471-05059-9 1253:978-0-8176-4766-7 873: 872: 603: 562:{\displaystyle k} 323: 250: 225: 192: 170: 154: 121: 105: 26:ring homomorphism 1452: 1423: 1416: 1409: 1387:geometry-related 1381: 1374: 1363: 1331: 1312: 1281: 1276: 1270: 1264: 1258: 1257: 1228: 1222: 1216: 1210: 1204: 1186:There is also a 1177: 1175: 1174: 1169: 1157: 1155: 1154: 1149: 1144: 1143: 1127: 1125: 1124: 1119: 1100: 1098: 1097: 1092: 1090: 1086: 1082: 1081: 1039: 1038: 1019: 1018: 1003: 978: 973: 972: 930: 928: 927: 922: 917: 916: 868: 865: 847: 840: 824: 822: 821: 818:{\displaystyle } 816: 791: 789: 788: 785:{\displaystyle } 783: 765: 763: 762: 757: 745: 740: 739: 738: 733: 732: 713: 711: 710: 705: 694: 693: 674: 672: 671: 666: 651: 646: 645: 610: 605: 604: 601: 568: 566: 565: 560: 548: 546: 545: 540: 504: 502: 501: 496: 491: 487: 483: 482: 435: 433: 432: 427: 415: 410: 409: 408: 403: 402: 378: 377: 345: 343: 342: 337: 326: 325: 324: 316: 302: 300: 299: 294: 282: 280: 279: 274: 272: 258: 257: 256: 252: 251: 243: 228: 227: 226: 218: 204: 202: 201: 196: 194: 193: 185: 176: 172: 171: 163: 156: 155: 147: 137: 135: 134: 129: 127: 123: 122: 114: 107: 106: 98: 76: 74: 73: 68: 66: 53:sheaf cohomology 1460: 1459: 1455: 1454: 1453: 1451: 1450: 1449: 1430: 1429: 1428: 1427: 1370: 1367: 1334: 1328: 1315: 1309: 1288: 1285: 1284: 1277: 1273: 1265: 1261: 1254: 1231: 1230:Appendix D. to 1229: 1225: 1217: 1213: 1205: 1201: 1196: 1184: 1182:Current version 1160: 1159: 1135: 1130: 1129: 1110: 1109: 1073: 1060: 1056: 1030: 943: 942: 936:perfect pairing 908: 885: 884: 878: 869: 863: 860: 853:needs expansion 838: 801: 800: 768: 767: 726: 716: 715: 685: 680: 679: 578: 577: 551: 550: 513: 512: 509:Stokes' formula 474: 467: 463: 452: 451: 396: 369: 358: 357: 310: 305: 304: 285: 284: 265: 240: 235: 212: 207: 206: 160: 140: 139: 111: 91: 90: 83: 57: 56: 22:de Rham theorem 12: 11: 5: 1458: 1456: 1448: 1447: 1442: 1440:Geometry stubs 1432: 1431: 1426: 1425: 1418: 1411: 1403: 1400: 1399: 1382: 1365: 1364: 1332: 1326: 1313: 1307: 1283: 1282: 1271: 1259: 1252: 1223: 1221:, 5.36., 5.45. 1211: 1198: 1197: 1195: 1192: 1183: 1180: 1167: 1147: 1142: 1138: 1117: 1102: 1101: 1089: 1085: 1080: 1076: 1072: 1069: 1066: 1063: 1059: 1055: 1052: 1049: 1046: 1042: 1037: 1033: 1029: 1026: 1023: 1017: 1014: 1011: 1008: 1002: 998: 994: 991: 988: 985: 982: 977: 971: 968: 965: 962: 959: 956: 951: 932: 931: 920: 915: 911: 907: 904: 901: 898: 895: 892: 877: 874: 871: 870: 850: 848: 837: 834: 814: 811: 808: 781: 778: 775: 755: 752: 749: 744: 737: 731: 724: 703: 700: 697: 692: 688: 676: 675: 664: 661: 658: 655: 650: 644: 641: 638: 635: 630: 626: 623: 620: 617: 614: 609: 598: 594: 591: 588: 585: 558: 538: 535: 532: 529: 526: 523: 520: 506: 505: 494: 490: 486: 481: 477: 473: 470: 466: 462: 459: 437: 436: 425: 422: 419: 414: 407: 401: 394: 390: 387: 384: 381: 376: 372: 368: 365: 335: 332: 329: 322: 319: 313: 292: 271: 268: 264: 261: 255: 249: 246: 238: 234: 231: 224: 221: 215: 191: 188: 182: 179: 175: 169: 166: 159: 153: 150: 126: 120: 117: 110: 104: 101: 82: 79: 65: 49:PoincarĂ© lemma 24:says that the 13: 10: 9: 6: 4: 3: 2: 1457: 1446: 1443: 1441: 1438: 1437: 1435: 1424: 1419: 1417: 1412: 1410: 1405: 1404: 1398: 1396: 1392: 1389:article is a 1388: 1383: 1380: 1376: 1371: 1368: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1327:0-387-90894-3 1323: 1319: 1314: 1310: 1304: 1300: 1296: 1292: 1287: 1286: 1280: 1275: 1272: 1268: 1263: 1260: 1255: 1249: 1245: 1241: 1237: 1236: 1227: 1224: 1220: 1215: 1212: 1208: 1203: 1200: 1193: 1191: 1189: 1181: 1179: 1165: 1145: 1140: 1136: 1115: 1105: 1087: 1083: 1078: 1074: 1064: 1057: 1047: 1040: 1035: 1027: 1021: 1000: 986: 980: 975: 941: 940: 939: 937: 918: 913: 909: 899: 896: 893: 883: 882: 881: 875: 867: 858: 854: 851:This section 849: 846: 842: 841: 836:Idea of proof 835: 833: 831: 826: 809: 797: 795: 776: 750: 742: 722: 698: 690: 659: 653: 648: 618: 612: 607: 592: 586: 576: 575: 574: 572: 556: 536: 533: 527: 524: 521: 518: 510: 492: 488: 484: 479: 475: 468: 464: 457: 450: 449: 448: 446: 442: 420: 412: 392: 382: 374: 366: 363: 356: 355: 354: 352: 333: 330: 327: 320: 317: 311: 290: 269: 266: 262: 259: 253: 247: 244: 236: 232: 229: 222: 219: 213: 189: 186: 177: 173: 167: 164: 157: 151: 148: 124: 118: 115: 108: 102: 99: 87: 80: 78: 54: 50: 45: 43: 39: 35: 31: 27: 23: 19: 1395:expanding it 1384: 1369: 1366: 1343: 1339: 1317: 1290: 1274: 1262: 1234: 1226: 1214: 1202: 1185: 1106: 1103: 933: 879: 861: 857:adding to it 852: 829: 827: 798: 793: 677: 507: 444: 440: 438: 350: 348: 46: 21: 15: 1346:: 119–145. 1336:Weil, AndrĂ© 1267:Warner 1983 1219:Warner 1983 1207:Warner 1983 42:isomorphism 38:integration 1434:Categories 1194:References 934:induces a 1360:124799328 1166:γ 1146:ω 1141:γ 1137:∫ 1116:ω 1084:ω 1079:σ 1075:∫ 1071:↦ 1065:σ 1054:↦ 1048:ω 1036:∗ 1022:⁡ 1001:∗ 993:→ 981:⁡ 976:∗ 919:ω 914:σ 910:∫ 906:↦ 900:σ 894:ω 864:July 2024 743:∗ 736:∞ 691:∗ 687:Ω 654:⁡ 649:∗ 625:→ 613:⁡ 608:∗ 571:chain map 534:∘ 531:∂ 522:∘ 511:implies: 485:ω 480:σ 476:∫ 472:↦ 469:σ 461:↦ 458:ω 406:∞ 389:→ 371:Ω 328:ω 321:~ 312:∫ 291:ω 260:ω 248:~ 237:∫ 233:− 230:ω 223:~ 214:∫ 190:~ 181:∂ 168:~ 158:− 152:~ 119:~ 103:~ 81:Statement 36:given by 28:from the 549:; i.e., 270:′ 254:′ 174:′ 125:′ 1269:, 4.17. 1209:, 5.35. 1188:current 283:and if 32:to the 1358:  1324:  1305:  1250:  602:deRham 40:is an 20:, the 1385:This 1356:S2CID 569:is a 205:, so 1391:stub 1322:ISBN 1303:ISBN 1248:ISBN 714:and 47:The 1348:doi 1295:doi 1240:doi 859:. 1436:: 1354:. 1344:26 1342:. 1301:. 1293:. 1246:. 796:. 44:. 1422:e 1415:t 1408:v 1397:. 1362:. 1350:: 1330:. 1311:. 1297:: 1256:. 1242:: 1088:) 1068:] 1062:[ 1058:( 1051:] 1045:[ 1041:, 1032:) 1028:M 1025:( 1016:g 1013:n 1010:i 1007:s 997:H 990:) 987:M 984:( 970:m 967:a 964:h 961:R 958:e 955:d 950:H 903:) 897:, 891:( 866:) 862:( 830:M 813:] 810:k 807:[ 780:] 777:k 774:[ 754:) 751:M 748:( 730:C 723:S 702:) 699:M 696:( 663:) 660:M 657:( 643:g 640:n 637:i 634:s 629:H 622:) 619:M 616:( 597:H 593:: 590:] 587:k 584:[ 557:k 537:k 528:= 525:d 519:k 493:. 489:) 465:( 445:p 441:p 424:) 421:M 418:( 413:p 400:C 393:S 386:) 383:M 380:( 375:p 367:: 364:k 351:M 334:0 331:= 318:c 267:0 263:= 245:c 220:c 187:b 178:= 165:c 149:c 116:c 109:, 100:c 64:R

Index

differential geometry
ring homomorphism
de Rham cohomology
singular cohomology
integration
isomorphism
Poincaré lemma
sheaf cohomology

Stokes' formula
chain map

adding to it
perfect pairing
current
Warner 1983
Warner 1983
Differentiable Manifolds
doi
10.1007/978-0-8176-4767-4
ISBN
978-0-8176-4766-7
Warner 1983
Griffiths & Harris 1994
doi
10.1002/9781118032527
ISBN
978-0-471-05059-9
ISBN
0-387-90894-3

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑