Knowledge (XXG)

Dead time

Source đź“ť

1094:) with a recovery time is Time-To-Count. In this technique, the detector is armed at the same time a counter is started. When a strike occurs, the counter is stopped. If this happens many times in a certain time period (e.g., two seconds), then the mean time between strikes can be determined, and thus the count rate. Live time, dead time, and total time are thus measured, not estimated. This technique is used quite widely in 109:
missed, but will restart the dead time, so that with increasing rate the detector will reach a saturation point where it will be incapable of recording any event at all. A semi-paralyzable detector exhibits an intermediate behaviour, in which the event arriving during dead time does extend it, but not by the full amount, resulting in a detection rate that decreases when the event rate approaches saturation.
74:
resulting in an event loss or in a so-called "pile-up" event where, for example, a (possibly partial) sum of the deposited energies from the two events is recorded instead. In some cases this can be minimised by an appropriate design, but often only at the expense of other properties like energy resolution.
41:
is the time after each event during which the system is not able to record another event. An everyday life example of this is what happens when someone takes a photo using a flash - another picture cannot be taken immediately afterward because the flash needs a few seconds to recharge. In addition to
108:
behaviour. In a non-paralyzable detector, an event happening during the dead time is simply lost, so that with an increasing event rate the detector will reach a saturation rate equal to the inverse of the dead time. In a paralyzable detector, an event happening during the dead time will not just be
84:
Finally, digitisation, readout and storage of the event, especially in detection systems with large number of channels like those used in modern High Energy Physics experiments, also contribute to the total dead time. To alleviate the issue, medium and large experiments use sophisticated pipelining
77:
The analog electronics can also introduce dead time; in particular a shaping spectroscopy amplifier needs to integrate a fast rise, slow fall signal over the longest possible time (usually from .5 up to 10 microseconds) to attain the best possible resolution, such that the user needs to choose a
73:
is "dead" until the potential between the plates recovers above a high enough value. In other cases the detector, after a first event, is still "live" and does produce a signal for the successive event, but the signal is such that the detector readout is unable to discriminate and separate them,
651: 781: 1057: 903: 307: 222: 463: 490: 678: 498: 81:
Trigger logic is another possible source of dead time; beyond the proper time of the signal processing, spurious triggers caused by noise need to be taken into account.
689: 387: 988: 960: 933: 811: 411: 335: 1078:
above a certain threshold, the above equation will be nearly true, and the count rate derived from these modified intervals will be equal to the true count rate.
361: 831: 54:
The total dead time of a detection system is usually due to the contributions of the intrinsic dead time of the detector (for example the ion drift time in a
1316:
Morris, S.L. and Naftilan, S.A., "Determining Photometric Dead Time by Using Hydrogen Filters", Astron. Astrophys. Suppl. Ser. 107, 71-75, Oct. 1994
996: 1175:
Weier, H.; et al. (2011). "Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors".
389:
is zero. Otherwise the probabilities of measurement are the same as the event probabilities. The probability of measuring an event at time
843: 233: 1159: 1239: 1123: 63: 55: 20: 1091: 966:
is subtracted from each interval, with negative values discarded, the distribution will be exponential as long as
908:
If the dead time is not known, a statistical analysis can yield the correct count. For example, (Meeks 2008), if
1328: 154: 1221: 42:
lowering the detection efficiency, dead times can have other effects, such as creating possible exploits in
163: 1241:
Dead time and count loss determination for radiation detection systems in high count rate applications
1066:
is any integer. If the above function is estimated for many measured intervals with various values of
1296: 1267: 1194: 1095: 646:{\displaystyle P_{m}(t)dt={\frac {fe^{-ft}dt}{\int _{\tau }^{\infty }fe^{-ft}dt}}=fe^{-f(t-\tau )}dt} 43: 419: 468: 656: 88:
From the total time a detection system is running, the dead time must be subtracted to obtain the
69:
The intrinsic dead time of a detector is often due to its physical characteristics; for example a
1184: 58:), of the analog front end (for example the shaping time of a spectroscopy amplifier) and of the 776:{\displaystyle \langle t_{m}\rangle =\int _{\tau }^{\infty }tP_{m}(t)dt=\langle t\rangle +\tau } 1087: 89: 1155: 1128: 34: 1258:
Lucke, Robert L. (June 1976). "Counting Statistics for Nonnegligible Dead Time Corrections".
366: 1304: 1275: 1202: 1107: 59: 27: 973: 938: 911: 789: 396: 320: 1118: 122: 31: 393:
with no intervening measurements is then given by an exponential distribution shifted by
340: 1300: 1271: 1206: 1198: 1113: 816: 117:
It will be assumed that the events are occurring randomly with an average frequency of
1322: 70: 1287:
Meeks, Craig; Siegel, P.B. (June 2008). "Dead time correction via the time series".
125:. The probability that an event will occur in an infinitesimal time interval 1052:{\displaystyle {\frac {\langle t^{n}\rangle }{\langle t\rangle ^{n}}}=n!} 1308: 1279: 990:. For an exponential distribution, the following relationship holds: 962:
will have a shifted exponential distribution, but if a fixed value
898:{\displaystyle N\approx {\frac {N_{m}}{1-N_{m}{\frac {\tau }{T}}}}} 1189: 1090:
one technique for measuring field strength with detectors (e.g.,
302:{\displaystyle \langle t\rangle =\int _{0}^{\infty }tP(t)dt=1/f} 16:
Time after an event when a detector can't record another event
100:
A detector, or detection system, can be characterized by a
85:
and multi-level trigger logic to reduce the readout rates.
26:
For detection systems that record discrete events, such as
833:
and the dead time is known, the actual number of events (
1152:
Techniques for Nuclear and Particle Physics Experiments
935:
are a set of intervals between measurements, then the
813:
counts are recorded during a particular time interval
999: 976: 941: 914: 846: 819: 792: 692: 659: 501: 471: 422: 399: 369: 343: 323: 236: 166: 1098:systems used in nuclear power generating stations. 1051: 982: 954: 927: 897: 825: 805: 775: 672: 645: 484: 457: 405: 381: 355: 329: 317:For the non-paralyzable case, with a dead time of 301: 216: 337:, the probability of measuring an event between 683:The expected time between measurements is then 78:compromise between event rate and resolution. 1227:(ALICE Internal Note/DAQ ALICE-INT-2010-001). 8: 1028: 1021: 1016: 1003: 764: 758: 706: 693: 243: 237: 1220:Carena, F.; et al. (December 2010). 1188: 1031: 1010: 1000: 998: 975: 946: 940: 919: 913: 882: 876: 859: 853: 845: 818: 797: 791: 734: 721: 716: 700: 691: 669: 658: 613: 582: 569: 564: 540: 530: 506: 500: 481: 470: 454: 427: 421: 398: 368: 342: 322: 291: 258: 253: 235: 227:The expected time between events is then 213: 195: 165: 96:Paralyzable and non-paralyzable behaviour 1074:) it should be found that for values of 1139: 1070:subtracted (and for various values of 1145: 1143: 7: 66:and the readout and storage times). 1086:With a modern microprocessor based 217:{\displaystyle P(t)dt=fe^{-ft}dt\,} 722: 570: 259: 133:. It follows that the probability 14: 145:with no events occurring between 137:that an event will occur at time 1154:. Springer. pp. 122–127. 970:is greater than the dead time 746: 740: 632: 620: 518: 512: 458:{\displaystyle P_{m}(t)dt=0\,} 439: 433: 276: 270: 176: 170: 1: 1207:10.1088/1367-2630/13/7/073024 485:{\displaystyle t\leq \tau \,} 121:. That is, they constitute a 1124:Positron emission tomography 673:{\displaystyle t>\tau \,} 64:analog-to-digital converters 62:(the conversion time of the 1244:(PhD Thesis). p. 2148. 56:gaseous ionization detector 1345: 157:(Lucke 1974, Meeks 2008): 21:Dead Time (disambiguation) 18: 1222:ALICE DAQ and ECS Manual 313:Non-paralyzable analysis 155:exponential distribution 837:) may be estimated by 382:{\displaystyle t=\tau } 153:  is given by the 1177:New Journal of Physics 1053: 984: 956: 929: 899: 827: 807: 777: 674: 647: 486: 459: 407: 383: 357: 331: 303: 218: 1054: 985: 983:{\displaystyle \tau } 957: 955:{\displaystyle t_{i}} 930: 928:{\displaystyle t_{i}} 900: 828: 808: 806:{\displaystyle N_{m}} 778: 675: 648: 487: 460: 408: 406:{\displaystyle \tau } 384: 358: 332: 330:{\displaystyle \tau } 304: 219: 1238:Patil, Amol (2010). 1096:radiation monitoring 997: 974: 939: 912: 844: 817: 790: 690: 657: 499: 469: 420: 397: 367: 341: 321: 234: 164: 44:quantum cryptography 19:For other uses, see 1301:2008AmJPh..76..589M 1272:1976RScI...47..766L 1199:2011NJPh...13g3024W 1092:Geiger–MĂĽller tubes 786:In other words, if 726: 574: 356:{\displaystyle t=0} 263: 1150:W. R. Leo (1994). 1049: 980: 952: 925: 895: 823: 803: 773: 712: 670: 643: 560: 482: 455: 403: 379: 353: 327: 299: 249: 214: 1309:10.1119/1.2870432 1280:10.1063/1.1134733 1260:Rev. Sci. Instrum 1129:Class-D amplifier 1038: 893: 890: 826:{\displaystyle T} 601: 1336: 1312: 1283: 1246: 1245: 1235: 1229: 1228: 1226: 1217: 1211: 1210: 1192: 1172: 1166: 1165: 1147: 1108:Data acquisition 1058: 1056: 1055: 1050: 1039: 1037: 1036: 1035: 1019: 1015: 1014: 1001: 989: 987: 986: 981: 961: 959: 958: 953: 951: 950: 934: 932: 931: 926: 924: 923: 904: 902: 901: 896: 894: 892: 891: 883: 881: 880: 864: 863: 854: 832: 830: 829: 824: 812: 810: 809: 804: 802: 801: 782: 780: 779: 774: 739: 738: 725: 720: 705: 704: 679: 677: 676: 671: 652: 650: 649: 644: 636: 635: 602: 600: 593: 592: 573: 568: 558: 551: 550: 531: 511: 510: 491: 489: 488: 483: 464: 462: 461: 456: 432: 431: 412: 410: 409: 404: 388: 386: 385: 380: 362: 360: 359: 354: 336: 334: 333: 328: 308: 306: 305: 300: 295: 262: 257: 223: 221: 220: 215: 206: 205: 60:data acquisition 1344: 1343: 1339: 1338: 1337: 1335: 1334: 1333: 1329:Nuclear physics 1319: 1318: 1286: 1257: 1254: 1252:Further reading 1249: 1237: 1236: 1232: 1224: 1219: 1218: 1214: 1174: 1173: 1169: 1162: 1149: 1148: 1141: 1137: 1119:Photomultiplier 1104: 1084: 1027: 1020: 1006: 1002: 995: 994: 972: 971: 942: 937: 936: 915: 910: 909: 872: 865: 855: 842: 841: 815: 814: 793: 788: 787: 730: 696: 688: 687: 655: 654: 609: 578: 559: 536: 532: 502: 497: 496: 467: 466: 423: 418: 417: 395: 394: 365: 364: 339: 338: 319: 318: 315: 232: 231: 191: 162: 161: 123:Poisson process 115: 106:non-paralyzable 98: 52: 24: 17: 12: 11: 5: 1342: 1340: 1332: 1331: 1321: 1320: 1314: 1313: 1284: 1253: 1250: 1248: 1247: 1230: 1212: 1167: 1160: 1138: 1136: 1133: 1132: 1131: 1126: 1121: 1116: 1114:Allan variance 1111: 1103: 1100: 1083: 1080: 1060: 1059: 1048: 1045: 1042: 1034: 1030: 1026: 1023: 1018: 1013: 1009: 1005: 979: 949: 945: 922: 918: 906: 905: 889: 886: 879: 875: 871: 868: 862: 858: 852: 849: 822: 800: 796: 784: 783: 772: 769: 766: 763: 760: 757: 754: 751: 748: 745: 742: 737: 733: 729: 724: 719: 715: 711: 708: 703: 699: 695: 681: 680: 668: 665: 662: 642: 639: 634: 631: 628: 625: 622: 619: 616: 612: 608: 605: 599: 596: 591: 588: 585: 581: 577: 572: 567: 563: 557: 554: 549: 546: 543: 539: 535: 529: 526: 523: 520: 517: 514: 509: 505: 493: 492: 480: 477: 474: 453: 450: 447: 444: 441: 438: 435: 430: 426: 402: 378: 375: 372: 352: 349: 346: 326: 314: 311: 310: 309: 298: 294: 290: 287: 284: 281: 278: 275: 272: 269: 266: 261: 256: 252: 248: 245: 242: 239: 225: 224: 212: 209: 204: 201: 198: 194: 190: 187: 184: 181: 178: 175: 172: 169: 114: 111: 97: 94: 51: 48: 15: 13: 10: 9: 6: 4: 3: 2: 1341: 1330: 1327: 1326: 1324: 1317: 1310: 1306: 1302: 1298: 1294: 1290: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1256: 1255: 1251: 1243: 1242: 1234: 1231: 1223: 1216: 1213: 1208: 1204: 1200: 1196: 1191: 1186: 1183:(7): 073024. 1182: 1178: 1171: 1168: 1163: 1161:3-540-57280-5 1157: 1153: 1146: 1144: 1140: 1134: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1109: 1106: 1105: 1101: 1099: 1097: 1093: 1089: 1082:Time-To-Count 1081: 1079: 1077: 1073: 1069: 1065: 1046: 1043: 1040: 1032: 1024: 1011: 1007: 993: 992: 991: 977: 969: 965: 947: 943: 920: 916: 887: 884: 877: 873: 869: 866: 860: 856: 850: 847: 840: 839: 838: 836: 820: 798: 794: 770: 767: 761: 755: 752: 749: 743: 735: 731: 727: 717: 713: 709: 701: 697: 686: 685: 684: 666: 663: 660: 640: 637: 629: 626: 623: 617: 614: 610: 606: 603: 597: 594: 589: 586: 583: 579: 575: 565: 561: 555: 552: 547: 544: 541: 537: 533: 527: 524: 521: 515: 507: 503: 495: 494: 478: 475: 472: 451: 448: 445: 442: 436: 428: 424: 416: 415: 414: 400: 392: 376: 373: 370: 350: 347: 344: 324: 312: 296: 292: 288: 285: 282: 279: 273: 267: 264: 254: 250: 246: 240: 230: 229: 228: 210: 207: 202: 199: 196: 192: 188: 185: 182: 179: 173: 167: 160: 159: 158: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 112: 110: 107: 103: 95: 93: 91: 86: 82: 79: 75: 72: 71:spark chamber 67: 65: 61: 57: 49: 47: 45: 40: 36: 33: 29: 22: 1315: 1292: 1288: 1263: 1259: 1240: 1233: 1215: 1180: 1176: 1170: 1151: 1085: 1075: 1071: 1067: 1063: 1061: 967: 963: 907: 834: 785: 682: 390: 316: 226: 150: 146: 142: 138: 134: 130: 126: 118: 116: 105: 101: 99: 87: 83: 80: 76: 68: 53: 38: 25: 1289:Am. J. Phys 102:paralyzable 1295:(6): 589. 1266:(6): 766. 1135:References 141:  to 1190:1101.5289 1088:ratemeter 1029:⟩ 1022:⟨ 1017:⟩ 1004:⟨ 978:τ 885:τ 870:− 851:≈ 771:τ 765:⟩ 759:⟨ 723:∞ 718:τ 714:∫ 707:⟩ 694:⟨ 667:τ 630:τ 627:− 615:− 584:− 571:∞ 566:τ 562:∫ 542:− 479:τ 476:≤ 401:τ 377:τ 325:τ 260:∞ 251:∫ 244:⟩ 238:⟨ 197:− 149:and time 90:live time 39:dead time 35:detectors 1323:Category 1102:See also 129:is then 113:Analysis 50:Overview 28:particle 1297:Bibcode 1268:Bibcode 1195:Bibcode 32:nuclear 1158:  1062:where 37:, the 1225:(PDF) 1185:arXiv 1110:(DAQ) 1156:ISBN 664:> 653:for 465:for 363:and 143:t+dt 135:P(t) 131:f dt 30:and 1305:doi 1276:doi 1203:doi 147:t=0 104:or 1325:: 1303:. 1293:76 1291:. 1274:. 1264:47 1262:. 1201:. 1193:. 1181:13 1179:. 1142:^ 413:: 127:dt 92:. 46:. 1311:. 1307:: 1299:: 1282:. 1278:: 1270:: 1209:. 1205:: 1197:: 1187:: 1164:. 1076:D 1072:n 1068:D 1064:n 1047:! 1044:n 1041:= 1033:n 1025:t 1012:n 1008:t 968:D 964:D 948:i 944:t 921:i 917:t 888:T 878:m 874:N 867:1 861:m 857:N 848:N 835:N 821:T 799:m 795:N 768:+ 762:t 756:= 753:t 750:d 747:) 744:t 741:( 736:m 732:P 728:t 710:= 702:m 698:t 661:t 641:t 638:d 633:) 624:t 621:( 618:f 611:e 607:f 604:= 598:t 595:d 590:t 587:f 580:e 576:f 556:t 553:d 548:t 545:f 538:e 534:f 528:= 525:t 522:d 519:) 516:t 513:( 508:m 504:P 473:t 452:0 449:= 446:t 443:d 440:) 437:t 434:( 429:m 425:P 391:t 374:= 371:t 351:0 348:= 345:t 297:f 293:/ 289:1 286:= 283:t 280:d 277:) 274:t 271:( 268:P 265:t 255:0 247:= 241:t 211:t 208:d 203:t 200:f 193:e 189:f 186:= 183:t 180:d 177:) 174:t 171:( 168:P 151:t 139:t 119:f 23:.

Index

Dead Time (disambiguation)
particle
nuclear
detectors
quantum cryptography
gaseous ionization detector
data acquisition
analog-to-digital converters
spark chamber
live time
Poisson process
exponential distribution
ratemeter
Geiger–Müller tubes
radiation monitoring
Data acquisition
Allan variance
Photomultiplier
Positron emission tomography
Class-D amplifier


ISBN
3-540-57280-5
arXiv
1101.5289
Bibcode
2011NJPh...13g3024W
doi
10.1088/1367-2630/13/7/073024

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑