Knowledge

Deficiency (graph theory)

Source 📝

1258: 896: 1095: 733: 1271:
whose surplus equals the surplus of the entire graph (i.e., equals the minimum). The intersection and union of tight sets with non-empty intersection are tight; this follows from properties of lower-bounded submodular set functions.
335: 937:
if def(G) = |V| - 2 ν(G). Obviously, the strong Hall property implies the Hall property. Bipartite graphs have both of these properties, however there are classes of non-bipartite graphs that have these properties.
909:
whose deficiency equals the deficiency of the entire graph (i.e., equals the maximum). The intersection and union of tight sets are tight; this follows from properties of upper-bounded supermodular set functions.
653: 204: 1253:{\displaystyle \operatorname {sur} _{G}(X_{1}\cup X_{2})+\operatorname {sur} _{G}(X_{1}\cap X_{2})\leq \operatorname {sur} _{G}(X_{1})+\operatorname {sur} _{G}(X_{2})} 891:{\displaystyle \operatorname {def} _{G}(X_{1}\cup X_{2})+\operatorname {def} _{G}(X_{1}\cap X_{2})\geq \operatorname {def} _{G}(X_{1})+\operatorname {def} _{G}(X_{2})} 251: 1461: 1368: 1489: 70: 586: 117: 1526: 1043:
Note the restriction to non-empty subsets: without it, the surplus of all graphs would always be 0. Note also that:
404: 31: 452:. Moreover, using the notion of deficiency, it is possible to state a quantitative version of Hall's theorem: 372: 1068: 1487:
Beckenbach, Isabel; Borndörfer, Ralf (2018-10-01). "Hall's and Kőnig's theorem in graphs and hypergraphs".
1445: 1575: 706: 99:, which is formed by all vertices from 'V' that are connected by an edge to one or more vertices of 946: 1551: 1449: 1367:
Graphs with a positive surplus play an important role in the theory of graph structures; see the
1543: 1506: 1457: 1412: 1535: 1498: 1404: 449: 412: 27: 1471: 1467: 933:
has either a perfect matching or a vertex set with a positive deficiency. A graph has the
687: 214: 561:|. By Hall's marriage theorem, the new graph admits a matching in which all vertices of 35: 1569: 1555: 368: 913:
In a non-bipartite graph, the deficiency function is, in general, not supermodular.
23: 1408: 1392: 1502: 1374:
In a non-bipartite graph, the surplus function is, in general, not submodular.
1329:
is a bipartite graph with a positive surplus, such that deleting any edge from
330:{\displaystyle \mathrm {def} (G;X):=\max _{U\subseteq X}\mathrm {def} _{G}(U)} 1547: 1510: 1416: 941:
In particular, a graph has the strong Hall property if-and-only-if it is
1539: 1524:
Lovász, L. (1970-09-01). "A generalization of Kónig's theorem".
1456:, Annals of Discrete Mathematics, vol. 29, North-Holland, 565:
are matched. Now, restore the original graph by removing the
929:
if Hall's marriage theorem holds for that graph, namely, if
81:
in which no two vertices are connected by an edge. Let
648:{\displaystyle \nu (G)=|X|-\operatorname {def} (G;X),} 1098: 736: 589: 254: 199:{\displaystyle \mathrm {def} _{G}(U):=|U|-|N_{G}(U)|} 120: 535:, and connect every dummy vertex to all vertices of 1322:), the resulting graph has a non-negative surplus. 1295:satisfying the following property for every vertex 26:that is used to refine various theorems related to 1252: 890: 647: 329: 198: 1527:Acta Mathematica Academiae Scientiarum Hungaricae 1348:A bipartite graph has a positive surplus (w.r.t. 285: 945:- its maximum matching size equals its maximum 501:= def(G;X). This means that, for every subset 580:This theorem can be equivalently stated as: 8: 241:), is the maximum deficiency of a subset of 456: 422:X) > 0, it means that for some subsets 1241: 1225: 1209: 1193: 1177: 1164: 1148: 1132: 1119: 1103: 1097: 879: 863: 847: 831: 815: 802: 786: 770: 757: 741: 735: 613: 605: 588: 478:) admits a matching in which at most def( 312: 301: 288: 255: 253: 191: 176: 167: 159: 151: 133: 122: 119: 1383: 666:) is the size of a maximum matching in 539:. After the addition, for every subset 16:Refinement of perfect matching theorems 1352:) if-and-only-if it contains a forest 381:X) = 0, it means that for all subsets 340:Sometimes this quantity is called the 237:with respect to one of its parts (say 1015:is defined by the minimum surplus of 682:Properties of the deficiency function 7: 1482: 1480: 1440: 1438: 1436: 1434: 1432: 1430: 1428: 1426: 1311:and connect them to the vertices in 569:dummy vertices; this leaves at most 308: 305: 302: 262: 259: 256: 129: 126: 123: 14: 355:of the empty subset is 0, so def( 705:), the deficiency function is a 444:|. Hence, by the same theorem, 95:denote the set of neighbors of 1393:"Graphs and matching theorems" 1247: 1234: 1215: 1202: 1183: 1157: 1138: 1112: 885: 872: 853: 840: 821: 795: 776: 750: 639: 627: 614: 606: 599: 593: 324: 318: 278: 266: 192: 188: 182: 168: 160: 152: 145: 139: 1: 1409:10.1215/S0012-7094-55-02268-7 1067:), the surplus function is a 1369:Gallai–Edmonds decomposition 34:. This was first studied by 1391:Ore, Oystein (1955-12-01). 1291:;X) is the largest integer 1592: 1503:10.1016/j.disc.2018.06.013 1356:such that every vertex in 366: 1397:Duke Mathematical Journal 1337:X), then every vertex in 707:supermodular set function 1071:: for every two subsets 709:: for every two subsets 363:Deficiency and matchings 46:Definition of deficiency 38:. A related property is 1069:submodular set function 1007:The surplus of a graph 405:Hall's marriage theorem 32:Hall's marriage theorem 1287:) = 0, the number sur( 1275:For a bipartite graph 1267:subset is a subset of 1261: 1254: 1049: 1041: 1005: 905:subset is a subset of 899: 892: 649: 462:Every bipartite graph 331: 200: 73:of vertices, that is, 1255: 1091: 1051:In a bipartite graph 1045: 1025: 971: 893: 729: 650: 332: 201: 1490:Discrete Mathematics 1096: 935:strong Hall property 917:Strong Hall property 734: 587: 418:In contrast, if def( 252: 118: 65:be a graph, and let 1345:;X) + 1. 1031:X) := min sur 947:fractional matching 460: —  373:Tutte–Berge formula 342:critical difference 217:, with bipartition 30:in graphs, such as 1540:10.1007/BF01894789 1250: 888: 645: 531:dummy vertices to 458: 327: 299: 196: 1497:(10): 2753–2761. 448:does not admit a 284: 1583: 1560: 1559: 1521: 1515: 1514: 1484: 1475: 1474: 1442: 1421: 1420: 1388: 1360:has degree 2 in 1307:new vertices to 1259: 1257: 1256: 1251: 1246: 1245: 1230: 1229: 1214: 1213: 1198: 1197: 1182: 1181: 1169: 1168: 1153: 1152: 1137: 1136: 1124: 1123: 1108: 1107: 1011:w.r.t. a subset 897: 895: 894: 889: 884: 883: 868: 867: 852: 851: 836: 835: 820: 819: 807: 806: 791: 790: 775: 774: 762: 761: 746: 745: 654: 652: 651: 646: 617: 609: 461: 450:perfect matching 413:perfect matching 336: 334: 333: 328: 317: 316: 311: 298: 265: 205: 203: 202: 197: 195: 181: 180: 171: 163: 155: 138: 137: 132: 94: 64: 28:perfect matching 22:is a concept in 1591: 1590: 1586: 1585: 1584: 1582: 1581: 1580: 1566: 1565: 1564: 1563: 1523: 1522: 1518: 1486: 1485: 1478: 1464: 1454:Matching Theory 1444: 1443: 1424: 1390: 1389: 1385: 1380: 1341:has degree sur( 1317: 1237: 1221: 1205: 1189: 1173: 1160: 1144: 1128: 1115: 1099: 1094: 1093: 1084: 1077: 1034: 998: 986: 976: 955: 919: 875: 859: 843: 827: 811: 798: 782: 766: 753: 737: 732: 731: 722: 715: 688:bipartite graph 684: 672:matching number 585: 584: 552: 514: 492: 490:are unmatched. 459: 435: 394: 375: 365: 354: 300: 250: 249: 215:bipartite graph 172: 121: 116: 115: 111:is defined by: 87: 82: 77:is a subset of 71:independent set 51: 48: 17: 12: 11: 5: 1589: 1587: 1579: 1578: 1568: 1567: 1562: 1561: 1534:(3): 443–446. 1516: 1476: 1462: 1450:Plummer, M. D. 1446:Lovász, László 1422: 1403:(4): 625–639. 1382: 1381: 1379: 1376: 1333:decreases sur( 1315: 1249: 1244: 1240: 1236: 1233: 1228: 1224: 1220: 1217: 1212: 1208: 1204: 1201: 1196: 1192: 1188: 1185: 1180: 1176: 1172: 1167: 1163: 1159: 1156: 1151: 1147: 1143: 1140: 1135: 1131: 1127: 1122: 1118: 1114: 1111: 1106: 1102: 1082: 1075: 1047:def(G;X) = max 1032: 996: 982: 974: 969:is defined by: 954: 951: 918: 915: 887: 882: 878: 874: 871: 866: 862: 858: 855: 850: 846: 842: 839: 834: 830: 826: 823: 818: 814: 810: 805: 801: 797: 794: 789: 785: 781: 778: 773: 769: 765: 760: 756: 752: 749: 744: 740: 720: 713: 683: 680: 656: 655: 644: 641: 638: 635: 632: 629: 626: 623: 620: 616: 612: 608: 604: 601: 598: 595: 592: 548: 510: 486:) vertices of 454: 431: 390: 364: 361: 352: 338: 337: 326: 323: 320: 315: 310: 307: 304: 297: 294: 291: 287: 283: 280: 277: 274: 271: 268: 264: 261: 258: 207: 206: 194: 190: 187: 184: 179: 175: 170: 166: 162: 158: 154: 150: 147: 144: 141: 136: 131: 128: 125: 85: 47: 44: 15: 13: 10: 9: 6: 4: 3: 2: 1588: 1577: 1574: 1573: 1571: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1528: 1520: 1517: 1512: 1508: 1504: 1500: 1496: 1492: 1491: 1483: 1481: 1477: 1473: 1469: 1465: 1463:0-444-87916-1 1459: 1455: 1451: 1447: 1441: 1439: 1437: 1435: 1433: 1431: 1429: 1427: 1423: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1387: 1384: 1377: 1375: 1372: 1370: 1365: 1363: 1359: 1355: 1351: 1346: 1344: 1340: 1336: 1332: 1328: 1323: 1321: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1273: 1270: 1266: 1265:surplus-tight 1260: 1242: 1238: 1231: 1226: 1222: 1218: 1210: 1206: 1199: 1194: 1190: 1186: 1178: 1174: 1170: 1165: 1161: 1154: 1149: 1145: 1141: 1133: 1129: 1125: 1120: 1116: 1109: 1104: 1100: 1090: 1088: 1081: 1074: 1070: 1066: 1062: 1058: 1054: 1048: 1044: 1040: 1038: 1030: 1024: 1022: 1018: 1014: 1010: 1004: 1002: 994: 990: 985: 980: 970: 968: 964: 960: 952: 950: 948: 944: 939: 936: 932: 928: 927:Hall property 924: 916: 914: 911: 908: 904: 898: 880: 876: 869: 864: 860: 856: 848: 844: 837: 832: 828: 824: 816: 812: 808: 803: 799: 792: 787: 783: 779: 771: 767: 763: 758: 754: 747: 742: 738: 728: 726: 719: 712: 708: 704: 700: 696: 692: 689: 681: 679: 677: 673: 669: 665: 661: 642: 636: 633: 630: 624: 621: 618: 610: 602: 596: 590: 583: 582: 581: 578: 576: 572: 568: 564: 560: 556: 551: 546: 542: 538: 534: 530: 526: 522: 518: 513: 508: 504: 500: 496: 491: 489: 485: 481: 477: 473: 469: 465: 453: 451: 447: 443: 439: 434: 429: 425: 421: 416: 414: 410: 406: 403:|. Hence, by 402: 398: 393: 388: 384: 380: 374: 370: 369:Tutte theorem 362: 360: 358: 351:Note that def 349: 347: 343: 321: 313: 295: 292: 289: 281: 275: 272: 269: 248: 247: 246: 244: 240: 236: 232: 228: 224: 220: 216: 212: 185: 177: 173: 164: 156: 148: 142: 134: 114: 113: 112: 110: 106: 102: 98: 92: 88: 80: 76: 72: 68: 62: 58: 54: 45: 43: 41: 37: 33: 29: 25: 21: 1576:Graph theory 1531: 1525: 1519: 1494: 1488: 1453: 1400: 1396: 1386: 1373: 1366: 1361: 1357: 1353: 1349: 1347: 1342: 1338: 1334: 1330: 1326: 1324: 1319: 1312: 1308: 1304: 1303:: if we add 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1274: 1268: 1264: 1262: 1092: 1086: 1079: 1072: 1064: 1060: 1056: 1052: 1050: 1046: 1042: 1036: 1028: 1026: 1020: 1016: 1012: 1008: 1006: 1000: 992: 988: 983: 981:) := |N 978: 972: 966: 962: 961:of a subset 958: 956: 942: 940: 934: 930: 926: 922: 920: 912: 906: 902: 900: 730: 724: 717: 710: 702: 698: 694: 690: 685: 675: 671: 670:(called the 667: 663: 659: 657: 579: 574: 573:vertices of 570: 566: 562: 558: 554: 549: 544: 540: 536: 532: 528: 524: 520: 516: 511: 506: 502: 498: 494: 493: 487: 483: 479: 475: 471: 467: 463: 455: 445: 441: 437: 432: 427: 423: 419: 417: 408: 400: 396: 391: 386: 382: 378: 376: 356: 350: 345: 341: 339: 242: 238: 234: 230: 226: 222: 218: 210: 208: 108: 104: 100: 96: 90: 83: 78: 74: 66: 60: 56: 52: 49: 39: 24:graph theory 19: 18: 1019:subsets of 577:unmatched. 107:of the set 36:Øystein Ore 1378:References 367:See also: 231:deficiency 105:deficiency 20:Deficiency 1556:121333106 1548:1588-2632 1511:0012-365X 1417:0012-7094 1279:with def( 1232:⁡ 1200:⁡ 1187:≤ 1171:∩ 1155:⁡ 1126:∪ 1110:⁡ 1017:non-empty 870:⁡ 838:⁡ 825:≥ 809:∩ 793:⁡ 764:∪ 748:⁡ 625:⁡ 619:− 591:ν 440:)| < | 411:admits a 293:⊆ 165:− 1570:Category 1452:(1986), 995:| = −def 925:has the 921:A graph 359:X) ≥ 0. 209:Suppose 1472:0859549 959:surplus 953:Surplus 457:Theorem 377:If def( 40:surplus 1554:  1546:  1509:  1470:  1460:  1415:  991:)| − | 949:size. 943:stable 658:where 557:)| ≥ | 527:. Add 519:)| ≥ | 497:. Let 399:)| ≥ | 229:. The 103:. The 69:be an 1552:S2CID 903:tight 686:In a 495:Proof 213:is a 1544:ISSN 1507:ISSN 1458:ISBN 1413:ISSN 1027:sur( 957:The 547:, |N 509:, |N 430:, |N 389:, |N 371:and 50:Let 1536:doi 1499:doi 1495:341 1405:doi 1325:If 1299:in 1223:sur 1191:sur 1146:sur 1101:sur 1085:of 1055:= ( 973:sur 965:of 861:def 829:def 784:def 739:def 723:of 693:= ( 678:). 674:of 622:def 543:of 505:of 466:= ( 426:of 385:of 348:. 344:of 286:max 233:of 55:= ( 1572:: 1550:. 1542:. 1532:21 1530:. 1505:. 1493:. 1479:^ 1468:MR 1466:, 1448:; 1425:^ 1411:. 1401:22 1399:. 1395:. 1371:. 1364:. 1335:G; 1263:A 1078:, 1063:, 1029:G; 1023:: 901:A 716:, 701:, 523:|- 474:, 420:G; 415:. 407:, 379:G; 357:G; 282::= 245:: 225:∪ 221:= 149::= 59:, 42:. 1558:. 1538:: 1513:. 1501:: 1419:. 1407:: 1362:F 1358:X 1354:F 1350:X 1343:G 1339:X 1331:G 1327:G 1320:x 1318:( 1316:G 1313:N 1309:X 1305:s 1301:X 1297:x 1293:s 1289:G 1285:X 1283:; 1281:G 1277:G 1269:X 1248:) 1243:2 1239:X 1235:( 1227:G 1219:+ 1216:) 1211:1 1207:X 1203:( 1195:G 1184:) 1179:2 1175:X 1166:1 1162:X 1158:( 1150:G 1142:+ 1139:) 1134:2 1130:X 1121:1 1117:X 1113:( 1105:G 1089:: 1087:X 1083:2 1080:X 1076:1 1073:X 1065:E 1061:Y 1059:+ 1057:X 1053:G 1039:) 1037:U 1035:( 1033:G 1021:X 1013:X 1009:G 1003:) 1001:U 999:( 997:G 993:U 989:U 987:( 984:G 979:U 977:( 975:G 967:V 963:U 931:G 923:G 907:X 886:) 881:2 877:X 873:( 865:G 857:+ 854:) 849:1 845:X 841:( 833:G 822:) 817:2 813:X 804:1 800:X 796:( 788:G 780:+ 777:) 772:2 768:X 759:1 755:X 751:( 743:G 727:: 725:X 721:2 718:X 714:1 711:X 703:E 699:Y 697:+ 695:X 691:G 676:G 668:G 664:G 662:( 660:ν 643:, 640:) 637:X 634:; 631:G 628:( 615:| 611:X 607:| 603:= 600:) 597:G 594:( 575:X 571:d 567:d 563:X 559:U 555:U 553:( 550:G 545:X 541:U 537:X 533:Y 529:d 525:d 521:U 517:U 515:( 512:G 507:X 503:U 499:d 488:X 484:X 482:; 480:G 476:E 472:Y 470:+ 468:X 464:G 446:G 442:U 438:U 436:( 433:G 428:X 424:U 409:G 401:U 397:U 395:( 392:G 387:X 383:U 353:G 346:G 325:) 322:U 319:( 314:G 309:f 306:e 303:d 296:X 290:U 279:) 276:X 273:; 270:G 267:( 263:f 260:e 257:d 243:X 239:X 235:G 227:Y 223:X 219:V 211:G 193:| 189:) 186:U 183:( 178:G 174:N 169:| 161:| 157:U 153:| 146:) 143:U 140:( 135:G 130:f 127:e 124:d 109:U 101:U 97:U 93:) 91:U 89:( 86:G 84:N 79:V 75:U 67:U 63:) 61:E 57:V 53:G

Index

graph theory
perfect matching
Hall's marriage theorem
Øystein Ore
independent set
bipartite graph
Tutte theorem
Tutte–Berge formula
Hall's marriage theorem
perfect matching
perfect matching
bipartite graph
supermodular set function
fractional matching
submodular set function
Gallai–Edmonds decomposition
"Graphs and matching theorems"
doi
10.1215/S0012-7094-55-02268-7
ISSN
0012-7094








Lovász, László

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.