Knowledge (XXG)

Denitrifying bacteria

Source πŸ“

121: 453:), which could be damaging to human health and ecological processes if left untreated. Many physical, chemical, and biological methods have been used to remove the nitrogenous compounds and purify polluted waters. The process and methods vary, but it generally involves converting ammonium to nitrate via the nitrification process with ammonium oxidizing bacteria (AOB, NH 469:), and finally to nitrogen gas via denitrification. One example of this is ammonia-oxidizing bacteria which have a metabolic feature that, in combination with other nitrogen-cycling metabolic activities, such as nitrite oxidation and denitrification, remove nitrogen from wastewater in activated sludge. Since denitrifying bacteria are 391:-like bacteria carrying out the methane oxidation because their abundance peaked at the same depth where the methane and nitrate profiles met. This n-damo process is significant because it aids in decreasing methane emissions from deep freshwater bodies and it aids in turning nitrates into nitrogen gas, reducing excess nitrates. 315:. Removing methane is widely considered to be beneficial to the environment, although the extent of the role that denitrification plays in the global flux of methane is not well understood. Anaerobic denitrification as a mechanism has been shown to be capable of removing the excess nitrate caused by fertilizer runoff, even in 404:
The process of denitrification can lower the fertility of soil as nitrogen, a growth-limiting factor, is removed from the soil and lost to the atmosphere. This loss of nitrogen to the atmosphere can eventually be regained via introduced nutrients, as part of the nitrogen cycle. Some nitrogen may also
330:
contamination in the Antarctic, as well as a 2016 study which successfully increased the rates of denitrification by altering the environment housing the bacteria. Denitrifying bacteria are said to be high quality bioremediators because of their adaptability to a variety of different environments, as
135:
to denitrification when oxygen as an available terminal electron acceptor (TEA) runs out. This forces the organism to use nitrate to be used as a TEA. Because the diversity of denitrifying bacteria is so large, this group can thrive in a wide range of habitats including some extreme environments such
366:
found that anaerobic methane oxidation coupled to denitrification – also referred to as nitrate/nitrite-dependent anaerobic methane oxidation (n-damo) – is a dominant sink of methane in deep lakes. For a long time, it was considered that the mitigation of methane emissions was only due to aerobic
195:
The result is one molecule of nitrogen and six molecules of water. Denitrifying bacteria are a part of the N cycle, and consists of sending the N back into the atmosphere. The reaction above is the overall half reaction of the process of denitrification. The reaction can be further divided into
473:, an organic carbon source is supplied to the bacteria in an anoxic basin. With no available oxygen, denitrifying bacteria use the redox of nitrate to oxidize the carbon. This leads to the creation of nitrogen gas from nitrate, which then bubbles up out of the wastewater. 295:
found to oxidize methane independently. This process uses the excess electrons from methane oxidation to reduce nitrates, effectively removing both fixed nitrogen and methane from aquatic systems in habitats ranging from sediment to peat bogs to stratified water columns.
659:
Ettwig, Katharina F.; Shima, Seigo; van de Pas-Schoonen, Katinka T.; Kahnt, JΓΆrg; Medema, Marnix H.; op den Camp, Huub J. M.; Jetten, Mike S. M.; Strous, Marc (November 2008). "Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea".
799:
Raghoebarsing, Ashna A.; Pol, Arjan; van de Pas-Schoonen, Katinka T.; Smolders, Alfons J. P.; Ettwig, Katharina F.; Rijpstra, W. Irene C.; Schouten, Stefan; DamstΓ©, Jaap S. Sinninghe; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Strous, Marc (April 2006).
1248:
Ni, Bing-Jie; Pan, Yuting; Guo, Jianhua; Virdis, Bernardino; Hu, Shihu; Chen, Xueming; Yuan, Zhiguo (2016), Moura, Isabel; Moura, JosΓ© J G; Pauleta, Sofia R; Maia, Luisa B (eds.), "Chapter 16. Denitrification Processes for Wastewater Treatment",
38:. Denitrification is performed by a variety of denitrifying bacteria that are widely distributed in soils and sediments and that use oxidized nitrogen compounds such as nitrate and nitrite in the absence of oxygen as a terminal 386:
The results from the study on Lake Constance found that nitrate was depleted in the water at the same depth as methane, which suggests that methane oxidation was coupled to denitrification. It could be inferred that it was
156:), using nitrate reductase (Nar or Nap), nitrite reductase (Nir), nitric oxide reductase (Nor), and nitrous oxide reductase (Nos). Phylogenetic analysis revealed that aerobic denitrifiers mainly belong to Ξ±-, Ξ²- and Ξ³- 87:
There is a great diversity in biological traits. Denitrifying bacteria have been identified in over 50 genera with over 125 different species and are estimated to represent 10-15% of bacteria population in water,
879:
Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew; Amann, Markus; Faluvegi, Greg; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Emberson, Lisa (June 2012).
417:. Another important environmental issue concerning denitrification is the fact that the process tends to produce large amounts of by-products. Examples of by-products are nitric oxide (NO) and nitrous oxide (N 989:
Powell, Shane M.; Ferguson, Susan H.; Snape, Ian; Siciliano, Steven D. (March 2006). "Fertilization Stimulates Anaerobic Fuel Degradation of Antarctic Soils by Denitrifying Microorganisms".
1089:
Wu, M. L.; van Teeseling, M. C. F.; Willems, M. J. R.; van Donselaar, E. G.; Klingl, A.; Rachel, R.; Geerts, W. J. C.; Jetten, M. S. M.; Strous, M.; van Niftrik, L. (2011-10-21).
600:
Ji, Bin; Yang, Kai; Zhu, Lei; Jiang, Yu; Wang, Hongyu; Zhou, Jun; Zhang, Huining (August 2015). "Aerobic denitrification: A review of important advances of the last 30 years".
136:
as environments that are highly saline and high in temperature. Aerobic denitrifiers can conduct an aerobic respiratory process in which nitrate is converted gradually to N
371:. However, methane oxidation also takes place in anoxic, or oxygen depleted zones, of freshwater bodies. In the case of Lake Constance, this is carried out by 351:, water, and energy) in deep freshwater bodies of water. This is important because methane is the second most significant anthropogenic greenhouse gas, with a 1205:
Park, Hee-Deung; Noguera, Daniel R (August 2004). "Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge".
52:
using various enzymes, including nitrate reductase (NAR), nitrite reductase (NIR), nitric oxide reductase (NOR) and nitrous oxide reductase (NOS), turning
196:
different half reactions each requiring a specific enzyme. The transformation from nitrate to nitrite is performed by nitrate reductase (Nar)
1266: 445:
Denitrifying bacteria are an essential component in treating wastewater. Wastewater often contains large amounts of nitrogen (in the form of
882:"Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls" 175:
The most common denitrification process is outlined below, with the nitrogen oxides being converted back to gaseous nitrogen:
1091:"Ultrastructure of the Denitrifying Methanotroph "Candidatus Methylomirabilis oxyfera," a Novel Polygon-Shaped Bacterium" 268:
It is important to note that any of the products produced at any step can be exchanged with the soil environment.
307:
changes. The extent to which anthropogenic methane affects the atmosphere is known to be a significant driver of
352: 1292: 1146:
Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Zhou, Na; Guo, Lin; Di, Shi-Yu; Zhou, Zi-Zhen (2015-04-10).
316: 169: 1297: 1042:"The indirect global warming potential and global temperature change potential due to methane oxidation" 801: 1302: 1214: 1053: 998: 953: 816: 745: 669: 540: 304: 734:"Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake" 355:
25 times more potent than that of carbon dioxide, and freshwaters are a major contributor of global
482: 410: 132: 248:
Nitrous oxide reductase (Nos) terminates the reaction by converting nitrous oxide into dinitrogen
26:
that encompass many different phyla. This group of bacteria, together with denitrifying fungi and
1307: 858: 625: 566: 281: 299:
The process of anaerobic denitrification may contribute significantly to the global methane and
1287: 1262: 1230: 1187: 1169: 1128: 1110: 1071: 1022: 1014: 971: 919: 901: 850: 842: 781: 763: 703: 695: 617: 558: 406: 356: 49: 39: 1254: 1222: 1177: 1159: 1118: 1102: 1061: 1006: 961: 909: 893: 832: 824: 771: 753: 685: 677: 609: 548: 292: 131:
The majority of denitrifying bacteria are facultative aerobic heterotrophs that switch from
331:
well as the lacking any toxic or undesirable leftovers, as are left by other metabolisms.
31: 1148:"Nitrogen Removal from Micro-Polluted Reservoir Water by Indigenous Aerobic Denitrifiers" 1218: 1057: 1040:
Boucher, Olivier; Friedlingstein, Pierre; Collins, Bill; Shine, Keith P (October 2009).
1002: 957: 820: 749: 673: 544: 1182: 1147: 1123: 1090: 1066: 1041: 914: 881: 776: 733: 487: 434: 430: 363: 323: 312: 308: 300: 53: 35: 1281: 732:
Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard (2014-12-03).
681: 553: 528: 414: 322:
Additionally, microorganisms which employ this type of metabolism may be employed in
68: 629: 570: 120: 862: 368: 1226: 1258: 470: 400:
Denitrification effects on limiting plant productivity and producing by-products
327: 107: 101: 802:"A microbial consortium couples anaerobic methane oxidation to denitrification" 966: 941: 613: 43: 1173: 1114: 1075: 1018: 975: 942:"Hypoxia-induced shifts in nitrogen and phosphorus cycling in Chesapeake Bay" 905: 846: 767: 699: 621: 758: 340: 1234: 1191: 1132: 1026: 923: 854: 785: 707: 383:, which is a species of bacteria that acts as a denitrifying methanotroph. 232:
Nitric oxide reductase (Nor) then converts nitric oxide into nitrous oxide
562: 1164: 446: 113: 93: 46: 23: 1106: 897: 828: 339:
Denitrifying bacteria have been found to play a significant role in the
450: 285: 27: 1010: 837: 690: 291:
was first observed in 2008, with the isolation of a methane-oxidizing
422: 288: 119: 16:
Bacteria using nitrate and nitrite as a terminal electron acceptor
216:
Nitrite reductase (Nir) then converts nitrite into nitric oxide
89: 57: 517:
Microbiology and Molecular Biology Reviews, 61(4), 533–616
303:, especially in light of the recent influx of both due to 277:
Anaerobic oxidation of methane coupled to denitrification
311:, and considering it is multiple times more potent than 529:"The chemical mechanism of microbioal denitrification" 168:
Denitrifying bacteria use denitrification to generate
515:
Cell biology and molecular basis of denitrification.
99:
Denitrifying include for example several species of
645:Bothe, H., Ferguson, S., & Newton, W. (2007). 940:Testa, Jeremy Mark; Kemp, W. Michael (May 2012). 441:Denitrifying bacteria use in wastewater treatment 1253:, Royal Society of Chemistry, pp. 368–418, 738:Proceedings of the National Academy of Sciences 335:Role of denitrifying bacteria as a methane sink 8: 588:Soil microbiology, ecology, and biochemistry 1152:International Journal of Molecular Sciences 590:(4th ed.). Chapter 14 Amsterdam: Elsevier. 527:Averill, B.A.; Tiedje, J.M. (1982-02-08). 1181: 1163: 1122: 1065: 965: 913: 836: 775: 757: 689: 552: 461:) and nitrite oxidizing bacteria (NOB, NO 395:Denitrifying bacteria and the environment 602:Biotechnology and Bioprocess Engineering 272:Oxidation of methane and denitrification 74: 63: 641: 639: 582: 580: 509: 507: 505: 503: 499: 379:-like bacteria are bacteria similar to 991:Environmental Science & Technology 935: 933: 7: 874: 872: 727: 725: 723: 721: 719: 717: 381:Candidatus Methylomirabilis oxyfera 347:) (where methane is converted to CO 127:a species of denitrifying bacteria 83:Diversity of denitrifying bacteria 14: 886:Environmental Health Perspectives 682:10.1111/j.1462-2920.2008.01724.x 1046:Environmental Research Letters 647:Biology of the nitrogen cycle. 362:A study conducted on Europe's 326:, as shown by a 2006 study of 1: 1227:10.1016/j.watres.2004.04.047 1067:10.1088/1748-9326/4/4/044007 554:10.1016/0014-5793(82)80383-9 1259:10.1039/9781782623762-00368 284:denitrification coupled to 30:, is capable of performing 1324: 946:Limnology and Oceanography 662:Environmental Microbiology 967:10.4319/lo.2012.57.3.0835 614:10.1007/s12257-015-0009-0 164:Denitrification mechanism 433:which can contribute to 353:global warming potential 224:+ 4 H + 2 e β†’ 2 NO + 2 H 1095:Journal of Bacteriology 759:10.1073/pnas.1411617111 425:depleting species and N 369:methanotrophic bacteria 22:are a diverse group of 128: 513:Zumft, W. G. (1997). 125:Pseudomonas stutzeri, 123: 20:Denitrifying bacteria 1213:(14–15): 3275–3286. 1165:10.3390/ijms16048008 649:Amsterdam: Elsevier. 236:2 NO + 2 H + 2 e β†’ N 1219:2004WatRe..38.3275P 1107:10.1128/jb.05816-11 1058:2009ERL.....4d4007B 1003:2006EnST...40.2011P 958:2012LimOc..57..835T 898:10.1289/ehp.1104301 829:10.1038/nature04617 821:2006Natur.440..918R 750:2014PNAS..11118273D 744:(51): 18273–18278. 674:2008EnvMi..10.3164E 545:1982FEBSL.138....8A 483:Nitrifying bacteria 411:nitrifying bacteria 133:aerobic respiration 586:Eldor, A. (2015). 129: 1268:978-1-78262-334-2 1011:10.1021/es051818t 815:(7086): 918–921. 668:(11): 3164–3173. 357:methane emissions 256:O + 2 H + 2 e β†’ N 183:+ 10 e + 12 H β†’ N 56:back to nitrogen 40:electron acceptor 1315: 1272: 1271: 1245: 1239: 1238: 1202: 1196: 1195: 1185: 1167: 1158:(4): 8008–8026. 1143: 1137: 1136: 1126: 1086: 1080: 1079: 1069: 1037: 1031: 1030: 997:(6): 2011–2017. 986: 980: 979: 969: 937: 928: 927: 917: 876: 867: 866: 840: 806: 796: 790: 789: 779: 761: 729: 712: 711: 693: 656: 650: 643: 634: 633: 597: 591: 584: 575: 574: 556: 524: 518: 511: 375:-like bacteria. 293:bacterial strain 204:+ 2 H + 2 e β†’ NO 78: 66: 1323: 1322: 1318: 1317: 1316: 1314: 1313: 1312: 1278: 1277: 1276: 1275: 1269: 1247: 1246: 1242: 1204: 1203: 1199: 1145: 1144: 1140: 1088: 1087: 1083: 1039: 1038: 1034: 988: 987: 983: 939: 938: 931: 878: 877: 870: 804: 798: 797: 793: 731: 730: 715: 658: 657: 653: 644: 637: 599: 598: 594: 585: 578: 526: 525: 521: 512: 501: 496: 479: 468: 464: 460: 456: 443: 428: 420: 402: 397: 350: 346: 337: 301:nitrogen cycles 279: 274: 263: 259: 255: 243: 239: 227: 223: 211: 207: 203: 190: 186: 182: 166: 155: 151: 147: 143: 139: 85: 76: 72: 65: 61: 54:nitrogen oxides 34:as part of the 32:denitrification 17: 12: 11: 5: 1321: 1319: 1311: 1310: 1305: 1300: 1295: 1293:Nitrogen cycle 1290: 1280: 1279: 1274: 1273: 1267: 1251:Metallobiology 1240: 1207:Water Research 1197: 1138: 1101:(2): 284–291. 1081: 1032: 981: 952:(3): 835–850. 929: 892:(6): 831–839. 868: 791: 713: 651: 635: 608:(4): 643–651. 592: 576: 519: 498: 497: 495: 492: 491: 490: 488:Nitrogen Cycle 485: 478: 475: 466: 462: 458: 454: 442: 439: 435:global warming 431:greenhouse gas 429:O is a potent 426: 418: 409:by species of 401: 398: 396: 393: 364:Lake Constance 348: 344: 343:of methane (CH 336: 333: 324:bioremediation 313:carbon dioxide 309:climate change 278: 275: 273: 270: 266: 265: 261: 257: 253: 246: 245: 241: 237: 230: 229: 225: 221: 214: 213: 209: 205: 201: 193: 192: 188: 184: 180: 165: 162: 158:Proteobacteria 153: 149: 145: 141: 137: 84: 81: 36:nitrogen cycle 15: 13: 10: 9: 6: 4: 3: 2: 1320: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1285: 1283: 1270: 1264: 1260: 1256: 1252: 1244: 1241: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1201: 1198: 1193: 1189: 1184: 1179: 1175: 1171: 1166: 1161: 1157: 1153: 1149: 1142: 1139: 1134: 1130: 1125: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1085: 1082: 1077: 1073: 1068: 1063: 1059: 1055: 1052:(4): 044007. 1051: 1047: 1043: 1036: 1033: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 996: 992: 985: 982: 977: 973: 968: 963: 959: 955: 951: 947: 943: 936: 934: 930: 925: 921: 916: 911: 907: 903: 899: 895: 891: 887: 883: 875: 873: 869: 864: 860: 856: 852: 848: 844: 839: 834: 830: 826: 822: 818: 814: 810: 803: 795: 792: 787: 783: 778: 773: 769: 765: 760: 755: 751: 747: 743: 739: 735: 728: 726: 724: 722: 720: 718: 714: 709: 705: 701: 697: 692: 687: 683: 679: 675: 671: 667: 663: 655: 652: 648: 642: 640: 636: 631: 627: 623: 619: 615: 611: 607: 603: 596: 593: 589: 583: 581: 577: 572: 568: 564: 560: 555: 550: 546: 542: 538: 534: 530: 523: 520: 516: 510: 508: 506: 504: 500: 493: 489: 486: 484: 481: 480: 476: 474: 472: 471:heterotrophic 452: 448: 440: 438: 436: 432: 424: 421:O). NO is an 416: 415:cyanobacteria 412: 408: 399: 394: 392: 390: 384: 382: 378: 374: 370: 365: 360: 358: 354: 342: 334: 332: 329: 325: 320: 318: 314: 310: 306: 305:anthropogenic 302: 297: 294: 290: 287: 283: 276: 271: 269: 251: 250: 249: 235: 234: 233: 219: 218: 217: 199: 198: 197: 178: 177: 176: 173: 171: 163: 161: 159: 134: 126: 122: 118: 116: 115: 110: 109: 104: 103: 97: 95: 91: 82: 80: 70: 69:nitrous oxide 59: 55: 51: 48: 45: 41: 37: 33: 29: 25: 21: 1298:Soil biology 1250: 1243: 1210: 1206: 1200: 1155: 1151: 1141: 1098: 1094: 1084: 1049: 1045: 1035: 994: 990: 984: 949: 945: 889: 885: 812: 808: 794: 741: 737: 665: 661: 654: 646: 605: 601: 595: 587: 536: 533:FEBS Letters 532: 522: 514: 444: 403: 388: 385: 380: 376: 372: 361: 338: 321: 319:conditions. 298: 280: 267: 247: 231: 215: 194: 174: 167: 157: 130: 124: 117:and others. 112: 106: 100: 98: 86: 19: 18: 1303:Fishkeeping 539:(1): 8–12. 328:hydrocarbon 108:Alcaligenes 102:Pseudomonas 47:nitrogenous 1282:Categories 838:1874/22552 691:2066/72144 494:References 389:M. oxyfera 377:M. oxyfera 373:M. oxyfera 44:metabolize 1308:Aquariums 1174:1422-0067 1115:0021-9193 1076:1748-9326 1019:0013-936X 976:0024-3590 906:0091-6765 847:0028-0836 768:0027-8424 700:1462-2912 622:1226-8372 341:oxidation 289:oxidation 282:Anaerobic 50:compounds 1288:Bacteria 1235:15276744 1192:25867475 1133:22020652 1027:16570629 924:22418651 855:16612380 786:25472842 708:18721142 630:85744076 571:84456021 477:See also 447:ammonium 413:and the 148:β†’ NO β†’ N 114:Bacillus 94:sediment 24:bacteria 1215:Bibcode 1183:4425064 1124:3256638 1054:Bibcode 999:Bibcode 954:Bibcode 915:3385429 863:4413069 817:Bibcode 777:4280587 746:Bibcode 670:Bibcode 563:7067831 541:Bibcode 451:nitrate 407:fixated 317:hypoxic 286:methane 42:. They 28:archaea 1265:  1233:  1190:  1180:  1172:  1131:  1121:  1113:  1074:  1025:  1017:  974:  922:  912:  904:  861:  853:  845:  809:Nature 784:  774:  766:  706:  698:  628:  620:  569:  561:  859:S2CID 805:(PDF) 626:S2CID 567:S2CID 423:ozone 240:O + H 187:+ 6 H 152:O β†’ N 67:) or 1263:ISBN 1231:PMID 1188:PMID 1170:ISSN 1129:PMID 1111:ISSN 1072:ISSN 1023:PMID 1015:ISSN 972:ISSN 920:PMID 902:ISSN 851:PMID 843:ISSN 782:PMID 764:ISSN 704:PMID 696:ISSN 618:ISSN 559:PMID 465:β†’ NO 457:β†’ NO 220:2 NO 179:2 NO 144:β†’ NO 92:and 90:soil 1255:doi 1223:doi 1178:PMC 1160:doi 1119:PMC 1103:doi 1099:194 1062:doi 1007:doi 962:doi 910:PMC 894:doi 890:120 833:hdl 825:doi 813:440 772:PMC 754:doi 742:111 686:hdl 678:doi 610:doi 549:doi 537:138 449:or 405:be 260:+ H 208:+ H 170:ATP 140:(NO 79:). 58:gas 1284:: 1261:, 1229:. 1221:. 1211:38 1209:. 1186:. 1176:. 1168:. 1156:16 1154:. 1150:. 1127:. 1117:. 1109:. 1097:. 1093:. 1070:. 1060:. 1048:. 1044:. 1021:. 1013:. 1005:. 995:40 993:. 970:. 960:. 950:57 948:. 944:. 932:^ 918:. 908:. 900:. 888:. 884:. 871:^ 857:. 849:. 841:. 831:. 823:. 811:. 807:. 780:. 770:. 762:. 752:. 740:. 736:. 716:^ 702:. 694:. 684:. 676:. 666:10 664:. 638:^ 624:. 616:. 606:20 604:. 579:^ 565:. 557:. 547:. 535:. 531:. 502:^ 437:. 359:. 200:NO 172:. 160:. 111:, 105:, 96:. 1257:: 1237:. 1225:: 1217:: 1194:. 1162:: 1135:. 1105:: 1078:. 1064:: 1056:: 1050:4 1029:. 1009:: 1001:: 978:. 964:: 956:: 926:. 896:: 865:. 835:: 827:: 819:: 788:. 756:: 748:: 710:. 688:: 680:: 672:: 632:. 612:: 573:. 551:: 543:: 467:3 463:2 459:2 455:4 427:2 419:2 349:2 345:4 264:O 262:2 258:2 254:2 252:N 244:O 242:2 238:2 228:O 226:2 222:2 212:O 210:2 206:2 202:3 191:O 189:2 185:2 181:3 154:2 150:2 146:2 142:3 138:2 77:O 75:2 73:N 71:( 64:2 62:N 60:(

Index

bacteria
archaea
denitrification
nitrogen cycle
electron acceptor
metabolize
nitrogenous
compounds
nitrogen oxides
gas
nitrous oxide
soil
sediment
Pseudomonas
Alcaligenes
Bacillus

aerobic respiration
ATP
Anaerobic
methane
oxidation
bacterial strain
nitrogen cycles
anthropogenic
climate change
carbon dioxide
hypoxic
bioremediation
hydrocarbon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑