Knowledge (XXG)

Developmental bias

Source 📝

425:. In development, neutral networks are clusters of GRNs that differ in only one interaction between two nodes (e.g. replacing transcription with suppression) and yet produce the same phenotypic outcome. In this sense, an individual phenotype within a population could be mapped to several equivalent GRNs, that together constitute a neutral network. Conversely, a GRN that differs in one interaction and causes a different phenotype is considered non-neutral. Given this architecture, the probability of mutating from one phenotype to another will depend on the number of neutral-neighbors relative to non-neutral neighbors for a particular GRN, and thus, phenotypic change will be influenced by the position of a GRN within the network and will be biased towards changes that require few mutations to reach a neighboring non-neutral GRN. 164:. One way to study the distribution of phenotypic variation is through depicting the volume of the morphospace occupied by a set of organisms or species. Theoretically, there can exist a natural process that generates an almost-evenly (quasi stochastic) distributed pattern of phenotypes in the morphospace, regarding that new species necessary tend to occupy a point in the morphospace that is close to those of its phylogenetic relatives. However, it is now widely acknowledged that organisms are not evenly distributed along the morphospace, i.e. isotropic variation, but instead are nonrandomly distributed, i.e. anisotropic variation. In other words, there exists a discordance between the apparent (or theoretical) possible phenotypes and their actual accessibility. 168: 219: 44: 303:, the mutational matrix (M-matrix), also known as the distribution of mutational effects, has been shown to be of equivalent importance. The M-matrix describes the potential effects of new mutations on the existing genetic variances and covariances, and these effects will depend on the epistatic and pleiotropic interactions of the underlying genes. In other words, the M-matrix determines the G-matrix, and thus, the response to selection of a population. Similarly to the P-matrix, the G-matrix describes the main axis of variation. 101: 312: 401:
under selection but few effects on other traits, are expected to accumulate a higher proportion of mutations that cause evolutionary change. These strategically-positioned genes have the potential to filter random genetic variation and translate it to nonrandom functionally integrated phenotypes, making adaptive variants effectively accessible to selection, and, thus, many of the mutations contributing to phenotypic evolution may be concentrated in these genes.
202: 363: 231:
three-jointed thumb due to the extension of the first toe. However, 20 toes were found much more frequently and then 22, 24 or 26 toes with decreasing frequency. Odd total numbers of toes on the feet were less common. There is another bias between the number of toes on the front and rear feet, and a left-right asymmetry in the number of toes. Random bistability during the development process could explain the observed bias.
238:) have been used to understand the logic behind the mechanisms that produce variation. For example, in a wide range of animals, from fish to humans, two-headed organisms are much more common than three-headed organisms; similarly, Siamese twins theoretically could ‘fuse’ through any region in the body but the fusion occurs more frequently in the abdominal region. This trend was referred to as 143: 93:. Some kinds of reprogramming are more likely to occur than others given the nature of the genotype–phenotype map, which determines the propensity of a system to vary in a particular direction, thus, creating a bias. In other words, the underlying architecture of the developmental systems influences the kinds of possible phenotypic outcomes. 256: 321:
however, if the main axis of variation is orthogonal to the direction of selection, covariation will constraint the rate of adaptive evolution. In general, for a population under the influence of a single fitness optimum, the rate of morphological divergence (from an ancestral to a new phenotype or between pairs of
388:
provides multiple inputs to other genes, creating a complex array of interactions, and information regarding the timing, place and amount of gene expression generally flows from few high-level control genes through multiple intermediate genes to peripheral gene batteries that ultimately determine the
209:
In a classical natural example of bias it was shown that only a small proportion of all possible snail shell shapes was realized in nature and actual species were confined to discrete regions of the shell-morphospace rather than being continuously distributed. In another natural example, it was shown
151:
The morphospace is a quantitative representation of phenotypes in a multidimensional space, where each dimension corresponds to a trait. The phenotype of each organism or species is then represented as a point in that space that summarizes the combination of values or states at each particular trait.
400:
effects are more likely to be targets of evolution, thus, the hierarchical architecture of developmental pathways may bias the genetic basis of evolutionary change. For instance, genes within GRNs with "optimally pleiotropic" effects, that is, genes that have the most widespread effect on the trait
315:
Morphospace and fitness landscape with a single fitness optimum. For a population undergoing directional selection, the main axis of variation (largest axis of the white ellipse) will bias the main direction of the trajectory toward the fitness optimum (arrow). The rate of morphological change will
268:
changes are widespread in nature and can account for a wide variety of realized morphologies and subsequent ecological and physiological changes. Under this approach, phenotype is seen as an integrated system where each trait develops and evolves in concert with the other traits, and thus, a change
259:
Representation of the relationship between two traits. Left: No trait covariation. Each trait changes independently of the other. Right: Trait covariation causes a positive correlation between traits where increase in one trait is correlated with an increase in the other trait (covariation can also
214:
have an enormous variation in the number of pairs of legs, the lowest being 27 and the highest 191 pairs; however, there are no species with an even number of leg pairs, which suggests that either these phenotypes are somehow restricted during development or that there is a developmental drive into
320:
A general consequence of the P-matrices and G-matrices is that evolution will tend to follow the ‘path of least resistance’. In other words, if the main axis of variation is aligned with the direction of selection, covariation (genetic or phenotypic) will facilitate the rate of adaptive evolution;
128:
Developmental drive is the inherent natural tendency of organisms and their ontogenetic trajectories to change in a particular direction (i.e. a bias towards a certain ontogenetic trajectory). This type of bias is thought to facilitate adaptive evolution by aligning phenotypic variability with the
298:
and covariance between traits. Thus, a population’s immediate ability to respond to selection is determined by the G-matrix, in which the variance is a function of standing genetic variation, and the covariance arises from pleiotropy and linkage disequilibrium. Although the G-matrix is one of the
96:
However, developmental bias can evolve through natural selection, and both processes simultaneously influence phenotypic evolution. For example, developmental bias can affect the rate or path to an adaptive peak (high-fitness phenotype), and conversely, strong directional selection can modify the
88:
and mutation does not in itself produce phenotypic variation, thus, there is a conceptual gap regarding the connection between a mutation and the potential change in phenotype. For a mutation to readily alter a phenotype, and hence be visible to natural selection, it has to modify the ontogenetic
188:
An important distinction between structuralism and functionalism regards primarily with the interpretation of the causes of the empty regions in the morphospace (that is, the inexistent phenotypes): Under the functionalist view, empty spaces correspond to phenotypes that are both ontogenetically
175:
Thus, some phenotypes are inaccessible (or impossible) due to the underlying architecture of the developmental trajectory, while others are accessible (or possible). However, of the possible phenotypes, some are ‘easier’ or more probable to occur than others. For example, a phenotype such as the
333:: ability of a developmental system to change in the direction of natural selection. In the latter, the main axis of phenotypic variation is aligned with the direction of selection. Similarly, from the G-matrix, the most important parameter that describes the propensity of variation is the lead 184:
characters (e.g. birds and bats), and, thus, are mutually exclusive. On the other hand, if two phenotypes are possible (and equally fit), but one form of reprogramming requires only one mutation while the other requires two or more, the former will be more likely to occur (assuming that genetic
285:
is a statistical framework mainly concerned with modeling the evolution of continuous characters. Under this framework, correlation between traits could be the result of two processes: 1) natural selection acting simultaneously on several traits ensuring that they are inherited together (i.e.
104:
Developmental bias for continuous characters. If the main axis of variation (red arrows) is orthogonal to the direction of selection (dashed line), trait covariation will constraint adaptive evolution. Conversely, if the main axis of variation is aligned with the direction of selection, trait
230:
showed that the number of additional toes was variable (plastic) and contained a bias. The Maine Coon cat (as the basic model of the Hemingway mutants) has 18 toes in the wild. Polydactyly occurred in some cases with an unchanged number of toes (18 toes), whereby the deviation consisted of a
119:
Developmental constraints are limitations on phenotypic variability (or absence of variation) caused by the inherent structure and dynamics of the developmental system. Constraints are a bias against a certain ontogenetic trajectory, and consequently are thought to limit adaptive evolution.
193:. In contrast, under the structuralist view, empty spaces correspond to ontogenetically impossible or improbable phenotypes, thus, implying a bias in the types of phenotypes that can be produced assuming equal amounts of variation (genetic mutations) in both models. 273:
effects of underlying genes. This correlated change between traits can be measured and analyzed through a phenotypic variance-covariance matrix (P-matrix) which summarizes the dimensions of phenotypic variability and the main axis of variation.
146:
Multidimensional representation of species in the morphospace. Each axis corresponds to a trait, and dots correspond to organisms with particular trait values combinations. In this case, the axes represent the form of the fish
290:), or 2) natural selection acting on one trait causing correlated change in other traits due to pleiotropic effects of genes. For a set of traits, the equation that describe the variance among traits is the multivariate 73:(also “adaptationist”, “pan-selectionist” or “externalist”) view in which phenotypic evolution results only from the interaction between the deterministic action of natural selection and variation caused by mutation. 328:
From the P-matrix for a set of characters, two broadly important measures of the propensity of variation can be extracted: 1) Respondability: ability of a developmental system to change in any direction, and 2)
409:
The genotype–phenotype map perspective establishes that the way in which genotypic variation can be mapped to phenotypic variation is critical for the ability of a system to evolve. The prevalence of
35:. Historically, the term was synonymous with developmental constraint, however, the latter has been more recently interpreted as referring solely to the negative role of development in evolution. 264:
Integration or covariation among traits during development has been suggested to constrain phenotypic evolution to certain regions of the morphospace and limit adaptive evolution. These
269:
in one trait affects the interacting parts in a correlated manner. The correlation between traits is a consequence of the architecture of the genotype–phenotype map, particularly the
1210:
Chartier, Marion; Jabbour, Florian; Gerber, Sylvain; Mitteroecker, Philipp; Sauquet, Hervé; von Balthazar, Maria; Staedler, Yannick; Crane, Peter R.; Schönenberger, Jürg (2014).
218: 1544:
Lange, Axel; Nemeschkal, Hans L.; Müller, Gerd B. (2014). "Biased Polyphenism in Polydactylous Cats Carrying a Single Point Mutation: The Hemingway Model for Digit Novelty".
76:
The rationale behind the role of the organism, or more specifically the embryo, as a causal force in evolution and for the existence of bias is as follows: The traditional,
325:) is inversely proportional to the angle formed by the main axis of variation and the direction of selection, causing a curved trajectory through the morphospace. 167: 2346:
Schuster, Peter; Fontana, Walter; Stadler, Peter F.; Hofacker, Ivo L. (1994). "From sequences to shapes and back: a case study in RNA secondary structures".
2506: 393:
affecting multiple downstream genes, whereas intermediate and peripheral genes tend to have moderate to low pleiotropic effects, respectively.
294:Δz = β x G, where Δz is the vector of differences in trait means, β is a vector of selection coefficients, and G is a matrix of the 1591: 1191: 1154: 28:
which ultimately influence the direction and outcome of evolutionary change by affecting the rates, magnitudes, directions and limits of
910:
Arthur, Wallace (2000). "The concept of developmental reprogramming and the quest for an inclusive theory of evolutionary mechanisms".
2226: 753: 152:
This approach is used to study the evolution of realized phenotypes compared to those that are theoretically possible but inexistent.
840: 316:
be inversely proportional to the angle (beta) formed between the direction of selection (dashed line) and the main axis of variation.
1340: 886: 858: 80:, approach to explain the process behind evolutionary change is natural selection acting upon heritable variation caused by genetic 260:
produce negative correlation). The red line within the ellipse represents the main eigenvector of the variance-covariance matrix.
242:, suggesting the existence of profound historical rules governing the expression of abnormal forms in distantly related species. 568:; Lewontin, R. C. (1979). "The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme". 630:(1989). "A Developmental Constraint in Cerion, with Comments of the Definition and Interpretation of Constraint in Evolution". 176:
classical figure of a dragon (i.e. a giant reptile-like creature with two pairs of limbs and an anterior pair of wings) may be
2250:
Kopp, A. (2009). "Metamodels and phylogenetic replication: A systematic approach to the evolution of developmental pathways".
1137:
Altenberg, L. (1995). "Genome Growth and the Evolution of the Genotype-Phenotype Map". In Banzhaf, W.; Eeckman, F. H. (eds.).
2501: 1913:
Steppan, Scott J.; Patrick C. Phillips; David Houle (2002). "Comparative quantitative genetics: evolution of the G matrix".
160:
Describing and understanding the drivers of the distribution of phenotypic variation in nature is one of the main goals in
334: 43: 1957:
Jones, Adam G.; Arnold, Stevan J.; Bürger, Reinhard (2007). "The Mutation Matrix and the Evolution of Evolvability".
1272:
Gerber, Sylvain (2014). "Not all roads can be taken: development induces anisotropic accessibility in morphospace".
2409: 2286: 1497:"The interaction between developmental bias and natural selection: from centipede segments to a general hypothesis" 678:
Arthur, Wallace (2001). "Developmental drive: an important determinant of the direction of phenotypic evolution".
1170:
Altenberg, L. (2005). "Modularity in Evolution: Some Low-Level Questions". In Callebaut, W.; Rasskin-Gutman, D.;
342: 295: 47:
Haeckel's drawings of "lower" (fish, salamander) and "higher" (tortoise, chick) vertebrates at comparable stages
61:
force of evolutionary change. In the Structuralist view, phenotypic evolution is the result of the action of
2000:
Cheverud, James M. (1984). "Quantitative genetics and developmental constraints on evolution by selection".
381: 371: 77: 53: 51:
In modern evolutionary biology, the idea of developmental bias is embedded into a current of thought called
291: 421:, and a consequence of this "many-to-few" relationship between genotype and phenotype is the existence of 287: 282: 396:
In general, it is expected that newly arisen mutations with higher dominance and fewer pleiotropic and
345:
for a set of continuous traits within populations. For a population undergoing directional selection, g
100: 2355: 2009: 1733: 796: 577: 385: 161: 17: 1824:
Lande, Russell; Arnold, Stevan J. (1983). "The Measurement of Selection on Correlated Characters".
1183: 1039:
Uller, Tobias; Moczek, Armin P.; Watson, Richard A.; Brakefield, Paul M.; Laland, Kevin N. (2018).
968: 389:
fate of each cell. This type of architecture implies that high-level control genes tend to be more
311: 1724:
Emlen, Douglas J. (2001-02-23). "Costs and the Diversification of Exaggerated Animal Structures".
1332: 513:"The effect of development on the direction of evolution: toward a twenty-first century consensus" 2387: 2196: 2076: 1892: 1841: 1765: 1706: 1477: 1305: 943: 711: 647: 609: 488: 464: 181: 787:(1989). "The logic of monsters: Evidence for internal constraint in development and evolution". 1146: 2440: 2432: 2379: 2371: 2328: 2310: 2267: 2232: 2222: 2188: 2180: 2133: 2125: 2084: 2033: 2025: 1982: 1974: 1930: 1884: 1849: 1806: 1757: 1749: 1698: 1663: 1645: 1597: 1587: 1561: 1526: 1518: 1450: 1442: 1402: 1384: 1336: 1297: 1289: 1249: 1231: 1187: 1150: 1119: 1078: 1060: 1002: 994: 935: 927: 892: 882: 854: 812: 759: 749: 703: 695: 655: 627: 601: 593: 565: 542: 534: 190: 62: 2157: 1626:"The macroevolutionary consequences of phenotypic integration: from development to deep time" 384:
are modular, multilayered, and semi-hierarchically systems of genes and their products: each
2424: 2363: 2318: 2302: 2259: 2172: 2115: 2068: 2017: 1966: 1922: 1876: 1833: 1796: 1741: 1690: 1653: 1637: 1553: 1508: 1434: 1392: 1376: 1328: 1281: 1239: 1223: 1175: 1171: 1138: 1109: 1068: 1052: 984: 919: 846: 804: 687: 639: 585: 524: 480: 410: 201: 29: 362: 1176: 691: 467:; Burian, R.; Kauffman, S.; Alberch, P.; Campbell, J.; Goodwin, B.; Lande, R.; Raup, D.; 2359: 2013: 1737: 800: 581: 97:
developmental bias to increase the phenotypic variation in the direction of selection.
2323: 2290: 2056: 1837: 1694: 1658: 1625: 1397: 1364: 1244: 1211: 1073: 989: 972: 227: 211: 189:
possible and equally probable but are eliminated by natural selection due to their low
2021: 1926: 1325:
The Origin of Higher Taxa: Palaeobiological, developmental and ecological perspectives
1212:"The floral morphospace - a modern comparative approach to study angiosperm evolution" 808: 2495: 2306: 2263: 1970: 1801: 1139: 923: 529: 512: 468: 2391: 1769: 1710: 1309: 947: 715: 492: 2200: 1896: 784: 613: 434: 330: 300: 1785:"Phenotypic integration: studying the ecology and evolution of complex phenotypes" 1178:
Modularity: Understanding the Development and Evolution of Natural Complex Systems
1468:
Raup, David M. (1966). "Geometric Analysis of Shell Coiling: General Problems".
1056: 2428: 1438: 1601: 1557: 1380: 1114: 1097: 896: 763: 439: 390: 270: 235: 2436: 2375: 2314: 2236: 2184: 2129: 2104:"Genetics, development and evolution of adaptive pigmentation in vertebrates" 2029: 1978: 1934: 1810: 1753: 1649: 1565: 1522: 1446: 1388: 1293: 1235: 1064: 998: 931: 850: 816: 699: 597: 538: 1745: 1040: 418: 397: 265: 85: 32: 2444: 2367: 2332: 2271: 2192: 2137: 2120: 2103: 2088: 1986: 1888: 1853: 1761: 1667: 1641: 1530: 1513: 1496: 1454: 1406: 1365:"Approaches to Macroevolution: 1. General Concepts and Origin of Variation" 1301: 1253: 1123: 1082: 1006: 939: 707: 659: 589: 546: 142: 2383: 2037: 1702: 414: 367: 180:
because in vertebrates the fore-limbs and the anterior pair of wings are
81: 66: 25: 1096:
Drost, Hajk-Georg; Janitza, Philipp; Grosse, Ivo; Quint, Marcel (2017).
605: 2080: 1845: 1584:
Freaks of Nature What Anomalies Tell Us About Development and Evolution
1481: 651: 322: 2059:(1996). "Adaptive Radiation Along Genetic Lines of Least Resistance". 1425:
Olson, M.E. (2012). "The developmental renaissance in adaptationism".
1285: 1227: 226:
A study of the polydactyl toe counts of 375 Hemingway mutants of the
2176: 2072: 1784: 1681:
Gould, S.J. (1966). "Allometry and Size in Ontogeny and Phylogeny".
1041:"Developmental Bias and Evolution: A Regulatory Network Perspective" 973:"Perspective: Complex Adaptations and the Evolution of Evolvability" 643: 255: 1880: 1624:
Goswami, A.; Smaers, J. B.; Soligo, C.; Polly, P. D. (2014-08-19).
484: 166: 42: 2221:. Greenwood Village, Colorado: Roberts and Company Publishers. 1141:
Evolution and Biocomputation: Computational Models of Evolution
2291:"The Loci of Evolution: How Predictable is Genetic Evolution?" 222:
Biased number of polydactylous toes in a Main Coon population
1867:
Arnold, S.J. (1992). "Constraints on phenotypic evolution".
353:
Biased phenotypes II: Properties of gene regulatory networks
217: 156:
Nonrandom (anisotropic) distribution of phenotypic variation
2410:"Genotype networks shed light on evolutionary constraints" 1098:"Cross-kingdom comparison of the developmental hourglass" 2158:"The evolution of hierarchical gene regulatory networks" 65:
on previously ‘filtered’ variation during the course of
2219:
Evolution, development, & the predictable genome
877:
Zimmer, Carl.; Emlen D.; Perkins, Alison EH (2013).
413:
in nature implies that biological systems have more
24:
refers to the production against or towards certain
471:(1985). "Developmental constraints and evolution". 2486:Evolution, development, and the predictable genome 57:, which emphasizes the role of the organism as a 349:will bias the main direction of the trajectory. 105:covariation will facilitate adaptive evolution. 2156:Erwin, Douglas H.; Davidson, Eric H. (2009). 1102:Current Opinion in Genetics & Development 341:), which describes the direction of greatest 8: 2480:Homology, Genes, and Evolutionary Innovation 2348:Proceedings of the Royal Society of London B 746:Homology, Genes, and Evolutionary Innovation 570:Proceedings of the Royal Society of London B 234:Conversely, developmental abnormalities (or 197:Classical examples of anisotropic variation 366:Different vertebrate species have evolved 251:Developmental integration and the P-matrix 2322: 2119: 1800: 1657: 1512: 1396: 1333:10.1093/acprof:oso/9780199691883.001.0001 1243: 1113: 1072: 988: 845:. Cambridge: Cambridge University Press. 528: 246:Biased phenotypes I: Continuous variation 361: 310: 254: 200: 141: 99: 451: 2403: 2401: 2212: 2210: 2151: 2149: 2147: 2051: 2049: 2047: 1952: 1950: 1948: 1946: 1944: 1908: 1906: 1619: 1617: 1615: 1613: 1611: 1577: 1575: 1420: 1418: 1416: 1358: 1356: 1354: 1352: 963: 961: 959: 957: 278:Quantitative genetics and the G-matrix 1267: 1265: 1263: 1205: 1203: 1182:. Cambridge, MA: MIT Press. pp.  1034: 1032: 1030: 1028: 1026: 1024: 1022: 1020: 1018: 1016: 872: 870: 370:forms from parallel mutations at the 89:trajectory, a process referred to as 84:. However, natural selection acts on 7: 834: 832: 830: 828: 826: 779: 777: 775: 773: 739: 737: 735: 733: 731: 729: 727: 725: 692:10.1046/j.1525-142x.2001.003004271.x 673: 671: 669: 560: 558: 556: 506: 504: 502: 459: 457: 455: 133:Distribution of phenotypic variation 2474:Evolution: A developmental approach 171:Ontogenetically impossible creature 1838:10.1111/j.1558-5646.1983.tb00236.x 1695:10.1111/j.1469-185X.1966.tb01624.x 990:10.1111/j.1558-5646.1996.tb02339.x 881:. Greenwood Village, CO: Roberts. 299:most relevant parameters to study 14: 2417:Trends in Ecology & Evolution 1915:Trends in Ecology & Evolution 1427:Trends in Ecology & Evolution 2307:10.1111/j.1558-5646.2008.00450.x 2264:10.1111/j.1558-5646.2009.00761.x 1971:10.1111/j.1558-5646.2007.00071.x 1802:10.1046/j.1461-0248.2003.00428.x 924:10.1046/j.1525-142x.2000.00028.x 530:10.1111/j.1525-142x.2004.04033.x 358:Hierarchy and optimal pleiotropy 2507:Extended evolutionary synthesis 879:Evolution: Making sense of life 473:The Quarterly Review of Biology 2102:Hoekstra, H. E. (2006-07-05). 2002:Journal of Theoretical Biology 748:. Princeton University Press. 1: 2022:10.1016/s0022-5193(84)80050-8 1927:10.1016/S0169-5347(02)02505-3 1145:. Berlin: Springer. pp.  809:10.1016/s0016-6995(89)80006-3 2468:Biased Embryos and Evolution 842:Biased Embryos and Evolution 1586:. Oxford University Press. 1327:. Oxford University Press. 1274:Evolution & Development 1057:10.1534/genetics.118.300995 185:mutations occur randomly). 91:developmental reprogramming 2523: 2429:10.1016/j.tree.2011.07.001 1439:10.1016/j.tree.2011.12.005 744:Wagner, Gunter P. (2014). 1558:10.1007/s11692-013-9267-y 1381:10.1007/s11692-017-9420-0 1115:10.1016/j.gde.2017.03.003 971:; Altenberg, Lee (1996). 912:Evolution and Development 680:Evolution and Development 517:Evolution and Development 343:additive genetic variance 307:Paths of least resistance 296:additive genetic variance 205:Shell variation in nature 115:Developmental constraints 2408:Wagner, Andreas (2011). 1495:Arthur, Wallace (2002). 851:10.1017/cbo9780511606830 839:Arthur, Wallace (2004). 511:Arthur, Wallace (2004). 240:transpecific parallelism 212:soil-dwelling centipedes 129:direction of selection. 69:. It contrasts with the 26:ontogenetic trajectories 2165:Nature Reviews Genetics 1869:The American Naturalist 1746:10.1126/science.1056607 1582:Blumberg, M.S. (2009). 1470:Journal of Paleontology 2462:Ontogeny and Phylogeny 2368:10.1098/rspb.1994.0040 2121:10.1038/sj.hdy.6800861 1642:10.1098/rstb.2013.0254 1630:Phil. Trans. R. Soc. B 1514:10.1038/sj.hdy.6800139 1363:Jablonski, D. (2017). 590:10.1098/rspb.1979.0086 378: 317: 288:linkage disequilibrium 261: 223: 206: 172: 148: 106: 48: 39:The role of the embryo 2502:Developmental biology 1783:Pigliucci, M (2003). 365: 314: 283:Quantitative genetics 258: 221: 204: 170: 145: 103: 46: 2217:Stern, D.L. (2011). 1546:Evolutionary Biology 1369:Evolutionary Biology 386:transcription factor 162:evolutionary biology 18:evolutionary biology 2360:1994RSPSB.255..279S 2014:1984JThBi.110..155C 1738:2001Sci...291.1534E 1732:(5508): 1534–1536. 1323:Kemp, T.S. (2016). 801:1989Geobi..22...21A 582:1979RSPSB.205..581G 465:Maynard Smith, John 124:Developmental drive 1636:(1649): 20130254. 628:Gould, Stephen Jay 379: 318: 292:breeder’s equation 262: 224: 207: 173: 149: 107: 49: 22:developmental bias 2354:(1344): 279–284. 2258:(11): 2771–2789. 1593:978-0-1997-5064-1 1286:10.1111/ede.12098 1228:10.1111/nph.12969 1193:978-0-262-03326-8 1172:Simon, Herbert A. 1156:978-3-540-49176-7 969:Wagner, Günter P. 576:(1161): 581–598. 411:neutral mutations 63:natural selection 2514: 2449: 2448: 2414: 2405: 2396: 2395: 2343: 2337: 2336: 2326: 2301:(9): 2155–2177. 2282: 2276: 2275: 2247: 2241: 2240: 2214: 2205: 2204: 2162: 2153: 2142: 2141: 2123: 2099: 2093: 2092: 2067:(5): 1766–1774. 2053: 2042: 2041: 1997: 1991: 1990: 1954: 1939: 1938: 1910: 1901: 1900: 1864: 1858: 1857: 1832:(6): 1210–1226. 1821: 1815: 1814: 1804: 1780: 1774: 1773: 1721: 1715: 1714: 1678: 1672: 1671: 1661: 1621: 1606: 1605: 1579: 1570: 1569: 1541: 1535: 1534: 1516: 1492: 1486: 1485: 1476:(5): 1178–1190. 1465: 1459: 1458: 1422: 1411: 1410: 1400: 1360: 1347: 1346: 1320: 1314: 1313: 1269: 1258: 1257: 1247: 1207: 1198: 1197: 1181: 1167: 1161: 1160: 1144: 1134: 1128: 1127: 1117: 1093: 1087: 1086: 1076: 1036: 1011: 1010: 992: 965: 952: 951: 907: 901: 900: 874: 865: 864: 836: 821: 820: 781: 768: 767: 741: 720: 719: 675: 664: 663: 624: 618: 617: 562: 551: 550: 532: 508: 497: 496: 461: 423:neutral networks 405:Neutral networks 2522: 2521: 2517: 2516: 2515: 2513: 2512: 2511: 2492: 2491: 2458: 2456:Further reading 2453: 2452: 2423:(11): 577–584. 2412: 2407: 2406: 2399: 2345: 2344: 2340: 2284: 2283: 2279: 2249: 2248: 2244: 2229: 2216: 2215: 2208: 2177:10.1038/nrg2499 2160: 2155: 2154: 2145: 2101: 2100: 2096: 2073:10.2307/2410734 2057:Schluter, Dolph 2055: 2054: 2045: 1999: 1998: 1994: 1956: 1955: 1942: 1912: 1911: 1904: 1866: 1865: 1861: 1823: 1822: 1818: 1789:Ecology Letters 1782: 1781: 1777: 1723: 1722: 1718: 1680: 1679: 1675: 1623: 1622: 1609: 1594: 1581: 1580: 1573: 1543: 1542: 1538: 1494: 1493: 1489: 1467: 1466: 1462: 1424: 1423: 1414: 1362: 1361: 1350: 1343: 1322: 1321: 1317: 1271: 1270: 1261: 1216:New Phytologist 1209: 1208: 1201: 1194: 1169: 1168: 1164: 1157: 1136: 1135: 1131: 1095: 1094: 1090: 1038: 1037: 1014: 967: 966: 955: 909: 908: 904: 889: 876: 875: 868: 861: 838: 837: 824: 783: 782: 771: 756: 743: 742: 723: 677: 676: 667: 644:10.2307/2409056 626: 625: 621: 564: 563: 554: 510: 509: 500: 463: 462: 453: 448: 431: 407: 360: 355: 348: 340: 309: 280: 253: 248: 199: 158: 140: 135: 126: 117: 112: 41: 12: 11: 5: 2520: 2518: 2510: 2509: 2504: 2494: 2493: 2490: 2489: 2483: 2482:(Wagner, 2014) 2477: 2476:(Arthur, 2010) 2471: 2470:(Arthur, 2004) 2465: 2457: 2454: 2451: 2450: 2397: 2338: 2277: 2242: 2228:978-1936221011 2227: 2206: 2171:(2): 141–148. 2143: 2114:(3): 222–234. 2094: 2043: 2008:(2): 155–171. 1992: 1965:(4): 727–745. 1940: 1921:(7): 320–327. 1902: 1881:10.1086/285398 1859: 1816: 1795:(3): 265–272. 1775: 1716: 1689:(4): 587–640. 1673: 1607: 1592: 1571: 1552:(2): 262–275. 1536: 1507:(4): 239–246. 1487: 1460: 1433:(5): 278–287. 1412: 1375:(4): 427–450. 1348: 1341: 1315: 1280:(6): 373–381. 1259: 1222:(4): 841–853. 1199: 1192: 1162: 1155: 1129: 1088: 1051:(4): 949–966. 1012: 983:(3): 967–976. 953: 902: 887: 866: 859: 822: 769: 755:978-0691180670 754: 721: 686:(4): 271–278. 665: 638:(3): 516–539. 619: 552: 523:(4): 282–288. 498: 485:10.1086/414425 479:(3): 265–287. 450: 449: 447: 444: 443: 442: 437: 430: 427: 406: 403: 359: 356: 354: 351: 346: 338: 308: 305: 279: 276: 252: 249: 247: 244: 228:Maine Coon cat 215:odd numbers. 198: 195: 157: 154: 139: 136: 134: 131: 125: 122: 116: 113: 111: 108: 40: 37: 13: 10: 9: 6: 4: 3: 2: 2519: 2508: 2505: 2503: 2500: 2499: 2497: 2488:(Stern, 2011) 2487: 2484: 2481: 2478: 2475: 2472: 2469: 2466: 2464:(Gould, 1977) 2463: 2460: 2459: 2455: 2446: 2442: 2438: 2434: 2430: 2426: 2422: 2418: 2411: 2404: 2402: 2398: 2393: 2389: 2385: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2353: 2349: 2342: 2339: 2334: 2330: 2325: 2320: 2316: 2312: 2308: 2304: 2300: 2296: 2292: 2288: 2285:Stern, D.L.; 2281: 2278: 2273: 2269: 2265: 2261: 2257: 2253: 2246: 2243: 2238: 2234: 2230: 2224: 2220: 2213: 2211: 2207: 2202: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2159: 2152: 2150: 2148: 2144: 2139: 2135: 2131: 2127: 2122: 2117: 2113: 2109: 2105: 2098: 2095: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2052: 2050: 2048: 2044: 2039: 2035: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1996: 1993: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1953: 1951: 1949: 1947: 1945: 1941: 1936: 1932: 1928: 1924: 1920: 1916: 1909: 1907: 1903: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1860: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1820: 1817: 1812: 1808: 1803: 1798: 1794: 1790: 1786: 1779: 1776: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1720: 1717: 1712: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1677: 1674: 1669: 1665: 1660: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1620: 1618: 1616: 1614: 1612: 1608: 1603: 1599: 1595: 1589: 1585: 1578: 1576: 1572: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1537: 1532: 1528: 1524: 1520: 1515: 1510: 1506: 1502: 1498: 1491: 1488: 1483: 1479: 1475: 1471: 1464: 1461: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1421: 1419: 1417: 1413: 1408: 1404: 1399: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1366: 1359: 1357: 1355: 1353: 1349: 1344: 1342:9780199691883 1338: 1334: 1330: 1326: 1319: 1316: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1268: 1266: 1264: 1260: 1255: 1251: 1246: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1206: 1204: 1200: 1195: 1189: 1185: 1180: 1179: 1173: 1166: 1163: 1158: 1152: 1148: 1143: 1142: 1133: 1130: 1125: 1121: 1116: 1111: 1107: 1103: 1099: 1092: 1089: 1084: 1080: 1075: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1035: 1033: 1031: 1029: 1027: 1025: 1023: 1021: 1019: 1017: 1013: 1008: 1004: 1000: 996: 991: 986: 982: 978: 974: 970: 964: 962: 960: 958: 954: 949: 945: 941: 937: 933: 929: 925: 921: 917: 913: 906: 903: 898: 894: 890: 888:9781319202590 884: 880: 873: 871: 867: 862: 860:9780511606830 856: 852: 848: 844: 843: 835: 833: 831: 829: 827: 823: 818: 814: 810: 806: 802: 798: 794: 790: 786: 785:Alberch, Pere 780: 778: 776: 774: 770: 765: 761: 757: 751: 747: 740: 738: 736: 734: 732: 730: 728: 726: 722: 717: 713: 709: 705: 701: 697: 693: 689: 685: 681: 674: 672: 670: 666: 661: 657: 653: 649: 645: 641: 637: 633: 629: 623: 620: 615: 611: 607: 603: 599: 595: 591: 587: 583: 579: 575: 571: 567: 561: 559: 557: 553: 548: 544: 540: 536: 531: 526: 522: 518: 514: 507: 505: 503: 499: 494: 490: 486: 482: 478: 474: 470: 466: 460: 458: 456: 452: 445: 441: 438: 436: 433: 432: 428: 426: 424: 420: 416: 412: 404: 402: 399: 394: 392: 387: 383: 376: 374: 369: 364: 357: 352: 350: 344: 336: 332: 326: 324: 313: 306: 304: 302: 297: 293: 289: 284: 277: 275: 272: 267: 257: 250: 245: 243: 241: 237: 232: 229: 220: 216: 213: 203: 196: 194: 192: 186: 183: 179: 169: 165: 163: 155: 153: 144: 137: 132: 130: 123: 121: 114: 110:Types of bias 109: 102: 98: 94: 92: 87: 83: 79: 78:neo-Darwinian 74: 72: 71:Functionalist 68: 64: 60: 56: 55: 54:Structuralism 45: 38: 36: 34: 31: 27: 23: 19: 2485: 2479: 2473: 2467: 2461: 2420: 2416: 2351: 2347: 2341: 2298: 2294: 2287:Orgogozo, V. 2280: 2255: 2251: 2245: 2218: 2168: 2164: 2111: 2107: 2097: 2064: 2060: 2005: 2001: 1995: 1962: 1958: 1918: 1914: 1875:: S85–S107. 1872: 1868: 1862: 1829: 1825: 1819: 1792: 1788: 1778: 1729: 1725: 1719: 1686: 1682: 1676: 1633: 1629: 1583: 1549: 1545: 1539: 1504: 1500: 1490: 1473: 1469: 1463: 1430: 1426: 1372: 1368: 1324: 1318: 1277: 1273: 1219: 1215: 1177: 1165: 1140: 1132: 1105: 1101: 1091: 1048: 1044: 980: 976: 918:(1): 49–57. 915: 911: 905: 878: 841: 792: 788: 745: 683: 679: 635: 631: 622: 573: 569: 566:Gould, S. J. 520: 516: 476: 472: 435:Evolvability 422: 408: 395: 380: 372: 331:Evolvability 327: 319: 301:evolvability 281: 263: 239: 236:teratologies 233: 225: 208: 187: 177: 174: 159: 150: 127: 118: 95: 90: 75: 70: 58: 52: 50: 21: 15: 469:Wolpert, L. 391:pleiotropic 335:eigenvector 271:pleiotropic 138:Morphospace 2496:Categories 1602:1058406207 897:1051973071 764:1005108561 446:References 440:Speciation 419:phenotypes 266:allometric 182:homologous 178:impossible 86:phenotypes 2437:0169-5347 2376:0962-8452 2315:0014-3820 2295:Evolution 2252:Evolution 2237:762460688 2185:1471-0056 2130:0018-067X 2061:Evolution 2030:0022-5193 1979:0014-3820 1959:Evolution 1935:0169-5347 1826:Evolution 1811:1461-023X 1754:0036-8075 1683:Biol. Rev 1650:0962-8436 1566:0071-3260 1523:0018-067X 1447:0169-5347 1389:0071-3260 1294:1520-541X 1236:0028-646X 1108:: 69–75. 1065:0016-6731 999:0014-3820 977:Evolution 932:1520-541X 817:0016-6995 795:: 21–57. 700:1520-541X 632:Evolution 598:0080-4649 539:1520-541X 415:genotypes 398:epistatic 82:mutations 33:evolution 2445:21840080 2392:12021473 2333:18616572 2289:(2008). 2272:19545263 2193:19139764 2138:16823403 2108:Heredity 2089:28565589 1987:17439608 1889:19426028 1854:28556011 1770:24821274 1762:11222856 1711:28606846 1668:25002699 1531:12242638 1501:Heredity 1455:22326724 1407:29142333 1310:21562182 1302:25212955 1254:25539005 1174:(eds.). 1124:28347942 1083:30049818 1045:Genetics 1007:28565291 948:11972625 940:11256417 716:41698287 708:11478524 660:28568388 547:15230968 493:85201850 429:See also 147:species. 67:ontogeny 2384:7517565 2356:Bibcode 2324:2613234 2201:7613857 2081:2410734 2038:6492829 2010:Bibcode 1897:5965825 1846:2408842 1734:Bibcode 1726:Science 1703:5342162 1659:4084539 1482:1301992 1398:5661017 1245:5526441 1074:6063245 797:Bibcode 789:Geobios 652:2409056 614:2129408 578:Bibcode 368:melanic 337:of G (g 323:species 191:fitness 2443:  2435:  2390:  2382:  2374:  2331:  2321:  2313:  2270:  2235:  2225:  2199:  2191:  2183:  2136:  2128:  2087:  2079:  2036:  2028:  1985:  1977:  1933:  1895:  1887:  1852:  1844:  1809:  1768:  1760:  1752:  1709:  1701:  1666:  1656:  1648:  1600:  1590:  1564:  1529:  1521:  1480:  1453:  1445:  1405:  1395:  1387:  1339:  1308:  1300:  1292:  1252:  1242:  1234:  1190:  1186:–128. 1153:  1149:–259. 1122:  1081:  1071:  1063:  1005:  997:  946:  938:  930:  895:  885:  857:  815:  762:  752:  714:  706:  698:  658:  650:  612:  604:  596:  545:  537:  491:  59:causal 2413:(PDF) 2388:S2CID 2197:S2CID 2161:(PDF) 2077:JSTOR 1893:S2CID 1842:JSTOR 1766:S2CID 1707:S2CID 1478:JSTOR 1306:S2CID 944:S2CID 712:S2CID 648:JSTOR 610:S2CID 606:42062 489:S2CID 417:than 210:that 30:trait 2441:PMID 2433:ISSN 2380:PMID 2372:ISSN 2329:PMID 2311:ISSN 2268:PMID 2233:OCLC 2223:ISBN 2189:PMID 2181:ISSN 2134:PMID 2126:ISSN 2085:PMID 2034:PMID 2026:ISSN 1983:PMID 1975:ISSN 1931:ISSN 1885:PMID 1850:PMID 1807:ISSN 1758:PMID 1750:ISSN 1699:PMID 1664:PMID 1646:ISSN 1598:OCLC 1588:ISBN 1562:ISSN 1527:PMID 1519:ISSN 1451:PMID 1443:ISSN 1403:PMID 1385:ISSN 1337:ISBN 1298:PMID 1290:ISSN 1250:PMID 1232:ISSN 1188:ISBN 1151:ISBN 1120:PMID 1079:PMID 1061:ISSN 1003:PMID 995:ISSN 936:PMID 928:ISSN 893:OCLC 883:ISBN 855:ISBN 813:ISSN 760:OCLC 750:ISBN 704:PMID 696:ISSN 656:PMID 602:PMID 594:ISSN 543:PMID 535:ISSN 382:GRNs 375:gene 373:mc1r 2425:doi 2364:doi 2352:255 2319:PMC 2303:doi 2260:doi 2173:doi 2116:doi 2069:doi 2018:doi 2006:110 1967:doi 1923:doi 1877:doi 1873:140 1834:doi 1797:doi 1742:doi 1730:291 1691:doi 1654:PMC 1638:doi 1634:369 1554:doi 1509:doi 1435:doi 1393:PMC 1377:doi 1329:doi 1282:doi 1240:PMC 1224:doi 1220:204 1147:205 1110:doi 1069:PMC 1053:doi 1049:209 985:doi 920:doi 847:doi 805:doi 688:doi 640:doi 586:doi 574:205 525:doi 481:doi 347:max 339:max 16:In 2498:: 2439:. 2431:. 2421:26 2419:. 2415:. 2400:^ 2386:. 2378:. 2370:. 2362:. 2350:. 2327:. 2317:. 2309:. 2299:62 2297:. 2293:. 2266:. 2256:63 2254:. 2231:. 2209:^ 2195:. 2187:. 2179:. 2169:10 2167:. 2163:. 2146:^ 2132:. 2124:. 2112:97 2110:. 2106:. 2083:. 2075:. 2065:50 2063:. 2046:^ 2032:. 2024:. 2016:. 2004:. 1981:. 1973:. 1963:61 1961:. 1943:^ 1929:. 1919:17 1917:. 1905:^ 1891:. 1883:. 1871:. 1848:. 1840:. 1830:37 1828:. 1805:. 1791:. 1787:. 1764:. 1756:. 1748:. 1740:. 1728:. 1705:. 1697:. 1687:41 1685:. 1662:. 1652:. 1644:. 1632:. 1628:. 1610:^ 1596:. 1574:^ 1560:. 1550:41 1548:. 1525:. 1517:. 1505:89 1503:. 1499:. 1474:40 1472:. 1449:. 1441:. 1431:27 1429:. 1415:^ 1401:. 1391:. 1383:. 1373:44 1371:. 1367:. 1351:^ 1335:. 1304:. 1296:. 1288:. 1278:16 1276:. 1262:^ 1248:. 1238:. 1230:. 1218:. 1214:. 1202:^ 1184:99 1118:. 1106:45 1104:. 1100:. 1077:. 1067:. 1059:. 1047:. 1043:. 1015:^ 1001:. 993:. 981:50 979:. 975:. 956:^ 942:. 934:. 926:. 914:. 891:. 869:^ 853:. 825:^ 811:. 803:. 793:22 791:. 772:^ 758:. 724:^ 710:. 702:. 694:. 682:. 668:^ 654:. 646:. 636:43 634:. 608:. 600:. 592:. 584:. 572:. 555:^ 541:. 533:. 519:. 515:. 501:^ 487:. 477:60 475:. 454:^ 377:. 20:, 2447:. 2427:: 2394:. 2366:: 2358:: 2335:. 2305:: 2274:. 2262:: 2239:. 2203:. 2175:: 2140:. 2118:: 2091:. 2071:: 2040:. 2020:: 2012:: 1989:. 1969:: 1937:. 1925:: 1899:. 1879:: 1856:. 1836:: 1813:. 1799:: 1793:6 1772:. 1744:: 1736:: 1713:. 1693:: 1670:. 1640:: 1604:. 1568:. 1556:: 1533:. 1511:: 1484:. 1457:. 1437:: 1409:. 1379:: 1345:. 1331:: 1312:. 1284:: 1256:. 1226:: 1196:. 1159:. 1126:. 1112:: 1085:. 1055:: 1009:. 987:: 950:. 922:: 916:2 899:. 863:. 849:: 819:. 807:: 799:: 766:. 718:. 690:: 684:3 662:. 642:: 616:. 588:: 580:: 549:. 527:: 521:6 495:. 483::

Index

evolutionary biology
ontogenetic trajectories
trait
evolution

Structuralism
natural selection
ontogeny
neo-Darwinian
mutations
phenotypes


evolutionary biology

homologous
fitness

soil-dwelling centipedes
Biased number of polydactylous toes in a Main Coon population
Maine Coon cat
teratologies

allometric
pleiotropic
Quantitative genetics
linkage disequilibrium
breeder’s equation
additive genetic variance
evolvability

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.