Knowledge (XXG)

Differential optical absorption spectroscopy

Source đź“ť

68: 1167: 826: 1293:
subtracting it. Obviously, this will not produce an exact equality between the measured optical depths and those calculated with the differential cross-sections but the difference is usually small. Alternatively a common method which is applied to remove broad-band structures from the optical density are binomial high-pass filters.
1162:{\displaystyle \delta _{d}+\delta _{c}=\ln \left({\frac {I_{1d}}{I_{2d}}}\right)+\ln \left({\frac {I_{1c}}{I_{2c}}}\right)=\sum \left(\beta _{i}^{*}+\alpha _{i}\right)\left(\sigma _{i2}-\sigma _{i1}\right)=\sum _{i}\beta _{i}^{*}\left(\sigma _{i2}-\sigma _{i1}\right)+\sum _{i}\alpha _{i}\left(\sigma _{i2}-\sigma _{i1}\right)} 651: 1695:
is the angle at the second. Note that with this method, the column along the common path will be subtracted from our measurements and cannot be recovered. What this means is that, only the column density in the stratosphere can be retrieved and the lowest point of scatter between the two measurements
1333:
will be meaningless. The typical measurement geometry will be as follows: the instrument is always pointing straight up. Measurements are taken at two different times of day: once with the sun high in the sky, and once with it near the horizon. In both cases the light is scattered into the instrument
87:
DOAS instruments are often divided into two main groups: passive and active ones. The active DOAS system such as longpath(LP)-systems and cavity-enhanced(CE) DOAS systems have their own light-source, whereas passive ones use the sun as their light source, e.g. MAX(Multi-axial)-DOAS. Also the moon can
1292:
What this means is that before performing the inversion, the continuum components from both the optical depth and from the species cross sections must be removed. This is the important “trick” of the DOAS method. In practice, this is done by simply fitting a polynomial to the spectrum and then
489:
between the two columns (Alternative a solar atlas can be employed, but this introduces another important error source to the fitting process, the instrument function itself. If the reference spectrum itself is also recorded with the same setup, these effects will eventually cancel out):
1337:
To deal with this, we introduce a quantity called the airmass factor which gives the ratio between the vertical column density (the observation is performed looking straight up, with the sun at full zenith) and the slant column density (same observation angle, sun at some other angle):
1636: 461: 1287: 496: 1296:
Also, unless the path difference between the two measurements can be strictly determined and has some physical meaning (such as the distance of telescope and retro-reflector for a longpath-DOAS system), the retrieved quantities,
28:. When combined with basic optical spectrometers such as prisms or diffraction gratings and automated, ground-based observation platforms, it presents a cheap and powerful means for the measurement of trace gas species such as 185: 1412: 88:
be used for night-time DOAS measurements, but here usually direct light measurements need to be done instead of scattered light measurements as it is the case for passive DOAS systems such as the MAX-DOAS.
36:. Typical setups allow for detection limits corresponding to optical depths of 0.0001 along lightpaths of up to typically 15 km and thus allow for the detection also of weak absorbers, such as 1331: 1516: 269:
denotes different species, assuming that the medium is composed of multiple substances. Several simplifications can be made. The first is to pull the absorption cross section out of the
337: 322: 1485: 768: 1715:
Richter, A.; M. Eisinger; A. Ladstätter-Weißenmayer & J. P. Burrows (1999). "DOAS zenith sky observations. 2. Seasonal variation of BrO over Bremen (53°N) 1994–1995".
1455: 1199:
the differential optical depth (DOD). Removing the continuum components and adding in the wavelength dependence produces a matrix equation with which to do the inversion:
1693: 1666: 1197: 474:. Active DOAS variants can use the spectrum of the lightsource itself as reference. Unfortunately for passive measurements, where we are measuring from the bottom of the 818: 1739: 1505: 791: 248: 220: 1205: 646:{\displaystyle \delta =\ln \left({\frac {I_{1}}{I_{2}}}\right)=\sum _{i}\beta _{i}\left(\sigma _{i2}-\sigma _{i1}\right)=\sum _{i}\beta _{i}\,\Delta \sigma _{i}} 1724:
Eisinger, M., A. Richter, A. Ladstätter-Weißmayer, and J. P. Burrows (1997). "DOAS zenith sky observations: 1. BrO measurements over Bremen (53°N) 1993–1994".
67: 101: 656:
A significant component of a measured spectrum is often given by scattering and continuum components that have a smooth variation with respect to
1344: 485:. Rather, what is done is to take the ratio of two measurements with different paths through the atmosphere and so determine the difference in 251: 1631:{\displaystyle \sigma _{i0}={\frac {\Delta \sigma _{i}}{\mathrm {amf} _{i}(\theta _{2})-\mathrm {amf} _{i}(\theta _{1})}}} 1300: 72: 1334:
before passing through the troposphere but takes different paths through the stratosphere as shown in the figure.
1773: 456:{\displaystyle I=I_{0}\exp \left(\sum _{i}\beta _{i}\sigma _{i}\right)=I_{0}\prod _{i}e^{\beta _{i}\sigma _{i}}} 91:
The change in intensity of a beam of radiation as it travels through a medium that is not emitting is given by
1778: 291: 258: 274: 1460: 17: 666: 467: 195: 1430: 1733: 1671: 1644: 1175: 281:, and not density per se, the second is to take the integral as a single parameter which we call 227: 796: 471: 1490: 776: 1758: 233: 33: 1282:{\displaystyle \delta _{d}(\lambda )=\sum _{i}\beta _{i}^{*}(\lambda )\,\Delta \sigma _{i}} 205: 660:. Since these don't supply much information, the spectrum can be divided into two parts: 282: 278: 61: 1767: 486: 57: 820:
is that which remains and we shall call the differential cross-section. Therefore:
53: 45: 41: 37: 273:
by assuming that it does not change significantly with the path—i.e. that it is a
49: 25: 657: 475: 255: 180:{\displaystyle I=I_{0}\exp \left(\sum _{i}\int \rho _{i}\beta _{i}\,ds\right)} 76: 199: 92: 1407:{\displaystyle \sigma _{i0}=\mathrm {amf} _{i}(\theta )\sigma _{i\theta }} 71:
Long-path DOAS System at the Cape Verde Atmospheric Observatory (CVAO) at
328: 270: 1507:. Airmass factors can be determined by radiative transfer calculations. 223: 478:
and not the top, there is no way to determine the initial intensity,
470:
and spectral features, all the species could be solved for by simple
466:
If that was all there was to it, given any spectrum with sufficient
66: 29: 1510:
Some algebra shows the vertical column density to be given by:
1753: 1696:
must be determined to figure out where the column begins.
1759:
DOAS and atmospheric chemistry group at IUP, Heidelberg
1674: 1647: 1519: 1493: 1463: 1433: 1347: 1303: 1208: 1178: 829: 799: 779: 669: 499: 340: 294: 236: 208: 104: 1668:is the angle at the first measurement geometry and 22:
differential optical absorption spectroscopy (DOAS)
1687: 1660: 1630: 1499: 1479: 1449: 1406: 1326:{\displaystyle \lbrace \Delta \sigma _{i}\rbrace } 1325: 1281: 1191: 1161: 812: 785: 762: 645: 455: 316: 242: 214: 179: 1487:is the slant column with the sun at zenith angle 277:. Since the DOAS method is used to measure total 793:is the continuum component of the spectrum and 8: 1738:: CS1 maint: multiple names: authors list ( 1708:Differential Optical Absorption Spectroscopy 1320: 1304: 1679: 1673: 1652: 1646: 1616: 1603: 1592: 1579: 1566: 1555: 1546: 1536: 1524: 1518: 1492: 1468: 1462: 1438: 1432: 1395: 1376: 1365: 1352: 1346: 1314: 1302: 1273: 1265: 1250: 1245: 1235: 1213: 1207: 1183: 1177: 1145: 1129: 1114: 1104: 1083: 1067: 1052: 1047: 1037: 1016: 1000: 980: 967: 962: 932: 919: 913: 885: 872: 866: 847: 834: 828: 804: 798: 778: 749: 734: 721: 716: 701: 680: 668: 637: 629: 623: 613: 592: 576: 561: 551: 532: 522: 516: 498: 445: 435: 430: 420: 410: 392: 382: 372: 351: 339: 307: 293: 235: 207: 165: 159: 149: 136: 115: 103: 1731: 317:{\displaystyle \sigma =\int \rho \,ds} 24:is used to measure concentrations of 7: 1599: 1596: 1593: 1562: 1559: 1556: 1539: 1480:{\displaystyle \sigma _{i\theta }} 1372: 1369: 1366: 1307: 1266: 630: 14: 1423:is the airmass factor of species 763:{\displaystyle I=I_{0}\exp \left} 327:The new, considerably simplified 1728:. Vol. 26. pp. 93–108. 1719:. Vol. 32. pp. 83–99. 1622: 1609: 1585: 1572: 1388: 1382: 1262: 1256: 1225: 1219: 1: 1706:Platt, U.; Stutz, J. (2008). 1450:{\displaystyle \sigma _{i0}} 1688:{\displaystyle \theta _{2}} 1661:{\displaystyle \theta _{1}} 1457:is the vertical column and 1192:{\displaystyle \delta _{d}} 265:is the path. The subscript 1795: 813:{\displaystyle \beta ^{*}} 1754:DOAS group at IUP, Bremen 1500:{\displaystyle \theta } 786:{\displaystyle \alpha } 1689: 1662: 1632: 1501: 1481: 1451: 1408: 1327: 1283: 1193: 1163: 814: 787: 764: 647: 457: 318: 244: 243:{\displaystyle \beta } 216: 181: 79: 1690: 1663: 1633: 1502: 1482: 1452: 1409: 1328: 1284: 1194: 1164: 815: 788: 765: 648: 458: 331:now looks like this: 319: 245: 217: 215:{\displaystyle \rho } 182: 70: 18:atmospheric chemistry 1672: 1645: 1517: 1491: 1461: 1431: 1345: 1301: 1206: 1176: 827: 797: 777: 667: 497: 338: 292: 234: 206: 102: 1255: 1057: 972: 726: 472:algebraic inversion 1685: 1658: 1628: 1497: 1477: 1447: 1404: 1323: 1279: 1241: 1240: 1189: 1159: 1109: 1043: 1042: 958: 810: 783: 760: 712: 706: 643: 618: 556: 453: 425: 377: 314: 240: 212: 177: 141: 80: 1626: 1231: 1100: 1033: 941: 894: 697: 609: 547: 538: 416: 368: 132: 1786: 1774:Inverse problems 1743: 1737: 1729: 1720: 1711: 1694: 1692: 1691: 1686: 1684: 1683: 1667: 1665: 1664: 1659: 1657: 1656: 1637: 1635: 1634: 1629: 1627: 1625: 1621: 1620: 1608: 1607: 1602: 1584: 1583: 1571: 1570: 1565: 1552: 1551: 1550: 1537: 1532: 1531: 1506: 1504: 1503: 1498: 1486: 1484: 1483: 1478: 1476: 1475: 1456: 1454: 1453: 1448: 1446: 1445: 1413: 1411: 1410: 1405: 1403: 1402: 1381: 1380: 1375: 1360: 1359: 1332: 1330: 1329: 1324: 1319: 1318: 1288: 1286: 1285: 1280: 1278: 1277: 1254: 1249: 1239: 1218: 1217: 1198: 1196: 1195: 1190: 1188: 1187: 1168: 1166: 1165: 1160: 1158: 1154: 1153: 1152: 1137: 1136: 1119: 1118: 1108: 1096: 1092: 1091: 1090: 1075: 1074: 1056: 1051: 1041: 1029: 1025: 1024: 1023: 1008: 1007: 990: 986: 985: 984: 971: 966: 946: 942: 940: 939: 927: 926: 914: 899: 895: 893: 892: 880: 879: 867: 852: 851: 839: 838: 819: 817: 816: 811: 809: 808: 792: 790: 789: 784: 769: 767: 766: 761: 759: 755: 754: 753: 744: 740: 739: 738: 725: 720: 705: 685: 684: 652: 650: 649: 644: 642: 641: 628: 627: 617: 605: 601: 600: 599: 584: 583: 566: 565: 555: 543: 539: 537: 536: 527: 526: 517: 462: 460: 459: 454: 452: 451: 450: 449: 440: 439: 424: 415: 414: 402: 398: 397: 396: 387: 386: 376: 356: 355: 323: 321: 320: 315: 249: 247: 246: 241: 221: 219: 218: 213: 186: 184: 183: 178: 176: 172: 164: 163: 154: 153: 140: 120: 119: 34:nitrogen dioxide 1794: 1793: 1789: 1788: 1787: 1785: 1784: 1783: 1764: 1763: 1750: 1730: 1723: 1714: 1705: 1702: 1675: 1670: 1669: 1648: 1643: 1642: 1612: 1591: 1575: 1554: 1553: 1542: 1538: 1520: 1515: 1514: 1489: 1488: 1464: 1459: 1458: 1434: 1429: 1428: 1422: 1391: 1364: 1348: 1343: 1342: 1310: 1299: 1298: 1269: 1209: 1204: 1203: 1179: 1174: 1173: 1141: 1125: 1124: 1120: 1110: 1079: 1063: 1062: 1058: 1012: 996: 995: 991: 976: 957: 953: 928: 915: 909: 881: 868: 862: 843: 830: 825: 824: 800: 795: 794: 775: 774: 745: 730: 711: 707: 696: 692: 676: 665: 664: 633: 619: 588: 572: 571: 567: 557: 528: 518: 512: 495: 494: 484: 441: 431: 426: 406: 388: 378: 367: 363: 347: 336: 335: 290: 289: 232: 231: 204: 203: 155: 145: 131: 127: 111: 100: 99: 85: 12: 11: 5: 1792: 1790: 1782: 1781: 1779:Remote sensing 1776: 1766: 1765: 1762: 1761: 1756: 1749: 1748:External links 1746: 1745: 1744: 1721: 1712: 1701: 1698: 1682: 1678: 1655: 1651: 1639: 1638: 1624: 1619: 1615: 1611: 1606: 1601: 1598: 1595: 1590: 1587: 1582: 1578: 1574: 1569: 1564: 1561: 1558: 1549: 1545: 1541: 1535: 1530: 1527: 1523: 1496: 1474: 1471: 1467: 1444: 1441: 1437: 1418: 1415: 1414: 1401: 1398: 1394: 1390: 1387: 1384: 1379: 1374: 1371: 1368: 1363: 1358: 1355: 1351: 1322: 1317: 1313: 1309: 1306: 1290: 1289: 1276: 1272: 1268: 1264: 1261: 1258: 1253: 1248: 1244: 1238: 1234: 1230: 1227: 1224: 1221: 1216: 1212: 1186: 1182: 1172:where we call 1170: 1169: 1157: 1151: 1148: 1144: 1140: 1135: 1132: 1128: 1123: 1117: 1113: 1107: 1103: 1099: 1095: 1089: 1086: 1082: 1078: 1073: 1070: 1066: 1061: 1055: 1050: 1046: 1040: 1036: 1032: 1028: 1022: 1019: 1015: 1011: 1006: 1003: 999: 994: 989: 983: 979: 975: 970: 965: 961: 956: 952: 949: 945: 938: 935: 931: 925: 922: 918: 912: 908: 905: 902: 898: 891: 888: 884: 878: 875: 871: 865: 861: 858: 855: 850: 846: 842: 837: 833: 807: 803: 782: 771: 770: 758: 752: 748: 743: 737: 733: 729: 724: 719: 715: 710: 704: 700: 695: 691: 688: 683: 679: 675: 672: 654: 653: 640: 636: 632: 626: 622: 616: 612: 608: 604: 598: 595: 591: 587: 582: 579: 575: 570: 564: 560: 554: 550: 546: 542: 535: 531: 525: 521: 515: 511: 508: 505: 502: 482: 464: 463: 448: 444: 438: 434: 429: 423: 419: 413: 409: 405: 401: 395: 391: 385: 381: 375: 371: 366: 362: 359: 354: 350: 346: 343: 325: 324: 313: 310: 306: 303: 300: 297: 283:column density 279:column density 239: 211: 188: 187: 175: 171: 168: 162: 158: 152: 148: 144: 139: 135: 130: 126: 123: 118: 114: 110: 107: 84: 81: 62:Chlorine oxide 13: 10: 9: 6: 4: 3: 2: 1791: 1780: 1777: 1775: 1772: 1771: 1769: 1760: 1757: 1755: 1752: 1751: 1747: 1741: 1735: 1727: 1722: 1718: 1713: 1709: 1704: 1703: 1699: 1697: 1680: 1676: 1653: 1649: 1617: 1613: 1604: 1588: 1580: 1576: 1567: 1547: 1543: 1533: 1528: 1525: 1521: 1513: 1512: 1511: 1508: 1494: 1472: 1469: 1465: 1442: 1439: 1435: 1426: 1421: 1399: 1396: 1392: 1385: 1377: 1361: 1356: 1353: 1349: 1341: 1340: 1339: 1335: 1315: 1311: 1294: 1274: 1270: 1259: 1251: 1246: 1242: 1236: 1232: 1228: 1222: 1214: 1210: 1202: 1201: 1200: 1184: 1180: 1155: 1149: 1146: 1142: 1138: 1133: 1130: 1126: 1121: 1115: 1111: 1105: 1101: 1097: 1093: 1087: 1084: 1080: 1076: 1071: 1068: 1064: 1059: 1053: 1048: 1044: 1038: 1034: 1030: 1026: 1020: 1017: 1013: 1009: 1004: 1001: 997: 992: 987: 981: 977: 973: 968: 963: 959: 954: 950: 947: 943: 936: 933: 929: 923: 920: 916: 910: 906: 903: 900: 896: 889: 886: 882: 876: 873: 869: 863: 859: 856: 853: 848: 844: 840: 835: 831: 823: 822: 821: 805: 801: 780: 756: 750: 746: 741: 735: 731: 727: 722: 717: 713: 708: 702: 698: 693: 689: 686: 681: 677: 673: 670: 663: 662: 661: 659: 638: 634: 624: 620: 614: 610: 606: 602: 596: 593: 589: 585: 580: 577: 573: 568: 562: 558: 552: 548: 544: 540: 533: 529: 523: 519: 513: 509: 506: 503: 500: 493: 492: 491: 488: 487:optical depth 481: 477: 473: 469: 446: 442: 436: 432: 427: 421: 417: 411: 407: 403: 399: 393: 389: 383: 379: 373: 369: 364: 360: 357: 352: 348: 344: 341: 334: 333: 332: 330: 311: 308: 304: 301: 298: 295: 288: 287: 286: 284: 280: 276: 272: 268: 264: 260: 259:cross section 257: 253: 237: 229: 225: 209: 201: 197: 193: 173: 169: 166: 160: 156: 150: 146: 142: 137: 133: 128: 124: 121: 116: 112: 108: 105: 98: 97: 96: 94: 89: 82: 78: 74: 69: 65: 63: 59: 58:Bromine oxide 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 1726:J. Atm. Chem 1725: 1717:J. Atm. Chem 1716: 1707: 1640: 1509: 1424: 1419: 1416: 1336: 1295: 1291: 1171: 772: 655: 479: 465: 326: 266: 262: 191: 189: 90: 86: 54:Iodine oxide 46:Formaldehyde 42:Nitrous acid 38:water vapour 21: 15: 1710:. Springer. 73:SĂŁo Vicente 50:Tetraoxygen 26:trace gases 1768:Categories 1700:References 658:wavelength 476:atmosphere 468:resolution 256:scattering 252:absorption 77:Cape Verde 1734:cite news 1677:θ 1650:θ 1614:θ 1589:− 1577:θ 1544:σ 1540:Δ 1522:σ 1495:θ 1473:θ 1466:σ 1436:σ 1417:where amf 1400:θ 1393:σ 1386:θ 1350:σ 1312:σ 1308:Δ 1271:σ 1267:Δ 1260:λ 1252:∗ 1243:β 1233:∑ 1223:λ 1211:δ 1181:δ 1143:σ 1139:− 1127:σ 1112:α 1102:∑ 1081:σ 1077:− 1065:σ 1054:∗ 1045:β 1035:∑ 1014:σ 1010:− 998:σ 978:α 969:∗ 960:β 951:∑ 907:⁡ 860:⁡ 845:δ 832:δ 806:∗ 802:β 781:α 747:σ 732:α 723:∗ 714:β 699:∑ 690:⁡ 635:σ 631:Δ 621:β 611:∑ 590:σ 586:− 574:σ 559:β 549:∑ 510:⁡ 501:δ 443:σ 433:β 418:∏ 390:σ 380:β 370:∑ 361:⁡ 305:ρ 302:∫ 296:σ 238:β 228:substance 210:ρ 200:radiation 196:intensity 157:β 147:ρ 143:∫ 134:∑ 125:⁡ 93:Beers law 329:equation 275:constant 271:integral 250:is the 224:density 222:is the 198:of the 194:is the 1641:where 773:where 190:where 83:Theory 30:ozone 1740:link 261:and 254:and 60:and 32:and 687:exp 358:exp 226:of 122:exp 16:In 1770:: 1736:}} 1732:{{ 1427:, 904:ln 857:ln 507:ln 285:: 230:, 202:, 95:: 75:, 64:. 56:, 52:, 48:, 44:, 40:, 20:, 1742:) 1681:2 1654:1 1623:) 1618:1 1610:( 1605:i 1600:f 1597:m 1594:a 1586:) 1581:2 1573:( 1568:i 1563:f 1560:m 1557:a 1548:i 1534:= 1529:0 1526:i 1470:i 1443:0 1440:i 1425:i 1420:i 1397:i 1389:) 1383:( 1378:i 1373:f 1370:m 1367:a 1362:= 1357:0 1354:i 1321:} 1316:i 1305:{ 1275:i 1263:) 1257:( 1247:i 1237:i 1229:= 1226:) 1220:( 1215:d 1185:d 1156:) 1150:1 1147:i 1134:2 1131:i 1122:( 1116:i 1106:i 1098:+ 1094:) 1088:1 1085:i 1072:2 1069:i 1060:( 1049:i 1039:i 1031:= 1027:) 1021:1 1018:i 1005:2 1002:i 993:( 988:) 982:i 974:+ 964:i 955:( 948:= 944:) 937:c 934:2 930:I 924:c 921:1 917:I 911:( 901:+ 897:) 890:d 887:2 883:I 877:d 874:1 870:I 864:( 854:= 849:c 841:+ 836:d 757:] 751:i 742:) 736:i 728:+ 718:i 709:( 703:i 694:[ 682:0 678:I 674:= 671:I 639:i 625:i 615:i 607:= 603:) 597:1 594:i 581:2 578:i 569:( 563:i 553:i 545:= 541:) 534:2 530:I 524:1 520:I 514:( 504:= 483:0 480:I 447:i 437:i 428:e 422:i 412:0 408:I 404:= 400:) 394:i 384:i 374:i 365:( 353:0 349:I 345:= 342:I 312:s 309:d 299:= 267:i 263:s 192:I 174:) 170:s 167:d 161:i 151:i 138:i 129:( 117:0 113:I 109:= 106:I

Index

atmospheric chemistry
trace gases
ozone
nitrogen dioxide
water vapour
Nitrous acid
Formaldehyde
Tetraoxygen
Iodine oxide
Bromine oxide
Chlorine oxide

SĂŁo Vicente
Cape Verde
Beers law
intensity
radiation
density
substance
absorption
scattering
cross section
integral
constant
column density
column density
equation
resolution
algebraic inversion
atmosphere

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑