Knowledge (XXG)

Dinitz conjecture

Source 📝

448: 74:
symbols, it is possible to choose a way of labeling each cell with one of those elements in such a way that no row or column repeats a symbol. It can also be formulated as a result in
116: 156: 136: 533: 523: 158:
colors, it is possible to choose one of the assigned colors for each edge such that no two edges incident to the same vertex have the same color.
173:
states that the same holds not only for bipartite graphs, but also for any loopless multigraph. An even more general conjecture states that the
288:(1996). "The method of undetermined generalization and specialization illustrated with Fred Galvin's amazing proof of the Dinitz conjecture". 489: 256: 387: 341: 290: 214: 538: 186: 482: 83: 518: 513: 508: 528: 79: 475: 317: 299: 421: 459: 88: 396: 350: 309: 285: 265: 182: 364: 360: 178: 166: 141: 121: 355: 336: 502: 401: 206: 174: 32: 20: 455: 424: 210: 75: 247: 216:
Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata
40: 36: 223: 162: 138:. That is, if each edge of the complete bipartite graph is assigned a set of 429: 270: 251: 379: 222:. Congressus Numerantium. Vol. 26. pp. 125–157. Archived from 321: 161:
Galvin's proof generalizes to the statement that, for every bipartite
304: 447: 313: 31:) is a statement about the extension of arrays to partial 463: 144: 124: 91: 252:"The list chromatic index of a bipartite multigraph" 380:"On the Dinitz conjecture and related conjectures" 337:"On the choice number of claw-free perfect graphs" 150: 130: 110: 213:; Taylor, H. (1979). "Choosability in graphs". 483: 8: 335:Gravier, Sylvain; Maffray, Frédéric (2004). 490: 476: 400: 354: 303: 269: 143: 123: 96: 90: 185:. The Dinitz theorem is also related to 198: 165:, the list chromatic index equals its 7: 444: 442: 70:-element set drawn from the pool of 66:, and for each cell of the array an 46:The Dinitz theorem is that given an 462:. You can help Knowledge (XXG) by 14: 534:Conjectures that have been proved 524:Theorems in discrete mathematics 446: 257:Journal of Combinatorial Theory 1: 356:10.1016/S0012-365X(03)00292-9 291:American Mathematical Monthly 171:edge list coloring conjecture 402:10.1016/0012-365X(94)00055-N 555: 441: 84:complete bipartite graph 39:, and proved in 1994 by 16:Theorem in combinatorics 187:Rota's basis conjecture 111:{\displaystyle K_{n,n}} 54:square array, a set of 458:-related article is a 271:10.1006/jctb.1995.1011 152: 132: 112: 35:, proposed in 1979 by 175:list chromatic number 153: 133: 113: 388:Discrete Mathematics 378:Chow, T. Y. (1995). 342:Discrete Mathematics 181:always equals their 142: 122: 89: 80:list chromatic index 169:. The more general 27:(formerly known as 539:Graph theory stubs 422:Weisstein, Eric W. 148: 128: 108: 471: 470: 151:{\displaystyle n} 131:{\displaystyle n} 29:Dinitz conjecture 546: 492: 485: 478: 450: 443: 435: 434: 425:"Dinitz Problem" 407: 406: 404: 384: 375: 369: 368: 358: 349:(1–3): 211–218. 332: 326: 325: 307: 282: 276: 275: 273: 244: 238: 237: 235: 234: 228: 221: 203: 183:chromatic number 179:claw-free graphs 157: 155: 154: 149: 137: 135: 134: 129: 117: 115: 114: 109: 107: 106: 554: 553: 549: 548: 547: 545: 544: 543: 499: 498: 497: 496: 439: 420: 419: 416: 411: 410: 382: 377: 376: 372: 334: 333: 329: 314:10.2307/2975373 284: 283: 279: 246: 245: 241: 232: 230: 226: 219: 205: 204: 200: 195: 167:chromatic index 140: 139: 120: 119: 92: 87: 86: 17: 12: 11: 5: 552: 550: 542: 541: 536: 531: 526: 521: 519:Graph coloring 516: 511: 501: 500: 495: 494: 487: 480: 472: 469: 468: 451: 437: 436: 415: 414:External links 412: 409: 408: 395:(1–3): 73–82. 370: 327: 298:(3): 233–239. 286:Zeilberger, D. 277: 264:(1): 153–158. 239: 197: 196: 194: 191: 147: 127: 105: 102: 99: 95: 25:Dinitz theorem 15: 13: 10: 9: 6: 4: 3: 2: 551: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 514:Latin squares 512: 510: 509:Combinatorics 507: 506: 504: 493: 488: 486: 481: 479: 474: 473: 467: 465: 461: 457: 452: 449: 445: 440: 432: 431: 426: 423: 418: 417: 413: 403: 398: 394: 390: 389: 381: 374: 371: 366: 362: 357: 352: 348: 344: 343: 338: 331: 328: 323: 319: 315: 311: 306: 301: 297: 293: 292: 287: 281: 278: 272: 267: 263: 259: 258: 253: 249: 243: 240: 229:on 2016-03-09 225: 218: 217: 212: 208: 202: 199: 192: 190: 188: 184: 180: 176: 172: 168: 164: 159: 145: 125: 103: 100: 97: 93: 85: 81: 77: 73: 69: 65: 61: 58:symbols with 57: 53: 49: 44: 42: 38: 34: 33:Latin squares 30: 26: 22: 21:combinatorics 464:expanding it 456:graph theory 453: 438: 428: 392: 386: 373: 346: 340: 330: 305:math/9506215 295: 289: 280: 261: 260:. Series B. 255: 242: 231:. Retrieved 224:the original 215: 211:Rubin, A. L. 201: 170: 160: 76:graph theory 71: 67: 63: 59: 55: 51: 47: 45: 28: 24: 18: 529:Conjectures 78:, that the 41:Fred Galvin 37:Jeff Dinitz 503:Categories 233:2017-04-22 193:References 163:multigraph 430:MathWorld 248:F. Galvin 207:Erdős, P. 250:(1995). 365:2046636 322:2975373 118:equals 82:of the 50:× 363:  320:  23:, the 454:This 383:(PDF) 318:JSTOR 300:arXiv 227:(PDF) 220:(PDF) 460:stub 397:doi 393:145 351:doi 347:276 310:doi 296:103 266:doi 177:of 19:In 505:: 427:. 391:. 385:. 361:MR 359:. 345:. 339:. 316:. 308:. 294:. 262:63 254:. 209:; 189:. 62:≥ 43:. 491:e 484:t 477:v 466:. 433:. 405:. 399:: 367:. 353:: 324:. 312:: 302:: 274:. 268:: 236:. 146:n 126:n 104:n 101:, 98:n 94:K 72:m 68:n 64:n 60:m 56:m 52:n 48:n

Index

combinatorics
Latin squares
Jeff Dinitz
Fred Galvin
graph theory
list chromatic index
complete bipartite graph
multigraph
chromatic index
list chromatic number
claw-free graphs
chromatic number
Rota's basis conjecture
Erdős, P.
Rubin, A. L.
Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata
the original
F. Galvin
"The list chromatic index of a bipartite multigraph"
Journal of Combinatorial Theory
doi
10.1006/jctb.1995.1011
Zeilberger, D.
American Mathematical Monthly
arXiv
math/9506215
doi
10.2307/2975373
JSTOR
2975373

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.