Knowledge (XXG)

Drain-induced barrier lowering

Source 📝

117:(weak inversion) show up initially as a simple translation of the subthreshold current vs. gate bias curve with change in drain-voltage, which can be modeled as a simple change in threshold voltage with drain bias. However, at shorter lengths the slope of the current vs. gate bias curve is reduced, that is, it requires a larger change in gate bias to effect the same change in drain current. At extremely short lengths, the gate entirely fails to turn the device off. These effects cannot be modeled as a threshold adjustment. 20: 82:
between the drain and body increases in size and extends under the gate, so the drain assumes a greater portion of the burden of balancing depletion region charge, leaving a smaller burden for the gate. As a result, the charge present on the gate retains charge balance by attracting more carriers
271: 611: 90:
for electrons in the channel is lowered. Hence the term "barrier lowering" is used to describe these phenomena. Unfortunately, it is not easy to come up with accurate analytical results using the barrier lowering concept.
66:
was independent of drain voltage. In short-channel devices this is no longer true: The drain is close enough to gate the channel, and so a high drain voltage can open the bottleneck and turn on the transistor prematurely.
61:
with a long channel, the bottleneck in channel formation occurs far enough from the drain contact that it is electrostatically shielded from the drain by the combination of the substrate and gate, and so classically the
98:
with the body, and so have associated built-in depletion layers associated with them that become significant partners in charge balance at short channel lengths, even with no reverse bias applied to increase
429:
is the low drain voltage (for a linear part of device I-V characteristics). The minus in the front of the formula ensures a positive DIBL value. This is because the high drain threshold voltage,
508: 357: 427: 139: 465: 314: 676: 646: 387: 74:
of the device and that in the channel of the device is balanced by three electrode charges: the gate, the source and the drain. As drain voltage is increased, the
521: 70:
The origin of the threshold decrease can be understood as a consequence of charge neutrality: the Yau charge-sharing model. The combined charge in the
106:
The term DIBL has expanded beyond the notion of simple threshold adjustment, however, and refers to a number of drain-voltage effects upon MOSFET
706: 124:, causing the current to increase with drain bias, lowering the MOSFET output resistance. This increase is additional to the normal 733: 94:
Barrier lowering increases as channel length is reduced, even at zero applied drain bias, because the source and drain form
777: 696: 752: 125: 266:{\displaystyle \mathrm {DIBL} =-{\frac {V_{Th}^{DD}-V_{Th}^{\mathrm {low} }}{V_{DD}-V_{D}^{\mathrm {low} }}},} 470: 319: 392: 58: 42: 110:
curves that go beyond description in terms of simple threshold voltage changes, as described below.
359:
or Vtlin is the threshold voltage measured at a very low drain voltage, typically 0.05 V or 0.1 V.
114: 432: 281: 513:
DIBL can reduce the device operating frequency as well, as described by the following equation:
757: 729: 702: 87: 63: 50: 316:
or Vtsat is the threshold voltage measured at a supply voltage (the high drain voltage), and
95: 782: 651: 621: 362: 86:
In effect, the channel becomes more attractive for electrons. In other words, the potential
75: 71: 100: 83:
into the channel, an effect equivalent to lowering the threshold voltage of the device.
771: 128:
effect on output resistance, and cannot always be modeled as a threshold adjustment.
79: 606:{\displaystyle {\frac {\Delta f}{f}}=-{\frac {2\mathrm {DIBL} }{V_{DD}-V_{Th}}},} 30:
to be surmounted by an electron from the source on its way to the drain reduces
19: 728:(Second ed.). New York: Oxford University Press. p. 268; Fig. 6.11. 54: 723: 762: 121: 46: 467:, is always smaller than the low drain threshold voltage, 120:
DIBL also affects the current vs. drain bias curve in the
113:
As channel length is reduced, the effects of DIBL in the
698:
Mosfet Modeling for VLSI Simulation: Theory And Practice
654: 624: 524: 473: 435: 395: 365: 322: 284: 142: 131:
In practice, the DIBL can be calculated as follows:
389:is the supply voltage (the high drain voltage) and 670: 640: 605: 502: 459: 421: 381: 351: 308: 265: 57:at higher drain voltages. In a classic planar 8: 725:Operation and Modeling of the MOS Transistor 701:. World Scientific. p. 197, Fig. 5.14. 659: 653: 629: 623: 588: 572: 552: 546: 525: 523: 487: 486: 478: 472: 448: 440: 434: 406: 405: 400: 394: 370: 364: 336: 335: 327: 321: 297: 289: 283: 244: 243: 238: 222: 203: 202: 194: 178: 170: 163: 143: 141: 23:As channel length decreases, the barrier 18: 687: 503:{\displaystyle V_{Th}^{\mathrm {low} }} 352:{\displaystyle V_{Th}^{\mathrm {low} }} 49:referring originally to a reduction of 422:{\displaystyle V_{D}^{\mathrm {low} }} 7: 510:. Typical units of DIBL are mV/V. 562: 559: 556: 553: 528: 494: 491: 488: 413: 410: 407: 343: 340: 337: 251: 248: 245: 210: 207: 204: 153: 150: 147: 144: 14: 35:Drain-induced barrier lowering 1: 460:{\displaystyle V_{Th}^{DD}} 309:{\displaystyle V_{Th}^{DD}} 799: 678:is the threshold voltage. 648:is the supply voltage and 753:Channel length modulation 126:channel length modulation 722:Yannis Tsividis (2003). 59:field-effect transistor 672: 671:{\displaystyle V_{Th}} 642: 641:{\displaystyle V_{DD}} 607: 504: 461: 423: 383: 382:{\displaystyle V_{DD}} 353: 310: 267: 31: 695:Narain Arora (2007). 673: 643: 608: 505: 462: 424: 384: 354: 311: 268: 22: 652: 622: 522: 471: 433: 393: 363: 320: 282: 140: 43:short-channel effect 778:Transistor modeling 499: 456: 418: 348: 305: 256: 215: 186: 115:subthreshold region 668: 638: 603: 500: 474: 457: 436: 419: 396: 379: 349: 323: 306: 285: 263: 234: 190: 166: 32: 758:Threshold voltage 708:978-981-256-862-5 598: 538: 258: 64:threshold voltage 51:threshold voltage 16:Effect in MOSFETs 790: 763:MOSFET operation 740: 739: 719: 713: 712: 692: 677: 675: 674: 669: 667: 666: 647: 645: 644: 639: 637: 636: 612: 610: 609: 604: 599: 597: 596: 595: 580: 579: 566: 565: 547: 539: 534: 526: 509: 507: 506: 501: 498: 497: 485: 466: 464: 463: 458: 455: 447: 428: 426: 425: 420: 417: 416: 404: 388: 386: 385: 380: 378: 377: 358: 356: 355: 350: 347: 346: 334: 315: 313: 312: 307: 304: 296: 272: 270: 269: 264: 259: 257: 255: 254: 242: 230: 229: 216: 214: 213: 201: 185: 177: 164: 156: 101:depletion widths 76:depletion region 72:depletion region 798: 797: 793: 792: 791: 789: 788: 787: 768: 767: 749: 744: 743: 736: 721: 720: 716: 709: 694: 693: 689: 684: 655: 650: 649: 625: 620: 619: 584: 568: 567: 548: 527: 520: 519: 469: 468: 431: 430: 391: 390: 366: 361: 360: 318: 317: 280: 279: 218: 217: 165: 138: 137: 28: 17: 12: 11: 5: 796: 794: 786: 785: 780: 770: 769: 766: 765: 760: 755: 748: 745: 742: 741: 734: 714: 707: 686: 685: 683: 680: 665: 662: 658: 635: 632: 628: 616: 615: 614: 613: 602: 594: 591: 587: 583: 578: 575: 571: 564: 561: 558: 555: 551: 545: 542: 537: 533: 530: 496: 493: 490: 484: 481: 477: 454: 451: 446: 443: 439: 415: 412: 409: 403: 399: 376: 373: 369: 345: 342: 339: 333: 330: 326: 303: 300: 295: 292: 288: 276: 275: 274: 273: 262: 253: 250: 247: 241: 237: 233: 228: 225: 221: 212: 209: 206: 200: 197: 193: 189: 184: 181: 176: 173: 169: 162: 159: 155: 152: 149: 146: 88:energy barrier 26: 15: 13: 10: 9: 6: 4: 3: 2: 795: 784: 781: 779: 776: 775: 773: 764: 761: 759: 756: 754: 751: 750: 746: 737: 731: 727: 726: 718: 715: 710: 704: 700: 699: 691: 688: 681: 679: 663: 660: 656: 633: 630: 626: 600: 592: 589: 585: 581: 576: 573: 569: 549: 543: 540: 535: 531: 518: 517: 516: 515: 514: 511: 482: 479: 475: 452: 449: 444: 441: 437: 401: 397: 374: 371: 367: 331: 328: 324: 301: 298: 293: 290: 286: 260: 239: 235: 231: 226: 223: 219: 198: 195: 191: 187: 182: 179: 174: 171: 167: 160: 157: 136: 135: 134: 133: 132: 129: 127: 123: 118: 116: 111: 109: 104: 102: 97: 96:p–n junctions 92: 89: 84: 81: 77: 73: 68: 65: 60: 56: 52: 48: 44: 40: 36: 29: 21: 724: 717: 697: 690: 617: 512: 277: 130: 119: 112: 107: 105: 93: 85: 80:p-n junction 69: 38: 34: 33: 24: 122:active mode 772:Categories 735:0195170148 682:References 55:transistor 582:− 544:− 529:Δ 232:− 188:− 161:− 747:See also 783:MOSFETs 78:of the 53:of the 47:MOSFETs 41:) is a 732:  705:  618:where 278:where 25:φ 730:ISBN 703:ISBN 39:DIBL 108:I-V 45:in 774:: 103:. 738:. 711:. 664:h 661:T 657:V 634:D 631:D 627:V 601:, 593:h 590:T 586:V 577:D 574:D 570:V 563:L 560:B 557:I 554:D 550:2 541:= 536:f 532:f 495:w 492:o 489:l 483:h 480:T 476:V 453:D 450:D 445:h 442:T 438:V 414:w 411:o 408:l 402:D 398:V 375:D 372:D 368:V 344:w 341:o 338:l 332:h 329:T 325:V 302:D 299:D 294:h 291:T 287:V 261:, 252:w 249:o 246:l 240:D 236:V 227:D 224:D 220:V 211:w 208:o 205:l 199:h 196:T 192:V 183:D 180:D 175:h 172:T 168:V 158:= 154:L 151:B 148:I 145:D 37:( 27:B

Index


short-channel effect
MOSFETs
threshold voltage
transistor
field-effect transistor
threshold voltage
depletion region
depletion region
p-n junction
energy barrier
p–n junctions
depletion widths
subthreshold region
active mode
channel length modulation
Mosfet Modeling for VLSI Simulation: Theory And Practice
ISBN
978-981-256-862-5
Operation and Modeling of the MOS Transistor
ISBN
0195170148
Channel length modulation
Threshold voltage
MOSFET operation
Categories
Transistor modeling
MOSFETs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.