Knowledge (XXG)

Euclid–Mullin sequence

Source 📝

269:, on the basis of heuristic assumptions that the distribution of primes is random, that every prime does appear in the sequence. However, although similar recursive sequences over other domains do not contain all primes, these problems both remain open for the original Euclid–Mullin sequence. The least prime number not known to be an element of the sequence is 41. 206:
of two primes, 13 × 139. Of these two primes, 13 is the smallest and so included in the sequence. Similarly, the seventh element, 5, is the result of (2 × 3 × 7 × 43 × 13 × 53) + 1 = 1244335, the prime factors of which are 5 and 248867. These examples illustrate why the sequence can leap from very large to very small numbers.
350:. The sequence constructed by repeatedly appending all factors of one plus the product of the previous numbers is the same as the sequence of prime factors of Sylvester's sequence. Like the Euclid–Mullin sequence, this is a non-monotonic sequence of primes, but it is known not to include all primes. 205:
plus one, which is 2. The third element is (2 × 3) + 1 = 7. A better illustration is the fifth element in the sequence, 13. This is calculated by (2 × 3 × 7 × 43) + 1 = 1806 + 1 = 1807, the product
54:
2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209, 37, 1741, 1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457, 9649, 61, 4357,
298:
A related sequence of numbers determined by the largest prime factor of one plus the product of the previous numbers (rather than the smallest prime factor) is also known as the Euclid–Mullin sequence. It grows more quickly, but is not
342:
It is also possible to generate modified versions of the Euclid–Mullin sequence by using the same rule of choosing the smallest prime factor at each step, but beginning with a different prime than 2.
196: 55:
87991098722552272708281251793312351581099392851768893748012603709343, 107, 127, 3313, 227432689108589532754984915075774848386671439568260420754414940780761245893, 59, 31, 211... (sequence
276:
2:1, 3:2, 5:7, 7:3, 11:12, 13:5, 17:13, 19:36, 23:25, 29:33, 31:50, 37:18, 41:?, 43:4, 47:?, 53:6, 59:49, 61:42, 67:?, 71:22, 73:?, 79:?, 83:?, 89:35, 97:26 (sequence
69:
These are the only known elements as of September 2012. Finding the next one requires finding the least prime factor of a 335-digit number (which is known to be
126: 253:
asked whether every prime number appears in the Euclid–Mullin sequence and, if not, whether the problem of testing a given prime for membership in the sequence is
380: 99: 808: 522:
The listing with the question marks is given in the Extensions field of the OEIS entry, whereas the main listing stops at 33 and has no question marks.
332: 314: 283: 62: 244: 722: 307:
2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, 1368845206580129, 889340324577880670089824574922371, … (sequence
134: 214:
The sequence is infinitely long and does not contain repeated elements. This can be proved using the method of Euclid's
346:
Alternatively, taking each number to be one plus the product of the previous numbers (rather than factoring it) gives
798: 378:
Mullin, Albert A. (1963), "Recursive function theory (A modern look at a Euclidean idea)", Research problems,
347: 803: 576: 35:
of one plus the product of all earlier elements. They are named after the ancient Greek mathematician
254: 219: 40: 693: 650: 624: 549: 495: 468: 223: 215: 771: 718: 290:
where ? indicates that the position (or whether it exists at all) is unknown as of 2012.
712: 677: 634: 588: 541: 486:
Booker, Andrew R. (2016), "A variant of the Euclid-Mullin sequence containing every prime",
452: 389: 70: 44: 24: 775: 753: 689: 646: 602: 561: 509: 464: 425: 104: 749: 685: 642: 598: 557: 505: 460: 421: 681: 737: 84: 792: 654: 409: 359: 321:
Not every prime number appears in this sequence, and the sequence of missing primes,
258: 202: 472: 394: 697: 456: 32: 28: 325:
5, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 61, 67, 71, 73, ... (sequence
440: 638: 226:, and the sequence is the result of performing a version of that construction. 593: 266: 780: 668:
Pollack, Paul; Treviño, Enrique (2014), "The primes that Euclid forgot",
300: 553: 233: 532:
Naur, Thorkil (1984), "Mullin's sequence of primes is not monotonic",
36: 545: 615:
Booker, Andrew R. (2012), "On Mullin's second sequence of primes",
500: 629: 740:; Nowakowski, Richard (1975), "Discovering primes with Euclid", 414:
Bulletin of the Institute of Combinatorics and Its Applications
241:
Does every prime number appear in the Euclid–Mullin sequence?
201:
The first element is therefore the least prime factor of the
327: 309: 278: 191:{\displaystyle {\Bigl (}\prod _{i<n}a_{i}{\Bigr )}+1\,.} 57: 441:"Euclid prime sequences over unique factorization domains" 272:
The positions of the prime numbers from 2 to 97 are:
137: 107: 87: 41:
Euclid's proof that there are infinitely many primes
190: 120: 93: 173: 140: 534:Proceedings of the American Mathematical Society 39:, because their definition relies on an idea in 581:Journal of the Australian Mathematical Society 439:Kurokawa, Nobushige; Satoh, Takakazu (2008), 381:Bulletin of the American Mathematical Society 8: 717:, Cambridge University Press, p. 26, 579:(1968), "On a sequence of prime numbers", 50:The first 51 elements of the sequence are 628: 592: 499: 393: 184: 172: 171: 165: 149: 139: 138: 136: 112: 106: 86: 47:, who asked about the sequence in 1963. 370: 245:(more unsolved problems in mathematics) 262: 250: 31:, in which each element is the least 7: 682:10.4169/amer.math.monthly.121.05.433 303:. The numbers in this sequence are 809:Unsolved problems in number theory 16:Infinite sequence of prime numbers 14: 339:has been proven to be infinite. 220:there are infinitely many primes 395:10.1090/S0002-9904-1963-11017-4 236:Unsolved problem in mathematics 128:, is the least prime factor of 457:10.1080/10586458.2008.10129035 1: 670:American Mathematical Monthly 488:Journal of Integer Sequences 101:th element of the sequence, 412:(1991), "Euclid's primes", 825: 711:Sheppard, Barnaby (2014), 639:10.1515/integers-2012-0034 594:10.1017/S1446788700006236 776:"Euclid–Mullin Sequence" 494:(6): Article 16.6.4, 6, 445:Experimental Mathematics 577:Van der Poorten, A. J. 192: 122: 95: 21:Euclid–Mullin sequence 714:The Logic of Infinity 193: 123: 121:{\displaystyle a_{n}} 96: 348:Sylvester's sequence 135: 105: 85: 772:Weisstein, Eric W. 188: 160: 118: 91: 799:Integer sequences 294:Related sequences 259:Daniel Shanks 145: 94:{\displaystyle n} 816: 785: 784: 758: 756: 742:Delta (Waukesha) 734: 728: 727: 708: 702: 700: 665: 659: 657: 632: 623:(6): 1167–1177, 612: 606: 605: 596: 572: 566: 564: 529: 523: 520: 514: 512: 503: 483: 477: 475: 436: 430: 428: 406: 400: 398: 397: 375: 330: 312: 281: 237: 222:. That proof is 197: 195: 194: 189: 177: 176: 170: 169: 159: 144: 143: 127: 125: 124: 119: 117: 116: 100: 98: 97: 92: 60: 45:Albert A. Mullin 824: 823: 819: 818: 817: 815: 814: 813: 789: 788: 770: 769: 766: 761: 736: 735: 731: 725: 710: 709: 705: 667: 666: 662: 614: 613: 609: 574: 573: 569: 546:10.2307/2044665 531: 530: 526: 521: 517: 485: 484: 480: 438: 437: 433: 408: 407: 403: 377: 376: 372: 368: 356: 326: 308: 296: 277: 248: 247: 242: 239: 235: 232: 212: 161: 133: 132: 108: 103: 102: 83: 82: 79: 56: 23:is an infinite 17: 12: 11: 5: 822: 820: 812: 811: 806: 801: 791: 790: 787: 786: 765: 764:External links 762: 760: 759: 729: 723: 703: 676:(5): 433–437, 660: 607: 587:(3): 571–574, 567: 524: 515: 478: 451:(2): 145–152, 431: 410:Shanks, Daniel 401: 369: 367: 364: 363: 362: 355: 352: 337: 336: 319: 318: 295: 292: 288: 287: 243: 240: 234: 231: 228: 211: 208: 199: 198: 187: 183: 180: 175: 168: 164: 158: 155: 152: 148: 142: 115: 111: 90: 78: 75: 67: 66: 15: 13: 10: 9: 6: 4: 3: 2: 821: 810: 807: 805: 804:Prime numbers 802: 800: 797: 796: 794: 783: 782: 777: 773: 768: 767: 763: 755: 751: 747: 743: 739: 733: 730: 726: 724:9781139952774 720: 716: 715: 707: 704: 699: 695: 691: 687: 683: 679: 675: 671: 664: 661: 656: 652: 648: 644: 640: 636: 631: 626: 622: 618: 611: 608: 604: 600: 595: 590: 586: 582: 578: 571: 568: 563: 559: 555: 551: 547: 543: 539: 535: 528: 525: 519: 516: 511: 507: 502: 497: 493: 489: 482: 479: 474: 470: 466: 462: 458: 454: 450: 446: 442: 435: 432: 427: 423: 419: 415: 411: 405: 402: 396: 391: 387: 383: 382: 374: 371: 365: 361: 360:Euclid number 358: 357: 353: 351: 349: 344: 340: 334: 329: 324: 323: 322: 316: 311: 306: 305: 304: 302: 293: 291: 285: 280: 275: 274: 273: 270: 268: 264: 260: 256: 252: 251:Mullin (1963) 246: 229: 227: 225: 221: 217: 209: 207: 204: 203:empty product 185: 181: 178: 166: 162: 156: 153: 150: 146: 131: 130: 129: 113: 109: 88: 76: 74: 72: 64: 59: 53: 52: 51: 48: 46: 42: 38: 34: 30: 29:prime numbers 26: 22: 779: 748:(2): 49–63, 745: 741: 738:Guy, Richard 732: 713: 706: 673: 669: 663: 620: 616: 610: 584: 580: 575:Cox, C. D.; 570: 540:(1): 43–44, 537: 533: 527: 518: 491: 487: 481: 448: 444: 434: 417: 413: 404: 385: 379: 373: 345: 341: 338: 320: 297: 289: 271: 249: 224:constructive 213: 200: 80: 68: 49: 43:, and after 33:prime factor 27:of distinct 20: 18: 267:conjectured 793:Categories 501:1605.08929 388:(6): 737, 366:References 255:computable 230:Conjecture 210:Properties 77:Definition 781:MathWorld 655:119144088 630:1107.3318 420:: 33–36, 301:monotonic 147:∏ 71:composite 617:Integers 473:12924815 354:See also 25:sequence 754:0384675 698:1335826 690:3193727 647:3011555 603:0228417 562:0722412 554:2044665 510:3546618 465:2433881 426:1103634 331:in the 328:A216227 313:in the 310:A000946 282:in the 279:A056756 261: ( 61:in the 58:A000945 752:  721:  696:  688:  653:  645:  601:  560:  552:  508:  471:  463:  424:  37:Euclid 694:S2CID 651:S2CID 625:arXiv 550:JSTOR 496:arXiv 469:S2CID 218:that 216:proof 719:ISBN 333:OEIS 315:OEIS 284:OEIS 263:1991 154:< 81:The 63:OEIS 19:The 678:doi 674:121 635:doi 589:doi 542:doi 453:doi 390:doi 73:). 795:: 778:, 774:, 750:MR 744:, 692:, 686:MR 684:, 672:, 649:, 643:MR 641:, 633:, 621:12 619:, 599:MR 597:, 583:, 558:MR 556:, 548:, 538:90 536:, 506:MR 504:, 492:19 490:, 467:, 461:MR 459:, 449:17 447:, 443:, 422:MR 416:, 386:69 384:, 317:). 265:) 257:. 757:. 746:5 701:. 680:: 658:. 637:: 627:: 591:: 585:8 565:. 544:: 513:. 498:: 476:. 455:: 429:. 418:1 399:. 392:: 335:) 286:) 238:: 186:. 182:1 179:+ 174:) 167:i 163:a 157:n 151:i 141:( 114:n 110:a 89:n 65:)

Index

sequence
prime numbers
prime factor
Euclid
Euclid's proof that there are infinitely many primes
Albert A. Mullin
A000945
OEIS
composite
empty product
proof
there are infinitely many primes
constructive
(more unsolved problems in mathematics)
Mullin (1963)
computable
Daniel Shanks
1991
conjectured
A056756
OEIS
monotonic
A000946
OEIS
A216227
OEIS
Sylvester's sequence
Euclid number
Bulletin of the American Mathematical Society
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.