Knowledge (XXG)

Isoelectric focusing

Source πŸ“

226:
vessels with a capillary passing through each vessel. Part of the capillary in each vessel is replaced by a semipermeable membrane. The vessels contain buffer solutions with different pH values, so that a pH gradient is effectively established inside the capillary. The buffer solution in each vessel has an electrical contact with a voltage divider connected to a high-voltage power supply, which establishes an electrical field along the capillary. When a sample (a mixture of peptides or proteins) is injected in the capillary, the presence of the electrical field and the pH gradient separates these molecules according to their isoelectric points. The multi-junction IEF system has been used to separate tryptic peptide mixtures for two-dimensional proteomics and blood plasma proteins from
105:(pI) will be positively charged and so will migrate toward the cathode (negatively charged electrode). As it migrates through a gradient of increasing pH, however, the protein's overall charge will decrease until the protein reaches the pH region that corresponds to its pI. At this point it has no net charge and so migration ceases (as there is no electrical attraction toward either electrode). As a result, the proteins become focused into sharp stationary bands with each protein positioned at a point in the pH gradient corresponding to its pI. The technique is capable of extremely high resolution with proteins differing by a single charge being fractionated into separate bands. 31: 841: 128:
which the pH of that molecule's isoelectric point is reached. At this point the molecule no longer has a net electric charge (due to the protonation or deprotonation of the associated functional groups) and as such will not proceed any further within the gel. The gradient is established before adding the particles of interest by first subjecting a solution of small molecules such as
853: 127:
end. Negatively charged molecules migrate through the pH gradient in the medium toward the "positive" end while positively charged molecules move toward the "negative" end. As a particle moves toward the pole opposite of its charge it moves through the changing pH gradient until it reaches a point in
225:
The increased demand for faster and easy-to-use protein separation tools has accelerated the evolution of IEF towards in-solution separations. In this context, a multi-junction IEF system was developed to perform fast and gel-free IEF separations. The multi-junction IEF system utilizes a series of
199:
cells perform isoelectric focusing of proteins in their interior to overcome a limitation of the rate of metabolic reaction by diffusion of enzymes and their reactants, and to regulate the rate of particular biochemical processes. By concentrating the enzymes of particular metabolic pathways into
166:
where a pH gradient has been established. Gels with large pores are usually used in this process to eliminate any "sieving" effects, or artifacts in the pI caused by differing migration rates for proteins of differing sizes. Isoelectric focusing can resolve proteins that differ in
247:
Bjellqvist, Bengt; Ek, Kristina; Righetti, Pier Giorgio; Gianazza, Elisabetta; GΓΆrg, Angelika; Westermeier, Reiner; Postel, Wilhelm (1982). "Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications".
216:
since it has the potential to provide rapid protein analysis, straightforward integration with other microfluidic unit operations, whole channel detection, nitrocellulose films, smaller sample sizes and lower fabrication costs.
200:
distinct and small regions of its interior, the cell can increase the rate of particular biochemical pathways by several orders of magnitude. By modification of the isoelectric point (pI) of molecules of an enzyme by, e.g.,
93:
gel matrix co-polymerized with the pH gradient, which result in completely stable gradients except the most alkaline (>12) pH values. The immobilized pH gradient is obtained by the continuous change in the ratio of
573:
Pirmoradian, M.; Zhang, B.; Chingin, K.; Astorga-Wells, J.; Zubarev R.A. (2014). "Membrane-assisted isoelectric focusing device as a micro-preparative fractionator for two dimensional shotgun proteomics".
525:"Multijunction Capillary Isoelectric Focusing Device Combined with Online Membrane-Assisted Buffer Exchanger Enables Isoelectric Point Fractionation of Intact Human Plasma Proteins for Biomarker Discovery" 376:
Kastenholz, B (2004). "Preparative Native Continuous Polyacrylamide Gel Electrophoresis (PNC-PAGE): An Efficient Method for Isolating Cadmium Cofactors in Biological Systems".
204:
or dephosphorylation, the cell can transfer molecules of the enzyme between different parts of its interior, to switch on or switch off particular biochemical processes.
627: 748: 901: 305: 779: 708: 774: 753: 172: 738: 343: 743: 784: 733: 673: 688: 891: 789: 693: 620: 524: 668: 857: 647: 826: 678: 213: 896: 886: 845: 663: 613: 151: 86: 227: 718: 703: 291: 69:
that takes advantage of the fact that overall charge on the molecule of interest is a function of the
864: 478: 435: 321: 30: 805: 713: 66: 502: 401: 108:
Molecules to be focused are distributed over a medium that has a pH gradient (usually created by
469:
Baskin E.F.; Bukshpan S; Zilberstein G V (2006). "pH-induced intracellular protein transport".
683: 591: 555: 494: 451: 393: 349: 339: 301: 273: 265: 168: 102: 54: 728: 583: 547: 539: 486: 443: 385: 331: 295: 257: 176: 144: 116: 698: 636: 201: 58: 482: 439: 325: 175:, in which proteins are first separated by their pI value and then further separated by 155: 880: 769: 723: 447: 335: 261: 506: 490: 405: 543: 366:
Stryer, Lubert: "Biochemie", page 50. Spektrum Akademischer Verlag, 1996 (German)
82: 17: 196: 147: 90: 397: 269: 184: 129: 112: 109: 50: 595: 559: 498: 420: 455: 353: 277: 389: 180: 150:, whose value is represented by the pI. Proteins are introduced into an 551: 163: 136: 124: 62: 34:
Scheme of isoelectric focusing with immobilized pH gradient (IPG) gels.
587: 171:
value by as little as 0.01. Isoelectric focusing is the first step in
159: 140: 605: 120: 29: 98:. An immobiline is a weak acid or base defined by its pK value. 609: 183:. Isoelectric focusing, on the other hand, is the only step in 212:
Microchip based electrophoresis is a promising alternative to
70: 330:. Methods in Enzymology. Vol. 182. pp. 459–77. 297:
Isoelectric Focusing: Theory, Methodology and Application
135:
The method is applied particularly often in the study of
523:
Pirmoradian M.; Astorga-Wells, J.; Zubarev, RA. (2015).
139:, which separate based on their relative content of 119:
is passed through the medium, creating a "positive"
819: 798: 762: 656: 518: 516: 250:Journal of Biochemical and Biophysical Methods 621: 8: 421:"Does a cell perform isoelectric focusing?" 132:with varying pI values to electrophoresis. 101:A protein that is in a pH region below its 628: 614: 606: 49:, is a technique for separating different 749:Temperature gradient gel electrophoresis 239: 7: 852: 780:Gel electrophoresis of nucleic acids 709:Electrophoretic mobility shift assay 775:DNA separation by silica adsorption 754:Two-dimensional gel electrophoresis 195:According to some opinions, living 173:two-dimensional gel electrophoresis 739:Polyacrylamide gel electrophoresis 384:(4). Informa UK Limited: 657–665. 230:patients for biomarker discovery. 25: 851: 840: 839: 744:Pulsed-field gel electrophoresis 324:(1990). "Isoelectric focusing". 785:Gel electrophoresis of proteins 734:Moving-boundary electrophoresis 674:Capillary electrochromatography 689:Difference gel electrophoresis 1: 790:Serum protein electrophoresis 694:Discontinuous electrophoresis 327:Guide to Protein Purification 902:Molecular biology techniques 544:10.1021/acs.analchem.5b03344 448:10.1016/0303-2647(90)90005-L 336:10.1016/0076-6879(90)82037-3 262:10.1016/0165-022X(82)90013-6 669:Agarose gel electrophoresis 57:(pI). It is a type of zone 918: 648:History of electrophoresis 835: 827:Electrophoresis (journal) 679:Capillary electrophoresis 643: 491:10.1088/1478-3975/3/2/002 214:capillary electrophoresis 89:(IPG) gels. IPGs are the 664:Affinity electrophoresis 53:by differences in their 208:Microfluidic chip based 185:preparative native PAGE 152:immobilized pH gradient 87:immobilized pH gradient 81:IEF involves adding an 27:Type of electrophoresis 35: 719:Immunoelectrophoresis 704:Electrochromatography 292:Pier Giorgio Righetti 73:of its surroundings. 61:usually performed on 33: 892:Industrial processes 865:Analytical Chemistry 811:Isoelectric focusing 576:Analytical Chemistry 532:Analytical Chemistry 390:10.1081/al-120029742 39:Isoelectric focusing 806:Electrical mobility 714:Gel electrophoresis 538:(23): 11840–11846. 483:2006PhBio...3..101B 440:1990BiSys..24..127F 322:David Edward Garfin 228:Alzheimer's disease 378:Analytical Letters 36: 874: 873: 684:Dielectrophoresis 588:10.1021/ac404180e 582:(12): 5728–5732. 307:978-0-08-085880-7 103:isoelectric point 55:isoelectric point 45:), also known as 16:(Redirected from 909: 855: 854: 843: 842: 729:Isotachophoresis 630: 623: 616: 607: 600: 599: 570: 564: 563: 529: 520: 511: 510: 471:Physical Biology 466: 460: 459: 425: 419:Flegr J (1990). 416: 410: 409: 373: 367: 364: 358: 357: 318: 312: 311: 294:(1 April 2000). 288: 282: 281: 244: 187:at constant pH. 177:molecular weight 154:gel composed of 117:electric current 21: 917: 916: 912: 911: 910: 908: 907: 906: 897:Protein methods 887:Electrophoresis 877: 876: 875: 870: 831: 815: 794: 758: 699:Electroblotting 652: 639: 637:Electrophoresis 634: 604: 603: 572: 571: 567: 527: 522: 521: 514: 468: 467: 463: 423: 418: 417: 413: 375: 374: 370: 365: 361: 346: 320: 319: 315: 308: 290: 289: 285: 246: 245: 241: 236: 223: 210: 202:phosphorylation 193: 123:and "negative" 79: 59:electrophoresis 47:electrofocusing 28: 23: 22: 18:Electrofocusing 15: 12: 11: 5: 915: 913: 905: 904: 899: 894: 889: 879: 878: 872: 871: 869: 868: 861: 849: 836: 833: 832: 830: 829: 823: 821: 817: 816: 814: 813: 808: 802: 800: 796: 795: 793: 792: 787: 782: 777: 772: 766: 764: 760: 759: 757: 756: 751: 746: 741: 736: 731: 726: 721: 716: 711: 706: 701: 696: 691: 686: 681: 676: 671: 666: 660: 658: 654: 653: 651: 650: 644: 641: 640: 635: 633: 632: 625: 618: 610: 602: 601: 565: 512: 477:(2): 101–106. 461: 434:(2): 127–133. 411: 368: 359: 344: 313: 306: 283: 256:(4): 317–339. 238: 237: 235: 232: 222: 221:Multi-junction 219: 209: 206: 192: 189: 156:polyacrylamide 130:polyampholytes 85:solution into 78: 75: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 914: 903: 900: 898: 895: 893: 890: 888: 885: 884: 882: 867: 866: 862: 860: 859: 850: 848: 847: 838: 837: 834: 828: 825: 824: 822: 818: 812: 809: 807: 804: 803: 801: 797: 791: 788: 786: 783: 781: 778: 776: 773: 771: 770:DNA laddering 768: 767: 765: 761: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 724:Iontophoresis 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 670: 667: 665: 662: 661: 659: 655: 649: 646: 645: 642: 638: 631: 626: 624: 619: 617: 612: 611: 608: 597: 593: 589: 585: 581: 577: 569: 566: 561: 557: 553: 549: 545: 541: 537: 533: 526: 519: 517: 513: 508: 504: 500: 496: 492: 488: 484: 480: 476: 472: 465: 462: 457: 453: 449: 445: 441: 437: 433: 429: 422: 415: 412: 407: 403: 399: 395: 391: 387: 383: 379: 372: 369: 363: 360: 355: 351: 347: 345:9780121820831 341: 337: 333: 329: 328: 323: 317: 314: 309: 303: 299: 298: 293: 287: 284: 279: 275: 271: 267: 263: 259: 255: 251: 243: 240: 233: 231: 229: 220: 218: 215: 207: 205: 203: 198: 190: 188: 186: 182: 178: 174: 170: 165: 161: 157: 153: 149: 146: 142: 138: 133: 131: 126: 122: 118: 114: 111: 106: 104: 99: 97: 92: 88: 84: 76: 74: 72: 68: 64: 60: 56: 52: 48: 44: 40: 32: 19: 863: 856: 844: 810: 763:Applications 579: 575: 568: 535: 531: 474: 470: 464: 431: 427: 414: 381: 377: 371: 362: 326: 316: 300:. Elsevier. 296: 286: 253: 249: 242: 224: 211: 194: 191:Living cells 134: 107: 100: 95: 80: 46: 42: 38: 37: 552:10616/44920 96:immobilines 881:Categories 657:Techniques 428:BioSystems 234:References 197:eukaryotic 113:ampholytes 91:acrylamide 398:0003-2719 270:0165-022X 110:aliphatic 83:ampholyte 77:Procedure 51:molecules 846:Category 820:Journals 596:24824042 560:26531800 507:41599078 499:16829696 406:97636537 181:SDS-PAGE 179:through 148:residues 137:proteins 63:proteins 858:Commons 479:Bibcode 456:2249006 436:Bibcode 354:2314254 278:7142660 164:agarose 125:cathode 799:Theory 594:  558:  505:  497:  454:  404:  396:  352:  342:  304:  276:  268:  160:starch 141:acidic 115:). An 528:(PDF) 503:S2CID 424:(PDF) 402:S2CID 162:, or 145:basic 121:anode 65:in a 592:PMID 556:PMID 495:PMID 452:PMID 394:ISSN 350:PMID 340:ISBN 302:ISBN 274:PMID 266:ISSN 143:and 584:doi 548:hdl 540:doi 487:doi 444:doi 386:doi 332:doi 258:doi 67:gel 43:IEF 883:: 590:. 580:86 578:. 554:. 546:. 536:87 534:. 530:. 515:^ 501:. 493:. 485:. 473:. 450:. 442:. 432:24 430:. 426:. 400:. 392:. 382:37 380:. 348:. 338:. 272:. 264:. 252:. 169:pI 158:, 71:pH 629:e 622:t 615:v 598:. 586:: 562:. 550:: 542:: 509:. 489:: 481:: 475:3 458:. 446:: 438:: 408:. 388:: 356:. 334:: 310:. 280:. 260:: 254:6 41:( 20:)

Index

Electrofocusing

molecules
isoelectric point
electrophoresis
proteins
gel
pH
ampholyte
immobilized pH gradient
acrylamide
isoelectric point
aliphatic
ampholytes
electric current
anode
cathode
polyampholytes
proteins
acidic
basic
residues
immobilized pH gradient
polyacrylamide
starch
agarose
pI
two-dimensional gel electrophoresis
molecular weight
SDS-PAGE

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑