Knowledge (XXG)

Electron microscope

Source 📝

862:– the freeze-fracture method has been modified to allow the identification of the components of the fracture face by immunogold labeling. Instead of removing all the underlying tissue of the thawed replica as the final step before viewing in the microscope the tissue thickness is minimized during or after the fracture process. The thin layer of tissue remains bound to the metal replica so it can be immunogold labeled with antibodies to the structures of choice. The thin layer of the original specimen on the replica with gold attached allows the identification of structures in the fracture plane. There are also related methods which label the surface of etched cells and other replica labeling variations. 255: 1009:
used to increase the z-resolution. More recently, back scattered electron (BSE) images can be acquired of a larger series of sections collected on silicon wafers, known as SEM array tomography. An alternative approach is to use BSE SEM to image the block surface instead of the section, after each section has been removed. By this method, an ultramicrotome installed in an SEM chamber can increase automation of the workflow; the specimen block is loaded in the chamber and the system programmed to continuously cut and image through the sample. This is known as serial block face SEM. A related method uses
841: 848:
some ice sublime) is then shadowed with evaporated platinum or gold at an average angle of 45° in a high vacuum evaporator. The second coat of carbon, evaporated perpendicular to the average surface plane is often performed to improve the stability of the replica coating. The specimen is returned to room temperature and pressure, then the extremely fragile "pre-shadowed" metal replica of the fracture surface is released from the underlying biological material by careful chemical digestion with acids,
1028: 338:. According to patent law (U.S. Patent No. 2058914 and 2070318, both filed in 1932), he is the inventor of the electron microscope, but it is not clear when he had a working instrument. He stated in a very brief article in 1932 that Siemens had been working on this for some years before the patents were filed in 1932, claiming that his effort was parallel to the university development. He died in 1961, so similar to Max Knoll, was not eligible for a share of the 1986 Nobel prize. 908:. This mixture is applied to an EM grid, pre-coated with a plastic film such as formvar, blotted, then allowed to dry. Viewing of this preparation in the TEM should be carried out without delay for best results. The method is important in microbiology for fast but crude morphological identification, but can also be used as the basis for high-resolution 3D reconstruction using EM tomography methodology when carbon films are used for support. 555: 646: 4660: 833: 431: 40: 65: 4672: 403: 48: 975:
Electron microscopes are now frequently used in more complex workflows, with each workflow typically using multiple technologies to enable more complex and/or more quantitative analyses of a sample. A few examples are outlined below, but this should not be considered an exhaustive list. The choice of
1008:
datasets of larger depths than TEM tomography (micrometers or millimeters in the z axis), a series of images taken through the sample depth can be used. For example, ribbons of serial sections can be imaged in a TEM as described above, and when thicker sections are used, serial TEM tomography can be
584:
emission, all of which provide signals carrying information about the properties of the specimen surface, such as its topography and composition. The image displayed by SEM represents the varying intensity of any of these signals into the image in a position corresponding to the position of the beam
636:
are primarily in the size of the crystals. In X-ray crystallography, crystals are commonly visible by the naked eye and are generally in the hundreds of micrometers in length. In comparison, crystals for electron diffraction must be less than a few hundred nanometers in thickness, and have no lower
456:
lenses, and transmitted through the specimen. When it emerges from the specimen, the electron beam carries information about the structure of the specimen that is magnified by lenses of the microscope. The spatial variation in this information (the "image") may be viewed by projecting the magnified
1077:
frustules and small mineral crystals (asbestos fibres, for example) require no special treatment before being examined in the electron microscope. Samples of hydrated materials, including almost all biological specimens, have to be prepared in various ways to stabilize them, reduce their thickness
954:
to scatter imaging electrons and thus give contrast between different structures, since many (especially biological) materials are nearly "transparent" to electrons (weak phase objects). In biology, specimens can be stained "en bloc" before embedding and also later after sectioning. Typically thin
847:
The fresh tissue or cell suspension is frozen rapidly (cryofixation), then fractured by breaking (or by using a microtome) while maintained at liquid nitrogen temperature. The cold fractured surface (sometimes "etched" by increasing the temperature to about −100 °C for several minutes to let
588:
SEMs are different from TEMs in that they use electrons with much lower energy, generally below 20 keV, while TEMs generally use electrons with energies in the range of 80-300 keV. Thus, the electron sources and optics of the two microscopes have different designs, and they are normally separate
322:
successfully generated magnified images of mesh grids placed over an anode aperture. The device, a replicate of which is shown in the figure, used two magnetic lenses to achieve higher magnifications, the first electron microscope. (Max Knoll died in 1969, so did not receive a share of the 1986
979:
For example, images from light and electron microscopy of the same region of a sample can be overlaid to correlate the data from the two modalities. This is commonly used to provide higher resolution contextual EM information about a fluorescently labelled structure. This correlative light and
1065:
Scanning electron microscopes operating in conventional high-vacuum mode usually image conductive specimens; therefore non-conductive materials require conductive coating (gold/palladium alloy, carbon, osmium, etc.). The low-voltage mode of modern microscopes makes possible the observation of
518:
The STEM rasters a focused incident probe across a specimen. The high resolution of the TEM is thus possible in STEM. The focusing action (and aberrations) occur before the electrons hit the specimen in the STEM, but afterward in the TEM. The STEMs use of SEM-like beam rastering simplifies
393:
became common for electron microscopes, improving the image quality due to the additional coherence and lower chromatic aberrations. The 2000s were marked by advancements in aberration-corrected electron microscopy, allowing for significant improvements in resolution and clarity of images.
984:) is one of a range of correlative workflows now available. Another example is high resolution mass spectrometry (ion microscopy), which has been used to provide correlative information about subcellular antibiotic localisation, data that would be difficult to obtain by other means. 532: 972:. However, often these images are then colourized through the use of feature-detection software, or simply by hand-editing using a graphics editor. This may be done to clarify structure or for aesthetic effect and generally does not add new information about the specimen. 406: 374:, and Albert Prebus. Siemens produced a transmission electron microscope (TEM) in 1939. Although current transmission electron microscopes are capable of two million times magnification, as scientific instruments they remain similar but with improved optics. 410: 409: 405: 404: 411: 992:’ workflows was simply to stack TEM images of serial sections cut through a sample. The next development was virtual reconstruction of a thick section (200-500 nm) volume by backprojection of a set of images taken at different tilt angles - 408: 1013:
milling instead of an ultramicrotome to remove sections. In these serial imaging methods, the output is essentially a sequence of images through a specimen block that can be digitally aligned in sequence and thus reconstructed into a
1018:
dataset. The increased volume available in these methods has expanded the capability of electron microscopy to address new questions, such as mapping neural connectivity in the brain, and membrane contact sites between organelles.
1038:
Electron microscopes are expensive to build and maintain. Microscopes designed to achieve high resolutions must be housed in stable buildings (sometimes underground) with special services such as magnetic field canceling systems.
389:, enabling scanning microscopes at high resolution. By the early 1980s improvements in mechanical stability as well as the use of higher accelerating voltages enabled imaging of materials at the atomic scale. In the 1980s, the 987:
The initial role of electron microscopes in imaging two-dimensional slices (TEM) or a specimen surface (SEM with secondary electrons) has also increasingly expanded into the depth of samples. An early example of these
341:
In the following year, 1933, Ruska and Knoll built the first electron microscope that exceeded the resolution of an optical (light) microscope. Four years later, in 1937, Siemens financed the work of Ernst Ruska and
274:
in 1883 who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam. Others were focusing of the electrons by an axial magnetic field by
535: 539: 538: 534: 533: 783:– after dehydration, tissue for observation in the transmission electron microscope is embedded so it can be sectioned ready for viewing. To do this the tissue is passed through a 'transition solvent' such as 540: 683:
Materials to be viewed in a transmission electron microscope may require processing to produce a suitable sample. The technique required varies depending on the specimen and the analysis required:
3102:
Rash JE, Johnson TJ, Hudson CS, Giddings FD, Graham WF, Eldefrawi ME (November 1982). "Labelled-replica techniques: post-shadow labelling of intramembrane particles in freeze-fracture replicas".
537: 2733:
Meryman H.T. and Kafig E. (1955). The study of frozen specimens, ice crystals and ices crystal growth by electron microscopy. Naval Med. Res. Ints. Rept NM 000 018.01.09 Vol. 13 pp 529–544
504:), enabling magnifications above 50 million times. The ability of HRTEM to determine the positions of atoms within materials is useful for nano-technologies research and development. 637:
boundary of size. Additionally, electron diffraction is done on a TEM, which can also be used to obtain many other types of information, rather than requiring a separate instrument.
976:
workflow will be highly dependent on the application and the requirements of the corresponding scientific questions, such as resolution, volume, nature of the target molecule, etc.
407: 4304: 1177: 2794:"Chapter 7 - Natural Surfactants-Based Micro/Nanoemulsion Systems for NSAIDs—Practical Formulation Approach, Physicochemical and Biopharmaceutical Characteristics/Performances" 3765:
Gai PL, Boyes ED (March 2009). "Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy".
3981: 3361:
Crowther RA, Amos LA, Finch JT, De Rosier DJ, Klug A (May 1970). "Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs".
4287: 4282: 1119: 493: 884:
ions are used to produce an electron transparent membrane or 'lamella' in a specific region of the sample, for example through a device within a microprocessor or a
4431: 4134: 482: 458: 3904:
Kasas S, Dumas G, Dietler G, Catsicas S, Adrian M (July 2003). "Vitrification of cryoelectron microscopy specimens revealed by high-speed photographic imaging".
4421: 4024: 1084:, but these can usually be identified by comparing the results obtained by using radically different specimen preparation methods. Since the 1980s, analysis of 1066:
non-conductive specimens without coating. Non-conductive materials can be imaged also by a variable pressure (or environmental) scanning electron microscope.
900:
or fine biological material (such as viruses and bacteria) are briefly mixed with a dilute solution of an electron-opaque solution such as ammonium molybdate,
572:). When the electron beam interacts with the specimen, it loses energy by a variety of mechanisms. These interactions lead to, among other events, emission of 177:
that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing them to produce magnified images or
4324: 4297: 536: 888:
SEM. Ion beam milling may also be used for cross-section polishing prior to analysis of materials that are difficult to prepare using mechanical polishing.
4232: 1125: 1051: 856:
detergent. The still-floating replica is thoroughly washed free from residual chemicals, carefully fished up on fine grids, dried then viewed in the TEM.
358:. Siemens produced the first commercial electron microscope in 1938. The first North American electron microscopes were constructed in the 1930s, at the 968:
In their most common configurations, electron microscopes produce images with a single brightness value per pixel, with the results usually rendered in
310:
to lead a team of researchers to advance research on electron beams and cathode-ray oscilloscopes. The team consisted of several PhD students including
4292: 3714:
Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (August 2003). "Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface".
513: 203: 1925: 4436: 240:
Additional details can be found in the above links. This article contains some general information mainly about transmission electron microscopes.
181:
patterns. As the wavelength of an electron can be up to 100,000 times smaller than that of visible light, electron microscopes have a much higher
3869:
Sabanay I, Arad T, Weiner S, Geiger B (September 1991). "Study of vitrified, unstained frozen tissue sections by cryoimmunoelectron microscopy".
731:. This preserves the specimen in a snapshot of its native state. Methods to achieve this vitrification include plunge freezing rapidly in liquid 4252: 254: 221: 2514: 4376: 4242: 4189: 3205: 2939: 2813: 2553: 2411: 2386: 2136: 1990: 1500: 1286: 1161: 981: 485:
have no scintillator and are directly exposed to the electron beam, which addresses some of the limitations of scintillator-coupled cameras.
4631: 4359: 4344: 4270: 3949: 2614:
Al-Amoudi A, Norlen LP, Dubochet J (October 2004). "Cryo-electron microscopy of vitreous sections of native biological cells and tissues".
82: 1114: 1098: 4381: 4214: 4067: 4017: 3433: 2901: 2590: 1576: 1108: 233: 148: 3978: 844:
External face of bakers yeast membrane showing the small holes where proteins are fractured out, sometimes as small ring patterns.
129: 4733: 4369: 4364: 4262: 4237: 4204: 1047: 993: 658: 438: 425: 303: 249: 197: 101: 4441: 4426: 4406: 4144: 2427:
Dusevich V, Purk J, Eick J (January 2010). "Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners)".
2007: 4209: 4052: 1141: 930:
are also used because they can be made in the lab and are much cheaper. Sections can also be created in situ by milling in a
693:– for biological specimens this aims to stabilize the specimen's mobile macromolecular structure by chemical crosslinking of 227: 86: 3221: 2334: 747:
milling of lamellae, it is now possible to observe samples from virtually any biological specimen close to its native state.
632:
mode where a map of the angles of the electrons leaving the sample is produced. The advantages of electron diffraction over
4676: 830:– a preparation method particularly useful for examining lipid membranes and their incorporated proteins in "face on" view. 824:– after embedding in resin, the specimen is usually ground and polished to a mirror-like finish using ultra-fine abrasives. 377:
In the 1940s, high-resolution electron microscopes were developed, enabling greater magnification and resolution. By 1965,
108: 4713: 4386: 4349: 4194: 1088:, vitrified specimens has also become increasingly used by scientists, further confirming the validity of this technique. 31: 523:, and other analytical techniques, but also means that image data is acquired in serial rather than in parallel fashion. 4708: 4698: 4664: 4224: 4010: 2131:. Monographs on the physics and chemistry of materials (3rd ed.). Oxford ; New York: Oxford University Press. 1952: 1485:
Proceedings of the 3rd International Conference on Contemporary Education, Social Sciences and Humanities (ICCESSH 2018)
1269:
Hertz H (2019). "Introduction to Heinrich Hertz's Miscellaneous Papers (1895) by Philipp Lenard". In Mulligan JF (ed.).
1166: 549: 355: 209: 1146: 1136: 1059: 359: 3665:"A Magnetic Field Canceling System Design for Diminishing Electromagnetic Interference to Avoid Environmental Hazard" 1938: 115: 4723: 4411: 4329: 3247:"Methods in Cell Biology | Correlative Light and Electron Microscopy III | ScienceDirect.com by Elsevier" 1131: 520: 350:, Ernst's brother, to develop applications for the microscope, especially with biological specimens. Also in 1937, 568:
The SEM produces images by probing the specimen with a focused electron beam that is scanned across the specimen (
75: 461:. For example, the image may be viewed directly by an operator using a fluorescent viewing screen coated with a 97: 4728: 4636: 4590: 4416: 1823: 1312:"Experimentelle Untersuchungen über die Geschwindigkeit und die magnetische Ablenkbarkeit der Kathodenstrahlen" 740: 736: 4626: 1078:(ultrathin sectioning) and increase their electron optical contrast (staining). These processes may result in 3968: 298:
To this day the issue of who invented the transmission electron microscope is controversial. In 1928, at the
4339: 4275: 4149: 4108: 3246: 2360: 840: 492:, but a new generation of hardware correctors can reduce spherical aberration to increase the resolution in 2200: 1714: 1688: 4529: 853: 331: 2089: 4534: 4354: 2793: 1481:"A Historical Investigation of the Debates on the Invention and Invention Rights of Electron Microscope" 766: 633: 382: 363: 299: 3508:"Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure" 3413: 1027: 295:
tried in 1928 to convince him to build an electron microscope, for which Szilárd had filed a patent.
4703: 4539: 4098: 3827: 3723: 3370: 2300: 2054: 1752: 1645: 1602: 1525: 1487:. Advances in Social Science, Education and Humanities Research. Atlantis Press. pp. 1438–1441. 1401: 1323: 1235: 1103: 905: 689: 629: 623: 489: 178: 4504: 4489: 4396: 4391: 4334: 4199: 4181: 4113: 4103: 4047: 4033: 2518: 1888: 577: 367: 351: 215: 2158:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
4718: 4575: 4154: 4118: 3929: 3851: 3800: 3774: 3747: 3645: 3588: 3488: 3394: 3127: 2596: 2570: 1908: 1869: 1844:
Kruger DH, Schneck P, Gelderblom HR (May 2000). "Helmut Ruska and the visualisation of viruses".
1776: 1669: 1480: 1350: 1292: 573: 390: 386: 335: 186: 182: 122: 3418:
Chapter 7 - A practical guide to starting SEM array tomography—An accessible volume EM technique
2654:"Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography" 2381:. Springer series in optical sciences (5th ed.). New York, NY: Springer. pp. 109–112. 2153: 1441: 306:), Adolf Matthias (Professor of High Voltage Technology and Electrical Installations) appointed 1794: 1389: 1311: 1015: 1005: 989: 876:) at the surface from an angle and sputtering material from the surface. A subclass of this is 4519: 4514: 3921: 3886: 3843: 3792: 3739: 3696: 3637: 3580: 3539: 3480: 3439: 3429: 3386: 3343: 3291: 3201: 3176: 3119: 3084: 3035: 2986: 2935: 2897: 2866: 2809: 2774: 2716: 2683: 2631: 2586: 2549: 2496: 2444: 2407: 2406:. Springer series in optical sciences (5th ed.). New York, NY: Springer. pp. 12–13. 2382: 2316: 2269: 2220: 2181: 2173: 2132: 2109: 2070: 2027: 1986: 1861: 1768: 1661: 1618: 1572: 1541: 1496: 1461: 1370: 1282: 1251: 560: 3557:
Abbott LF, Bock DD, Callaway EM, Denk W, Dulac C, Fairhall AL, et al. (September 2020).
3459:"Work smart, not hard: How array tomography can help increase the ultrastructure data output" 3195: 2652:
Wagner FR, Watanabe R, Schampers R, Singh D, Persoon H, Schaffer M, et al. (June 2020).
914:– produces thin slices of the specimen, semitransparent to electrons. These can be cut using 4469: 4401: 3913: 3878: 3835: 3818:
Adrian M, Dubochet J, Lepault J, McDowall AW (1984). "Cryo-electron microscopy of viruses".
3784: 3731: 3686: 3676: 3627: 3619: 3570: 3529: 3519: 3470: 3421: 3378: 3333: 3325: 3281: 3273: 3166: 3158: 3111: 3074: 3066: 3025: 3017: 2976: 2968: 2927: 2889: 2856: 2848: 2801: 2764: 2756: 2706: 2673: 2665: 2623: 2578: 2486: 2478: 2436: 2308: 2259: 2251: 2212: 2165: 2101: 2090:"Recent improvements to the Cambridge University 600 kV High Resolution Electron Microscope" 2062: 2019: 1900: 1853: 1760: 1653: 1610: 1564: 1533: 1488: 1453: 1409: 1362: 1331: 1274: 1243: 1197: 1070: 1010: 931: 885: 877: 744: 714: 674: 453: 343: 3996: 3312:
Peddie CJ, Genoud C, Kreshuk A, Meechan K, Micheva KD, Narayan K, et al. (July 2022).
4524: 3985: 2888:. Quantitative and Qualitative Microscopy. Vol. 3. Academic Press. pp. 343–360. 2543: 1390:"Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde" 1080: 784: 650: 267: 174: 2884:
Black JA (January 1990). "g - Use of Freeze-Fracture in Neurobiology". In Conn PM (ed.).
2045:
Crewe AV (November 1966). "Scanning electron microscopes: is high resolution possible?".
1559:
Rüdenberg R (2010). "Origin and Background of the Invention of the Electron Microscope".
3963: 3831: 3727: 3632: 3607: 3374: 3286: 3261: 2337:. Office of Basic Energy Sciences, U.S. Department of Energy. 2006-05-26. Archived from 2304: 2058: 1756: 1649: 1606: 1529: 1405: 1327: 1239: 554: 473:. A high-resolution phosphor may also be coupled by means of a lens optical system or a 4479: 4093: 3691: 3664: 3338: 3313: 3171: 3147:"The use of lead citrate at high pH as an electron-opaque stain in electron microscopy" 3146: 3115: 3079: 3055:"Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker" 3054: 3030: 3005: 2981: 2956: 2931: 2893: 2861: 2836: 2805: 2769: 2744: 2711: 2678: 2653: 2539: 2491: 2466: 2264: 2239: 2105: 1891:[Investigation of metal oxide smoking with the universal electron microscope]. 1351:"X. On the discharge of negative ions by glowing metallic oxides, and allied phenomena" 1156: 956: 919: 915: 901: 892: 836:
Freeze-fracturing helps to peel open membranes to allow visualization of what is inside
811: 706: 662: 645: 478: 280: 271: 3534: 3507: 3414:"A practical guide to starting SEM array tomography—An accessible volume EM technique" 1857: 1568: 452:, with the electrons typically having energies in the range 20 to 400 keV, focused by 4692: 4555: 4499: 4159: 3917: 3649: 3592: 3492: 2600: 1912: 1780: 1673: 1457: 1296: 807: 774: 728: 445: 371: 276: 4606: 3991: 3933: 3751: 3131: 1873: 832: 17: 4616: 4580: 4474: 4464: 4139: 4088: 3855: 3804: 3398: 3277: 2366:. Information Bridge: DOE Scientific and Technical Information – Sponsored by OSTI. 2312: 1172: 1085: 1050:
using either a closed liquid cell or an environmental chamber, for example, in the
927: 897: 849: 723: 702: 670: 470: 466: 449: 448:
to illuminate the specimen and create an image. An electron beam is produced by an
442: 430: 378: 347: 288: 39: 955:
sections are stained for several minutes with an aqueous or alcoholic solution of
3524: 2338: 2066: 1537: 1223: 1046:, as the molecules that make up air would scatter the electrons. An exception is 4560: 4494: 4484: 2482: 2288: 1492: 569: 474: 324: 319: 311: 292: 259: 236:(PEEM) which is similar to LEEM using electrons emitted from surfaces by photons 64: 3575: 3558: 3425: 3329: 2582: 2255: 1355:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1271:
Heinrich Rudolf Hertz (1857-1894) : a collection of articles and addresses
4641: 4062: 4057: 3623: 2669: 2627: 2440: 1740: 1366: 1151: 1054:, which allows hydrated samples to be viewed in a low-pressure (up to 20  678: 284: 166: 2448: 2224: 2177: 2113: 2031: 1960: 1904: 1772: 1665: 1622: 1614: 1465: 1413: 1374: 1335: 1255: 810:. After the resin has been polymerized (hardened) the sample is sectioned by 4509: 4164: 3420:. Methods in Cell Biology. Vol. 177. Academic Press. pp. 171–196. 2216: 1278: 969: 501: 315: 307: 3925: 3796: 3743: 3700: 3681: 3641: 3584: 3543: 3484: 3443: 3347: 3295: 3180: 3006:"Immunolocalization of MP70 in lens fiber 16-17-nm intercellular junctions" 2870: 2778: 2720: 2687: 2635: 2500: 2320: 2273: 2185: 2169: 2074: 1889:"Untersuchung von Metalloxyd-Rauchen mit dem Universal-Elektronenmikroskop" 1865: 1545: 926:
knife to produce ultra-thin sections about 60–90 nm thick. Disposable
3890: 3882: 3847: 3390: 3123: 3088: 3039: 3021: 2990: 2798:
Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs
4611: 4077: 3162: 3070: 2972: 2922:
Stillwell W (2016-01-01). "Chapter 11 - Long-Range Membrane Properties".
2852: 2745:"Electron microscopy of structural detail in frozen biological specimens" 1593:
Knoll M, Ruska E (1932). "Beitrag zur geometrischen Elektronenoptik. I".
951: 938: 815: 803: 799: 698: 666: 497: 462: 279:
in 1899, improved oxide-coated cathodes which produced more electrons by
170: 4621: 4565: 4247: 3788: 2760: 2088:
Smith DJ, Camps RA, Freeman LA, Hill R, Nixon WC, Smith KC (May 1983).
1764: 1657: 1428:
Leo Szilard the Inventor: A Slideshow (1998, Budapest, conference talk)
947: 923: 881: 788: 762: 758: 694: 4002: 3475: 3458: 2548:. North Holland personal library (3rd ed.). Amsterdam: Elsevier. 2023: 1427: 1247: 429: 4585: 3839: 3382: 2957:"A simple freeze-fracture replication method for electron microscopy" 2575:
Biological Field Emission Scanning Electron Microscopy, First Edition
1074: 1043: 770: 732: 3735: 2701:
Luft, J.H. (1961). "Improvements in epoxy resin embedding methods".
1928:. Authors.library.caltech.edu (2002-12-10). Retrieved on 2017-04-29. 3779: 1516:
Freundlich MM (October 1963). "Origin of the Electron Microscope".
1034:
transmission and scanning electron microscope made in the mid-1970s
283:
in 1905 and the development of the electromagnetic lens in 1926 by
47: 3004:
Gruijters WT, Kistler J, Bullivant S, Goodenough DA (March 1987).
2792:
Isailović TM, Todosijević MN, Đorđević SM, Savić SD (2017-01-01).
2569:
Humbel BM, Schwarz H, Tranfield EM, Fleck RA (February 15, 2019).
2361:"Sub-Ångstrom Electron Microscopy for Sub-Ångstrom Nano-Metrology" 1026: 873: 868:– thins samples until they are transparent to electrons by firing 839: 831: 795: 792: 754: 710: 644: 581: 553: 530: 401: 253: 46: 38: 3669:
International Journal of Environmental Research and Public Health
1893:
Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie
385:
introduced the scanning transmission electron microscope using a
4570: 1055: 1031: 943: 869: 4006: 3262:"Chemical approaches to unraveling the biology of mycobacteria" 1442:"Origins and historical development of the electron microscope" 58: 52: 1985:. London San Diego, CA Cambridge, MA Oxford: Academic Press. 27:
Type of microscope with electrons as a source of illumination
2647: 2645: 2404:
Transmission electron microscopy: physics of image formation
2379:
Transmission electron microscopy: physics of image formation
258:
Reproduction of an early electron microscope constructed by
206:(STEM) which is similar to TEM with a scanned electron probe 2289:"Atomic-resolution imaging with a sub-50-pm electron probe" 2287:
Erni R, Rossell MD, Kisielowski C, Dahmen U (March 2009).
2006:
Crewe AV, Eggenberger DN, Wall J, Welter LM (1968-04-01).
806:; tissues may also be embedded directly in water-miscible 739:
has branched from this technique. With the development of
270:
used in microscopes. One significant step was the work of
3260:
Finin P, Khan RM, Oh S, Boshoff HI, Barry CE (May 2023).
1058:
or 2.7 kPa) wet environment. Various techniques for
576:
and high-energy backscattered electrons, light emission (
415:
Operating principle of a transmission electron microscope
2238:
Cheng Y, Grigorieff N, Penczek PA, Walz T (April 2015).
3663:
Song YL, Lin HY, Manikandan S, Chang LM (March 2022).
2240:"A primer to single-particle cryo-electron microscopy" 212:(SEM) which is similar to STEM, but with thick samples 2515:"Electron Microscopy | Thermo Fisher Scientific - US" 1178:
Transmission Electron Aberration-Corrected Microscope
735:, and high pressure freezing. An entire field called 544:
Operating principle of a scanning electron microscope
1636:
Knoll M, Ruska E (1932). "Das Elektronenmikroskop".
200:(TEM) where swift electrons go through a thin sample 185:
of about 0.1 nm, which compares to about 200 nm for
4599: 4548: 4457: 4450: 4317: 4261: 4223: 4180: 4173: 4127: 4076: 4040: 3608:"The functional universe of membrane contact sites" 2749:
The Journal of Biophysical and Biochemical Cytology
2703:
The Journal of Biophysical and Biochemical Cytology
89:. Unsourced material may be challenged and removed. 860:Freeze-fracture replica immunogold labeling (FRIL) 437:The original form of the electron microscope, the 330:Apparently independent of this effort was work at 3992:Cell Centered Database – Electron microscopy data 2917: 2915: 2913: 628:Transmission electron microscopes can be used in 1120:Energy filtered transmission electron microscopy 508:Scanning transmission electron microscope (STEM) 494:high-resolution transmission electron microscopy 218:similar to a SEM, but more for chemical analysis 2926:(Second ed.). Elsevier. pp. 221–245. 2577:. John Wiley & Sons Ltd. pp. 191–221. 2467:"Electron Diffraction of 3D Molecular Crystals" 2465:Saha A, Nia SS, Rodríguez JA (September 2022). 653:for viewing with a scanning electron microscope 585:on the specimen when the signal was generated. 488:The resolution of TEMs is limited primarily by 250:Transmission electron microscopy § History 4432:Serial block-face scanning electron microscopy 4135:Detectors for transmission electron microscopy 3307: 3305: 727:– freezing a specimen so that the water forms 4018: 3606:Prinz WA, Toulmay A, Balla T (January 2020). 3197:Under the Microscope: A Hidden World Revealed 2837:"Fine Structure in Frozen-Etched Yeast Cells" 2201:"Historical aspects of aberration correction" 1983:The Beginnings of Electron Microscopy. Part 1 1563:. Vol. 160. Elsevier. pp. 171–205. 934:SEM, where the section is known as a lamella. 266:Many developments laid the groundwork of the 224:, version of a SEM that can operate very fast 8: 2800:. Boston: Academic Press. pp. 179–217. 2460: 2458: 2008:"Electron Gun Using a Field Emission Source" 327:for the invention of electron microscopes.) 43:A transmission electron microscope from 2002 1939:"North America's first electron microscope" 1715:"Apparatus for producing images of objects" 1689:"Apparatus for producing images of objects" 4454: 4177: 4025: 4011: 4003: 1224:"Historical Background of Electron Optics" 1126:Environmental scanning electron microscope 1052:environmental scanning electron microscope 3778: 3690: 3680: 3631: 3574: 3533: 3523: 3474: 3337: 3285: 3170: 3078: 3053:Pinto da Silva P, Branton D (June 1970). 3029: 2980: 2860: 2768: 2710: 2677: 2490: 2263: 1926:History of electron microscopy, 1931–2000 1042:The samples largely have to be viewed in 514:Scanning transmission electron microscopy 362:by Anderson and Fitzsimmons and at the 204:Scanning transmission electron microscopy 149:Learn how and when to remove this message 2705:. Vol. 9, no. 2. p. 409. 2154:"Aberration correction past and present" 1817: 1815: 1561:Advances in Imaging and Electron Physics 1062:of gaseous samples have been developed. 743:of vitreous sections (CEMOVIS) and cryo- 2924:An Introduction to Biological Membranes 1189: 3612:Nature Reviews. Molecular Cell Biology 564:taken with a 1960s electron microscope 420:Transmission electron microscope (TEM) 222:Ultrafast scanning electron microscopy 173:as a source of illumination. They use 3988:: resources for teachers and students 3506:Denk W, Horstmann H (November 2004). 3222:"Introduction to Electron Microscopy" 1162:Scanning confocal electron microscopy 7: 4671: 2359:O'Keefe MA, Allard LF (2004-01-18). 87:adding citations to reliable sources 2835:Moor H, Mühlethaler K (June 1963). 2129:High-resolution electron microscopy 3116:10.1111/j.1365-2818.1982.tb00444.x 2932:10.1016/b978-0-444-63772-7.00011-7 2894:10.1016/b978-0-12-185255-9.50025-0 2806:10.1016/b978-0-12-804017-1.00007-8 2106:10.1111/j.1365-2818.1983.tb04211.x 1887:Von Ardenne M, Beischer D (1940). 1446:British Journal of Applied Physics 1099:List of materials analysis methods 527:Scanning electron microscope (SEM) 25: 4068:Timeline of microscope technology 3767:Microscopy Research and Technique 2955:Bullivant S, Ames A (June 1966). 2573:. In Fleck RA, Humbel BM (eds.). 1109:Electron energy loss spectroscopy 959:followed by aqueous lead citrate. 234:Photoemission electron microscopy 55:in a scanning electron microscope 4670: 4659: 4658: 3997:Science Aid: Electron Microscopy 3918:10.1046/j.1365-2818.2003.01193.x 2012:Review of Scientific Instruments 1795:"History of Electron Microscope" 1069:Small, stable specimens such as 1048:liquid-phase electron microscopy 439:transmission electron microscope 426:Transmission electron microscope 198:Transmission electron microscopy 63: 4427:Precession electron diffraction 3318:Nature Reviews. Methods Primers 2571:"Chapter 10: Chemical Fixation" 781:Embedding, biological specimens 769:or infiltration with embedding 477:light-guide to the sensor of a 74:needs additional citations for 3979:An Introduction to Microscopy 3278:10.1016/j.chembiol.2023.04.014 2313:10.1103/PhysRevLett.102.096101 2205:Journal of Electron Microscopy 1142:Low-energy electron microscopy 828:Freeze-fracture or freeze-etch 757:with organic solvents such as 729:vitreous (non-crystalline) ice 574:low-energy secondary electrons 230:(LEEM), used to image surfaces 228:Low-energy electron microscopy 1: 2616:Journal of Structural Biology 2127:Spence JC, Spence JC (2003). 1957:Inventor of the Week: Archive 1858:10.1016/S0140-6736(00)02250-9 1569:10.1016/s1076-5670(10)60005-5 1316:Annalen der Physik und Chemie 1273:. Routledge. pp. 87–88. 791:and then infiltrated with an 304:Technische Universität Berlin 32:Scanning tunneling microscope 3969:Resources in other libraries 3525:10.1371/journal.pbio.0020329 3412:White IJ, Burden JJ (2023). 3314:"Volume electron microscopy" 2517:. 2022-04-07. Archived from 2067:10.1126/science.154.3750.729 1959:. 2003-05-01. Archived from 1538:10.1126/science.142.3589.185 1167:Scanning electron microscope 1000:Serial imaging for volume EM 942:– uses heavy metals such as 598:Diffraction contrast imaging 550:Scanning electron microscope 356:scanning electron microscope 210:Scanning electron microscope 3200:. CUP Archive. p. 11. 3151:The Journal of Cell Biology 3059:The Journal of Cell Biology 3010:The Journal of Cell Biology 2961:The Journal of Cell Biology 2841:The Journal of Cell Biology 2483:10.1021/acs.chemrev.1c00879 1824:"Ernst Ruska Autobiography" 1493:10.2991/iccessh-18.2018.313 1147:Microscope image processing 1137:In situ electron microscopy 1060:in situ electron microscopy 360:Washington State University 4750: 4412:Immune electron microscopy 4330:Annular dark-field imaging 4145:Everhart–Thornley detector 3576:10.1016/j.cell.2020.08.010 3426:10.1016/bs.mcb.2022.12.023 3330:10.1038/s43586-022-00131-9 3145:Reynolds ES (April 1963). 2743:Steere RL (January 1957). 2583:10.1002/9781118663233.ch10 2256:10.1016/j.cell.2015.03.050 1719:Patent Public Search Basic 1693:Patent Public Search Basic 1458:10.1088/0508-3443/13/5/303 1228:Journal of Applied Physics 1132:Immune electron microscopy 1115:Electron microscope images 656: 641:Sample preparation for TEM 621: 547: 521:annular dark-field imaging 511: 423: 247: 29: 4654: 4566:Hitachi High-Technologies 3964:Resources in your library 3624:10.1038/s41580-019-0180-9 3227:. FEI Company. p. 15 2670:10.1038/s41596-020-0320-x 2628:10.1016/j.jsb.2004.03.010 2441:10.1017/s1551929510991190 2402:Reimer L, Kohl H (2008). 2377:Reimer L, Kohl H (2008). 1367:10.1080/14786440509463347 896:– suspensions containing 483:Direct electron detectors 370:and students Cecil Hall, 4591:Thermo Fisher Scientific 4417:Geometric phase analysis 4305:Aberration-Corrected TEM 3822:(Submitted manuscript). 3457:Kolotuev I (July 2024). 2886:Methods in Neurosciences 2152:Hawkes PW (2009-09-28). 1905:10.1002/bbpc.19400460406 1615:10.1002/andp.19324040506 1414:10.1002/andp.19263862507 1336:10.1002/andp.18993051203 1202:Encyclopaedia Britannica 741:cryo-electron microscopy 737:cryo-electron microscopy 30:Not to be confused with 4734:20th-century inventions 4340:Charge contrast imaging 4150:Field electron emission 3871:Journal of Cell Science 2293:Physical Review Letters 1799:LEO Electron Microscopy 1745:Die Naturwissenschaften 1279:10.4324/9780429198960-4 608:High resolution imaging 302:in Charlottenburg (now 4530:Thomas Eugene Everhart 3682:10.3390/ijerph19063664 2199:Rose HH (2009-06-01). 2170:10.1098/rsta.2009.0004 1638:Zeitschrift für Physik 1035: 845: 837: 659:TEM Sample preparation 654: 603:Phase contrast imaging 565: 545: 457:electron image onto a 434: 416: 263: 56: 44: 4535:Vernon Ellis Cosslett 4355:Dark-field microscopy 3906:Journal of Microscopy 3883:10.1242/jcs.100.1.227 3559:"The Mind of a Mouse" 3463:Journal of Microscopy 3266:Cell Chemical Biology 3104:Journal of Microscopy 3022:10.1083/jcb.104.3.565 2796:. In Čalija B (ed.). 2335:"The Scale of Things" 2217:10.1093/jmicro/dfp012 2094:Journal of Microscopy 1822:Ruska, Ernst (1986). 1741:"Elektronenmikroskop" 1426:Dannen, Gene (1998) 1198:"Electron microscope" 1030: 980:electron microscopy ( 843: 835: 767:critical point drying 648: 634:X-ray crystallography 557: 543: 496:(HRTEM) to below 0.5 433: 414: 387:field emission source 383:University of Chicago 364:University of Toronto 300:Technische Hochschule 257: 98:"Electron microscope" 50: 42: 4714:Anatomical pathology 4540:Vladimir K. Zworykin 4190:Correlative light EM 4099:Electron diffraction 3163:10.1083/jcb.17.1.208 3071:10.1083/jcb.45.3.598 2973:10.1083/jcb.29.3.435 2853:10.1083/jcb.17.3.609 1739:Rodenberg R (1932). 1104:Electron diffraction 906:phosphotungstic acid 822:Embedding, materials 630:electron diffraction 624:Electron diffraction 618:Electron diffraction 593:Main operating modes 490:spherical aberration 179:electron diffraction 169:that uses a beam of 83:improve this article 18:Electron microscopes 4709:Accelerator physics 4699:Electron microscopy 4505:Manfred von Ardenne 4490:Gerasimos Danilatos 4397:Electron tomography 4392:Electron holography 4335:Cathodoluminescence 4114:Secondary electrons 4104:Electron scattering 4048:Electron microscopy 4034:Electron microscopy 3955:Electron microscopy 3832:1984Natur.308...32A 3728:2003NatMa...2..532W 3375:1970Natur.226..421C 2545:Diffraction physics 2477:(17): 13883–13914. 2305:2009PhRvL.102i6101E 2164:(1903): 3637–3664. 2059:1966Sci...154..729C 1852:(9216): 1713–1717. 1757:1932NW.....20..522R 1650:1932ZPhy...78..318K 1607:1932AnP...404..607K 1530:1963Sci...142..185F 1406:1926AnP...386..974B 1328:1899AnP...305..739W 1310:Wiechert E (1899). 1240:1944JAP....15..685C 1222:Calbick CJ (1944). 578:cathodoluminescence 368:Eli Franklin Burton 352:Manfred von Ardenne 216:Electron microprobe 191:Electron microscope 163:electron microscope 4627:Digital Micrograph 4233:Environmental SEM 4155:Field emission gun 4119:X-ray fluorescence 3984:2013-07-19 at the 3789:10.1002/jemt.20668 3194:Burgess J (1987). 2761:10.1083/jcb.3.1.45 1981:Hawkes PW (2021). 1826:. Nobel Foundation 1765:10.1007/BF01505383 1658:10.1007/BF01342199 1595:Annalen der Physik 1394:Annalen der Physik 1349:Wehnelt A (1905). 1036: 846: 838: 787:(epoxypropane) or 655: 566: 546: 435: 417: 391:field emission gun 336:Reinhold Rüdenberg 264: 57: 45: 4724:German inventions 4686: 4685: 4650: 4649: 4520:Nestor J. Zaluzec 4515:Maximilian Haider 4313: 4312: 3950:Library resources 3476:10.1111/jmi.13217 3369:(5244): 421–425. 3207:978-0-521-39940-1 3110:(Pt 2): 121–138. 2941:978-0-444-63772-7 2815:978-0-12-804017-1 2555:978-0-444-82218-5 2413:978-0-387-40093-8 2388:978-0-387-40093-8 2138:978-0-19-850915-8 2053:(3750): 729–738. 2024:10.1063/1.1683435 1992:978-0-323-91507-6 1524:(3589): 185–188. 1502:978-94-6252-528-3 1440:Mulvey T (1962). 1288:978-0-429-19896-0 1248:10.1063/1.1707371 904:(or formate), or 753:– replacement of 613:Chemical analysis 561:Bacillus subtilis 541: 469:material such as 412: 332:Siemens-Schuckert 187:light microscopes 159: 158: 151: 133: 16:(Redirected from 4741: 4674: 4673: 4662: 4661: 4470:Bodo von Borries 4455: 4215:Photoemission EM 4178: 4027: 4020: 4013: 4004: 3938: 3937: 3901: 3895: 3894: 3866: 3860: 3859: 3840:10.1038/308032a0 3815: 3809: 3808: 3782: 3762: 3756: 3755: 3716:Nature Materials 3711: 3705: 3704: 3694: 3684: 3660: 3654: 3653: 3635: 3603: 3597: 3596: 3578: 3569:(6): 1372–1376. 3554: 3548: 3547: 3537: 3527: 3503: 3497: 3496: 3478: 3454: 3448: 3447: 3409: 3403: 3402: 3383:10.1038/226421a0 3358: 3352: 3351: 3341: 3309: 3300: 3299: 3289: 3257: 3251: 3250: 3243: 3237: 3236: 3234: 3232: 3226: 3218: 3212: 3211: 3191: 3185: 3184: 3174: 3142: 3136: 3135: 3099: 3093: 3092: 3082: 3050: 3044: 3043: 3033: 3001: 2995: 2994: 2984: 2952: 2946: 2945: 2919: 2908: 2907: 2881: 2875: 2874: 2864: 2832: 2826: 2825: 2823: 2822: 2789: 2783: 2782: 2772: 2740: 2734: 2731: 2725: 2724: 2714: 2698: 2692: 2691: 2681: 2664:(6): 2041–2070. 2658:Nature Protocols 2649: 2640: 2639: 2611: 2605: 2604: 2566: 2560: 2559: 2536: 2530: 2529: 2527: 2526: 2511: 2505: 2504: 2494: 2471:Chemical Reviews 2462: 2453: 2452: 2429:Microscopy Today 2424: 2418: 2417: 2399: 2393: 2392: 2374: 2368: 2367: 2365: 2356: 2350: 2349: 2347: 2346: 2331: 2325: 2324: 2284: 2278: 2277: 2267: 2235: 2229: 2228: 2196: 2190: 2189: 2149: 2143: 2142: 2124: 2118: 2117: 2085: 2079: 2078: 2042: 2036: 2035: 2003: 1997: 1996: 1978: 1972: 1971: 1969: 1968: 1949: 1943: 1942: 1935: 1929: 1923: 1917: 1916: 1884: 1878: 1877: 1841: 1835: 1834: 1832: 1831: 1819: 1810: 1809: 1807: 1805: 1791: 1785: 1784: 1736: 1730: 1729: 1727: 1725: 1710: 1704: 1703: 1701: 1699: 1684: 1678: 1677: 1644:(5–6): 318–339. 1633: 1627: 1626: 1590: 1584: 1582: 1556: 1550: 1549: 1513: 1507: 1506: 1476: 1470: 1469: 1437: 1431: 1424: 1418: 1417: 1388:Busch H (1926). 1385: 1379: 1378: 1346: 1340: 1339: 1307: 1301: 1300: 1266: 1260: 1259: 1219: 1213: 1212: 1210: 1208: 1194: 1071:carbon nanotubes 1011:focused ion beam 932:focused ion beam 922:with a glass or 886:focused ion beam 878:focused ion beam 866:Ion beam milling 745:focused ion beam 715:osmium tetroxide 675:Chemical milling 542: 413: 344:Bodo von Borries 291:, the physicist 154: 147: 143: 140: 134: 132: 91: 67: 59: 21: 4749: 4748: 4744: 4743: 4742: 4740: 4739: 4738: 4729:Protein imaging 4689: 4688: 4687: 4682: 4646: 4595: 4544: 4525:Ondrej Krivanek 4446: 4309: 4257: 4219: 4205:Liquid-Phase EM 4169: 4128:Instrumentation 4123: 4081: 4072: 4036: 4031: 3986:Wayback Machine 3975: 3974: 3973: 3958: 3957: 3953: 3946: 3941: 3912:(Pt 1): 48–53. 3903: 3902: 3898: 3868: 3867: 3863: 3826:(5954): 32–36. 3817: 3816: 3812: 3764: 3763: 3759: 3736:10.1038/nmat944 3713: 3712: 3708: 3662: 3661: 3657: 3605: 3604: 3600: 3556: 3555: 3551: 3505: 3504: 3500: 3456: 3455: 3451: 3436: 3411: 3410: 3406: 3360: 3359: 3355: 3311: 3310: 3303: 3259: 3258: 3254: 3245: 3244: 3240: 3230: 3228: 3224: 3220: 3219: 3215: 3208: 3193: 3192: 3188: 3144: 3143: 3139: 3101: 3100: 3096: 3052: 3051: 3047: 3003: 3002: 2998: 2954: 2953: 2949: 2942: 2921: 2920: 2911: 2904: 2883: 2882: 2878: 2834: 2833: 2829: 2820: 2818: 2816: 2791: 2790: 2786: 2742: 2741: 2737: 2732: 2728: 2700: 2699: 2695: 2651: 2650: 2643: 2613: 2612: 2608: 2593: 2568: 2567: 2563: 2556: 2538: 2537: 2533: 2524: 2522: 2513: 2512: 2508: 2464: 2463: 2456: 2426: 2425: 2421: 2414: 2401: 2400: 2396: 2389: 2376: 2375: 2371: 2363: 2358: 2357: 2353: 2344: 2342: 2333: 2332: 2328: 2286: 2285: 2281: 2237: 2236: 2232: 2198: 2197: 2193: 2151: 2150: 2146: 2139: 2126: 2125: 2121: 2087: 2086: 2082: 2044: 2043: 2039: 2005: 2004: 2000: 1993: 1980: 1979: 1975: 1966: 1964: 1953:"James Hillier" 1951: 1950: 1946: 1937: 1936: 1932: 1924: 1920: 1886: 1885: 1881: 1843: 1842: 1838: 1829: 1827: 1821: 1820: 1813: 1803: 1801: 1793: 1792: 1788: 1738: 1737: 1733: 1723: 1721: 1712: 1711: 1707: 1697: 1695: 1686: 1685: 1681: 1635: 1634: 1630: 1592: 1591: 1587: 1579: 1558: 1557: 1553: 1515: 1514: 1510: 1503: 1478: 1477: 1473: 1439: 1438: 1434: 1425: 1421: 1400:(25): 974–993. 1387: 1386: 1382: 1348: 1347: 1343: 1322:(12): 739–766. 1309: 1308: 1304: 1289: 1268: 1267: 1263: 1234:(10): 685–690. 1221: 1220: 1216: 1206: 1204: 1196: 1195: 1191: 1187: 1182: 1094: 1025: 1002: 966: 880:milling, where 785:propylene oxide 681: 643: 626: 620: 615: 610: 605: 600: 595: 570:raster scanning 552: 531: 529: 516: 510: 454:electromagnetic 428: 422: 402: 400: 346:, and employed 287:. According to 268:electron optics 252: 246: 175:electron optics 155: 144: 138: 135: 92: 90: 80: 68: 51:An image of an 35: 28: 23: 22: 15: 12: 11: 5: 4747: 4745: 4737: 4736: 4731: 4726: 4721: 4716: 4711: 4706: 4701: 4691: 4690: 4684: 4683: 4681: 4680: 4668: 4655: 4652: 4651: 4648: 4647: 4645: 4644: 4639: 4634: 4632:Direct methods 4629: 4624: 4619: 4614: 4609: 4603: 4601: 4597: 4596: 4594: 4593: 4588: 4583: 4578: 4573: 4568: 4563: 4558: 4552: 4550: 4546: 4545: 4543: 4542: 4537: 4532: 4527: 4522: 4517: 4512: 4507: 4502: 4497: 4492: 4487: 4482: 4480:Ernst G. Bauer 4477: 4472: 4467: 4461: 4459: 4452: 4448: 4447: 4445: 4444: 4439: 4434: 4429: 4424: 4419: 4414: 4409: 4404: 4399: 4394: 4389: 4384: 4379: 4374: 4373: 4372: 4362: 4357: 4352: 4347: 4342: 4337: 4332: 4327: 4321: 4319: 4315: 4314: 4311: 4310: 4308: 4307: 4302: 4301: 4300: 4290: 4285: 4280: 4279: 4278: 4267: 4265: 4259: 4258: 4256: 4255: 4250: 4245: 4240: 4235: 4229: 4227: 4221: 4220: 4218: 4217: 4212: 4207: 4202: 4197: 4192: 4186: 4184: 4175: 4171: 4170: 4168: 4167: 4162: 4157: 4152: 4147: 4142: 4137: 4131: 4129: 4125: 4124: 4122: 4121: 4116: 4111: 4106: 4101: 4096: 4094:Bremsstrahlung 4091: 4085: 4083: 4074: 4073: 4071: 4070: 4065: 4060: 4055: 4050: 4044: 4042: 4038: 4037: 4032: 4030: 4029: 4022: 4015: 4007: 4001: 4000: 3999::By Kaden park 3994: 3989: 3972: 3971: 3966: 3960: 3959: 3948: 3947: 3945: 3944:External links 3942: 3940: 3939: 3896: 3877:(1): 227–236. 3861: 3810: 3773:(3): 153–164. 3757: 3722:(8): 532–536. 3706: 3655: 3598: 3549: 3498: 3449: 3434: 3404: 3353: 3301: 3272:(5): 420–435. 3252: 3238: 3213: 3206: 3186: 3157:(1): 208–212. 3137: 3094: 3065:(3): 598–605. 3045: 3016:(3): 565–572. 2996: 2967:(3): 435–447. 2947: 2940: 2909: 2902: 2876: 2847:(3): 609–628. 2827: 2814: 2784: 2735: 2726: 2693: 2641: 2622:(1): 131–135. 2606: 2591: 2561: 2554: 2531: 2506: 2454: 2419: 2412: 2394: 2387: 2369: 2351: 2326: 2279: 2250:(3): 438–449. 2230: 2191: 2144: 2137: 2119: 2100:(2): 127–136. 2080: 2037: 2018:(4): 576–583. 1998: 1991: 1973: 1944: 1930: 1918: 1899:(4): 270–277. 1879: 1836: 1811: 1786: 1731: 1705: 1679: 1628: 1601:(5): 607–640. 1585: 1577: 1551: 1508: 1501: 1479:Tao Y (2018). 1471: 1452:(5): 197–207. 1432: 1419: 1380: 1341: 1302: 1287: 1261: 1214: 1188: 1186: 1183: 1181: 1180: 1175: 1170: 1164: 1159: 1157:Nanotechnology 1154: 1149: 1144: 1139: 1134: 1129: 1123: 1117: 1112: 1106: 1101: 1095: 1093: 1090: 1024: 1021: 1001: 998: 994:TEM tomography 965: 962: 961: 960: 957:uranyl acetate 935: 920:ultramicrotome 916:ultramicrotomy 909: 902:uranyl acetate 893:Negative stain 889: 863: 857: 825: 819: 812:ultramicrotomy 778: 765:, followed by 748: 719: 718: 707:glutaraldehyde 663:Ultramicrotomy 651:coated in gold 642: 639: 622:Main article: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 548:Main article: 528: 525: 512:Main article: 509: 506: 479:digital camera 441:(TEM), uses a 424:Main article: 421: 418: 399: 396: 354:pioneered the 281:Arthur Wehnelt 245: 242: 238: 237: 231: 225: 219: 213: 207: 201: 193:may refer to: 157: 156: 139:September 2023 71: 69: 62: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4746: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4715: 4712: 4710: 4707: 4705: 4702: 4700: 4697: 4696: 4694: 4679: 4678: 4669: 4667: 4666: 4657: 4656: 4653: 4643: 4640: 4638: 4635: 4633: 4630: 4628: 4625: 4623: 4620: 4618: 4615: 4613: 4610: 4608: 4605: 4604: 4602: 4598: 4592: 4589: 4587: 4584: 4582: 4579: 4577: 4574: 4572: 4569: 4567: 4564: 4562: 4559: 4557: 4556:Carl Zeiss AG 4554: 4553: 4551: 4549:Manufacturers 4547: 4541: 4538: 4536: 4533: 4531: 4528: 4526: 4523: 4521: 4518: 4516: 4513: 4511: 4508: 4506: 4503: 4501: 4500:James Hillier 4498: 4496: 4493: 4491: 4488: 4486: 4483: 4481: 4478: 4476: 4473: 4471: 4468: 4466: 4463: 4462: 4460: 4456: 4453: 4449: 4443: 4440: 4438: 4435: 4433: 4430: 4428: 4425: 4423: 4420: 4418: 4415: 4413: 4410: 4408: 4405: 4403: 4400: 4398: 4395: 4393: 4390: 4388: 4385: 4383: 4380: 4378: 4375: 4371: 4368: 4367: 4366: 4363: 4361: 4358: 4356: 4353: 4351: 4348: 4346: 4343: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4322: 4320: 4316: 4306: 4303: 4299: 4296: 4295: 4294: 4291: 4289: 4286: 4284: 4281: 4277: 4274: 4273: 4272: 4269: 4268: 4266: 4264: 4260: 4254: 4253:Ultrafast SEM 4251: 4249: 4246: 4244: 4241: 4239: 4236: 4234: 4231: 4230: 4228: 4226: 4222: 4216: 4213: 4211: 4210:Low-energy EM 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4187: 4185: 4183: 4179: 4176: 4172: 4166: 4163: 4161: 4160:Magnetic lens 4158: 4156: 4153: 4151: 4148: 4146: 4143: 4141: 4138: 4136: 4133: 4132: 4130: 4126: 4120: 4117: 4115: 4112: 4110: 4109:Kikuchi lines 4107: 4105: 4102: 4100: 4097: 4095: 4092: 4090: 4087: 4086: 4084: 4079: 4075: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4045: 4043: 4039: 4035: 4028: 4023: 4021: 4016: 4014: 4009: 4008: 4005: 3998: 3995: 3993: 3990: 3987: 3983: 3980: 3977: 3976: 3970: 3967: 3965: 3962: 3961: 3956: 3951: 3943: 3935: 3931: 3927: 3923: 3919: 3915: 3911: 3907: 3900: 3897: 3892: 3888: 3884: 3880: 3876: 3872: 3865: 3862: 3857: 3853: 3849: 3845: 3841: 3837: 3833: 3829: 3825: 3821: 3814: 3811: 3806: 3802: 3798: 3794: 3790: 3786: 3781: 3776: 3772: 3768: 3761: 3758: 3753: 3749: 3745: 3741: 3737: 3733: 3729: 3725: 3721: 3717: 3710: 3707: 3702: 3698: 3693: 3688: 3683: 3678: 3674: 3670: 3666: 3659: 3656: 3651: 3647: 3643: 3639: 3634: 3629: 3625: 3621: 3617: 3613: 3609: 3602: 3599: 3594: 3590: 3586: 3582: 3577: 3572: 3568: 3564: 3560: 3553: 3550: 3545: 3541: 3536: 3531: 3526: 3521: 3517: 3513: 3509: 3502: 3499: 3494: 3490: 3486: 3482: 3477: 3472: 3468: 3464: 3460: 3453: 3450: 3445: 3441: 3437: 3435:9780323916073 3431: 3427: 3423: 3419: 3415: 3408: 3405: 3400: 3396: 3392: 3388: 3384: 3380: 3376: 3372: 3368: 3364: 3357: 3354: 3349: 3345: 3340: 3335: 3331: 3327: 3323: 3319: 3315: 3308: 3306: 3302: 3297: 3293: 3288: 3283: 3279: 3275: 3271: 3267: 3263: 3256: 3253: 3248: 3242: 3239: 3223: 3217: 3214: 3209: 3203: 3199: 3198: 3190: 3187: 3182: 3178: 3173: 3168: 3164: 3160: 3156: 3152: 3148: 3141: 3138: 3133: 3129: 3125: 3121: 3117: 3113: 3109: 3105: 3098: 3095: 3090: 3086: 3081: 3076: 3072: 3068: 3064: 3060: 3056: 3049: 3046: 3041: 3037: 3032: 3027: 3023: 3019: 3015: 3011: 3007: 3000: 2997: 2992: 2988: 2983: 2978: 2974: 2970: 2966: 2962: 2958: 2951: 2948: 2943: 2937: 2933: 2929: 2925: 2918: 2916: 2914: 2910: 2905: 2903:9780121852559 2899: 2895: 2891: 2887: 2880: 2877: 2872: 2868: 2863: 2858: 2854: 2850: 2846: 2842: 2838: 2831: 2828: 2817: 2811: 2807: 2803: 2799: 2795: 2788: 2785: 2780: 2776: 2771: 2766: 2762: 2758: 2754: 2750: 2746: 2739: 2736: 2730: 2727: 2722: 2718: 2713: 2708: 2704: 2697: 2694: 2689: 2685: 2680: 2675: 2671: 2667: 2663: 2659: 2655: 2648: 2646: 2642: 2637: 2633: 2629: 2625: 2621: 2617: 2610: 2607: 2602: 2598: 2594: 2592:9781118663233 2588: 2584: 2580: 2576: 2572: 2565: 2562: 2557: 2551: 2547: 2546: 2541: 2535: 2532: 2521:on 2022-04-07 2520: 2516: 2510: 2507: 2502: 2498: 2493: 2488: 2484: 2480: 2476: 2472: 2468: 2461: 2459: 2455: 2450: 2446: 2442: 2438: 2434: 2430: 2423: 2420: 2415: 2409: 2405: 2398: 2395: 2390: 2384: 2380: 2373: 2370: 2362: 2355: 2352: 2341:on 2010-02-01 2340: 2336: 2330: 2327: 2322: 2318: 2314: 2310: 2306: 2302: 2299:(9): 096101. 2298: 2294: 2290: 2283: 2280: 2275: 2271: 2266: 2261: 2257: 2253: 2249: 2245: 2241: 2234: 2231: 2226: 2222: 2218: 2214: 2210: 2206: 2202: 2195: 2192: 2187: 2183: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2148: 2145: 2140: 2134: 2130: 2123: 2120: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2084: 2081: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2041: 2038: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2002: 1999: 1994: 1988: 1984: 1977: 1974: 1963:on 2003-08-23 1962: 1958: 1954: 1948: 1945: 1940: 1934: 1931: 1927: 1922: 1919: 1914: 1910: 1906: 1902: 1898: 1895:(in German). 1894: 1890: 1883: 1880: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1840: 1837: 1825: 1818: 1816: 1812: 1800: 1796: 1790: 1787: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1750: 1747:(in German). 1746: 1742: 1735: 1732: 1720: 1716: 1713:Rüdenberg R. 1709: 1706: 1694: 1690: 1687:Rüdenberg R. 1683: 1680: 1675: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1640:(in German). 1639: 1632: 1629: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1589: 1586: 1580: 1578:9780123810175 1574: 1570: 1566: 1562: 1555: 1552: 1547: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1512: 1509: 1504: 1498: 1494: 1490: 1486: 1482: 1475: 1472: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1433: 1429: 1423: 1420: 1415: 1411: 1407: 1403: 1399: 1396:(in German). 1395: 1391: 1384: 1381: 1376: 1372: 1368: 1364: 1361:(55): 80–90. 1360: 1356: 1352: 1345: 1342: 1337: 1333: 1329: 1325: 1321: 1318:(in German). 1317: 1313: 1306: 1303: 1298: 1294: 1290: 1284: 1280: 1276: 1272: 1265: 1262: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1218: 1215: 1203: 1199: 1193: 1190: 1184: 1179: 1176: 1174: 1171: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1148: 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1127: 1124: 1121: 1118: 1116: 1113: 1110: 1107: 1105: 1102: 1100: 1097: 1096: 1091: 1089: 1087: 1083: 1082: 1076: 1072: 1067: 1063: 1061: 1057: 1053: 1049: 1045: 1040: 1033: 1029: 1023:Disadvantages 1022: 1020: 1017: 1012: 1007: 999: 997: 995: 991: 985: 983: 977: 973: 971: 963: 958: 953: 949: 945: 941: 940: 936: 933: 929: 925: 921: 917: 913: 910: 907: 903: 899: 898:nanoparticles 895: 894: 890: 887: 883: 879: 875: 871: 867: 864: 861: 858: 855: 851: 842: 834: 829: 826: 823: 820: 817: 813: 809: 808:acrylic resin 805: 801: 797: 794: 790: 786: 782: 779: 776: 775:freeze drying 772: 768: 764: 760: 756: 752: 749: 746: 742: 738: 734: 730: 726: 725: 721: 720: 716: 712: 708: 704: 700: 696: 692: 691: 686: 685: 684: 680: 676: 672: 668: 664: 660: 652: 647: 640: 638: 635: 631: 625: 617: 612: 607: 602: 597: 592: 590: 589:instruments. 586: 583: 579: 575: 571: 563: 562: 556: 551: 526: 524: 522: 515: 507: 505: 503: 499: 495: 491: 486: 484: 480: 476: 472: 468: 464: 460: 455: 451: 447: 446:electron beam 444: 440: 432: 427: 419: 397: 395: 392: 388: 384: 380: 375: 373: 372:James Hillier 369: 365: 361: 357: 353: 349: 345: 339: 337: 333: 328: 326: 321: 317: 313: 309: 305: 301: 296: 294: 290: 286: 282: 278: 277:Emil Wiechert 273: 269: 261: 256: 251: 243: 241: 235: 232: 229: 226: 223: 220: 217: 214: 211: 208: 205: 202: 199: 196: 195: 194: 192: 188: 184: 180: 176: 172: 168: 164: 153: 150: 142: 131: 128: 124: 121: 117: 114: 110: 107: 103: 100: –  99: 95: 94:Find sources: 88: 84: 78: 77: 72:This article 70: 66: 61: 60: 54: 49: 41: 37: 33: 19: 4675: 4663: 4617:EM Data Bank 4581:Nion Company 4475:Dennis Gabor 4465:Albert Crewe 4243:Confocal SEM 4140:Electron gun 4089:Auger effect 3954: 3909: 3905: 3899: 3874: 3870: 3864: 3823: 3819: 3813: 3770: 3766: 3760: 3719: 3715: 3709: 3672: 3668: 3658: 3615: 3611: 3601: 3566: 3562: 3552: 3518:(11): e329. 3515: 3512:PLOS Biology 3511: 3501: 3469:(1): 42–60. 3466: 3462: 3452: 3417: 3407: 3366: 3362: 3356: 3321: 3317: 3269: 3265: 3255: 3241: 3229:. Retrieved 3216: 3196: 3189: 3154: 3150: 3140: 3107: 3103: 3097: 3062: 3058: 3048: 3013: 3009: 2999: 2964: 2960: 2950: 2923: 2885: 2879: 2844: 2840: 2830: 2819:. Retrieved 2797: 2787: 2755:(1): 45–60. 2752: 2748: 2738: 2729: 2702: 2696: 2661: 2657: 2619: 2615: 2609: 2574: 2564: 2544: 2534: 2523:. Retrieved 2519:the original 2509: 2474: 2470: 2435:(1): 48–52. 2432: 2428: 2422: 2403: 2397: 2378: 2372: 2354: 2343:. Retrieved 2339:the original 2329: 2296: 2292: 2282: 2247: 2243: 2233: 2211:(3): 77–85. 2208: 2204: 2194: 2161: 2157: 2147: 2128: 2122: 2097: 2093: 2083: 2050: 2046: 2040: 2015: 2011: 2001: 1982: 1976: 1965:. Retrieved 1961:the original 1956: 1947: 1933: 1921: 1896: 1892: 1882: 1849: 1845: 1839: 1828:. Retrieved 1802:. Retrieved 1798: 1789: 1748: 1744: 1734: 1722:. Retrieved 1718: 1708: 1696:. Retrieved 1692: 1682: 1641: 1637: 1631: 1598: 1594: 1588: 1560: 1554: 1521: 1517: 1511: 1484: 1474: 1449: 1445: 1435: 1430:. dannen.com 1422: 1397: 1393: 1383: 1358: 1354: 1344: 1319: 1315: 1305: 1270: 1264: 1231: 1227: 1217: 1205:. Retrieved 1201: 1192: 1173:Thin section 1079: 1068: 1064: 1041: 1037: 1003: 986: 978: 974: 967: 964:EM workflows 937: 928:glass knives 911: 891: 865: 859: 852:solution or 850:hypochlorite 827: 821: 780: 750: 724:Cryofixation 722: 703:formaldehyde 687: 682: 671:Cryofixation 627: 587: 567: 559: 517: 487: 471:zinc sulfide 467:scintillator 450:electron gun 443:high voltage 436: 379:Albert Crewe 376: 348:Helmut Ruska 340: 329: 297: 289:Dennis Gabor 265: 262:in the 1930s 239: 190: 162: 160: 145: 136: 126: 119: 112: 105: 93: 81:Please help 76:verification 73: 36: 4704:Microscopes 4561:FEI Company 4495:Harald Rose 4485:Ernst Ruska 4174:Microscopes 4082:with matter 4080:interaction 3675:(6): 3664. 3618:(1): 7–24. 3231:12 December 1751:(28): 522. 1724:24 February 1698:24 February 1004:To acquire 872:(typically 802:, Epon, or 773:. See also 751:Dehydration 475:fibre optic 325:Nobel prize 320:Ernst Ruska 314:. In 1931, 312:Ernst Ruska 293:Leó Szilárd 260:Ernst Ruska 4693:Categories 4642:Multislice 4458:Developers 4318:Techniques 4063:Microscope 4058:Micrograph 3780:1705.05754 2821:2020-10-22 2525:2024-07-13 2345:2010-01-31 1967:2010-01-31 1830:2010-01-31 1185:References 1152:Microscopy 912:Sectioning 679:Sputtering 657:See also: 649:An insect 502:picometres 285:Hans Busch 248:See also: 183:resolution 167:microscope 109:newspapers 4719:Pathology 4510:Max Knoll 4165:Stigmator 3650:208019972 3593:221766693 3493:261174348 2601:243064180 2540:Cowley JM 2449:1551-9295 2225:0022-0744 2178:1364-503X 2114:0022-2720 2032:0034-6748 1913:137136299 1781:263996652 1773:0028-1042 1674:186239132 1666:1434-6001 1623:0003-3804 1466:0508-3443 1375:1941-5982 1297:195494352 1256:0021-8979 1086:cryofixed 1081:artifacts 1016:volume EM 1006:volume EM 990:volume EM 970:greyscale 699:aldehydes 688:Chemical 558:Image of 316:Max Knoll 308:Max Knoll 171:electrons 4665:Category 4612:CrysTBox 4600:Software 4271:Cryo-TEM 4078:Electron 3982:Archived 3934:40058086 3926:12839550 3797:19140163 3752:21379512 3744:12872162 3701:35329350 3642:31732717 3633:10619483 3585:32946777 3544:15514700 3485:37626455 3444:37451766 3348:37409324 3296:37207631 3287:10201459 3181:13986422 3132:45238172 2871:19866628 2779:13416310 2721:13764136 2688:32405053 2636:15363793 2542:(1995). 2501:35970513 2321:19392535 2274:25910204 2186:19687058 2075:17745977 1874:12347337 1866:10905259 1804:June 26, 1546:14057363 1207:June 26, 1092:See also 952:tungsten 939:Staining 804:Durcupan 800:Araldite 798:such as 701:such as 695:proteins 690:fixation 667:Staining 498:angstrom 463:phosphor 459:detector 4677:Commons 4325:4D STEM 4298:4D STEM 4276:Cryo-ET 4248:SEM-XRF 4238:CryoSEM 4195:Cryo-EM 4053:History 3891:1795028 3856:4319199 3848:6322001 3828:Bibcode 3805:1746538 3724:Bibcode 3692:8954143 3399:4217806 3391:4314822 3371:Bibcode 3339:7614724 3172:2106263 3124:6184475 3089:4918216 3080:2107921 3040:3818793 3031:2114558 2991:5962938 2982:2106967 2862:2106217 2770:2224015 2712:2224998 2679:8053421 2492:9479085 2301:Bibcode 2265:4409659 2055:Bibcode 2047:Science 1753:Bibcode 1646:Bibcode 1603:Bibcode 1526:Bibcode 1518:Science 1402:Bibcode 1324:Bibcode 1236:Bibcode 1122:(EFTEM) 948:uranium 924:diamond 882:gallium 816:stained 789:acetone 763:acetone 759:ethanol 381:at the 244:History 123:scholar 4622:EMsoft 4607:CASINO 4586:TESCAN 4451:Others 4350:cryoEM 4041:Basics 3952:about 3932:  3924:  3889:  3854:  3846:  3820:Nature 3803:  3795:  3750:  3742:  3699:  3689:  3648:  3640:  3630:  3591:  3583:  3542:  3535:524270 3532:  3491:  3483:  3442:  3432:  3397:  3389:  3363:Nature 3346:  3336:  3324:: 51. 3294:  3284:  3204:  3179:  3169:  3130:  3122:  3087:  3077:  3038:  3028:  2989:  2979:  2938:  2900:  2869:  2859:  2812:  2777:  2767:  2719:  2709:  2686:  2676:  2634:  2599:  2589:  2552:  2499:  2489:  2447:  2410:  2385:  2319:  2272:  2262:  2223:  2184:  2176:  2135:  2112:  2073:  2030:  1989:  1911:  1872:  1864:  1846:Lancet 1779:  1771:  1672:  1664:  1621:  1575:  1544:  1499:  1464:  1373:  1295:  1285:  1254:  1128:(ESEM) 1111:(EELS) 1075:diatom 1044:vacuum 918:on an 771:resins 733:ethane 711:lipids 709:, and 677:, and 125:  118:  111:  104:  96:  4576:Leica 4422:PINEM 4288:HRTEM 4283:EFTEM 3930:S2CID 3852:S2CID 3801:S2CID 3775:arXiv 3748:S2CID 3646:S2CID 3589:S2CID 3489:S2CID 3395:S2CID 3225:(PDF) 3128:S2CID 2597:S2CID 2364:(PDF) 1909:S2CID 1870:S2CID 1777:S2CID 1670:S2CID 1293:S2CID 1169:(SEM) 874:argon 796:resin 793:epoxy 755:water 713:with 697:with 582:X-ray 580:) or 398:Types 272:Hertz 165:is a 130:JSTOR 116:books 4637:IUCr 4571:JEOL 4442:WBDF 4437:WDXS 4387:EBIC 4382:EELS 4377:ECCI 4365:EBSD 4345:CBED 4293:STEM 3922:PMID 3887:PMID 3844:PMID 3793:PMID 3740:PMID 3697:PMID 3638:PMID 3581:PMID 3563:Cell 3540:PMID 3481:PMID 3440:PMID 3430:ISBN 3387:PMID 3344:PMID 3292:PMID 3233:2012 3202:ISBN 3177:PMID 3120:PMID 3085:PMID 3036:PMID 2987:PMID 2936:ISBN 2898:ISBN 2867:PMID 2810:ISBN 2775:PMID 2717:PMID 2684:PMID 2632:PMID 2587:ISBN 2550:ISBN 2497:PMID 2445:ISSN 2408:ISBN 2383:ISBN 2317:PMID 2270:PMID 2244:Cell 2221:ISSN 2182:PMID 2174:ISSN 2133:ISBN 2110:ISSN 2071:PMID 2028:ISSN 1987:ISBN 1862:PMID 1806:2024 1769:ISSN 1726:2023 1700:2023 1662:ISSN 1619:ISSN 1573:ISBN 1542:PMID 1497:ISBN 1462:ISSN 1371:ISSN 1283:ISBN 1252:ISSN 1209:2024 1056:Torr 1032:JEOL 982:CLEM 944:lead 870:ions 814:and 705:and 500:(50 318:and 102:news 4407:FEM 4402:FIB 4370:TKD 4360:EDS 4263:TEM 4225:SEM 4200:EMP 3914:doi 3910:211 3879:doi 3875:100 3836:doi 3824:308 3785:doi 3732:doi 3687:PMC 3677:doi 3628:PMC 3620:doi 3571:doi 3567:182 3530:PMC 3520:doi 3471:doi 3467:295 3422:doi 3379:doi 3367:226 3334:PMC 3326:doi 3282:PMC 3274:doi 3167:PMC 3159:doi 3112:doi 3108:128 3075:PMC 3067:doi 3026:PMC 3018:doi 3014:104 2977:PMC 2969:doi 2928:doi 2890:doi 2857:PMC 2849:doi 2802:doi 2765:PMC 2757:doi 2707:PMC 2674:PMC 2666:doi 2624:doi 2620:148 2579:doi 2487:PMC 2479:doi 2475:122 2437:doi 2309:doi 2297:102 2260:PMC 2252:doi 2248:161 2213:doi 2166:doi 2162:367 2102:doi 2098:130 2063:doi 2051:154 2020:doi 1901:doi 1854:doi 1850:355 1761:doi 1654:doi 1611:doi 1599:404 1565:doi 1534:doi 1522:142 1489:doi 1454:doi 1410:doi 1398:386 1363:doi 1332:doi 1320:305 1275:doi 1244:doi 950:or 854:SDS 761:or 465:or 366:by 334:by 161:An 85:by 53:ant 4695:: 4182:EM 3928:. 3920:. 3908:. 3885:. 3873:. 3850:. 3842:. 3834:. 3799:. 3791:. 3783:. 3771:72 3769:. 3746:. 3738:. 3730:. 3718:. 3695:. 3685:. 3673:19 3671:. 3667:. 3644:. 3636:. 3626:. 3616:21 3614:. 3610:. 3587:. 3579:. 3565:. 3561:. 3538:. 3528:. 3514:. 3510:. 3487:. 3479:. 3465:. 3461:. 3438:. 3428:. 3416:. 3393:. 3385:. 3377:. 3365:. 3342:. 3332:. 3320:. 3316:. 3304:^ 3290:. 3280:. 3270:30 3268:. 3264:. 3175:. 3165:. 3155:17 3153:. 3149:. 3126:. 3118:. 3106:. 3083:. 3073:. 3063:45 3061:. 3057:. 3034:. 3024:. 3012:. 3008:. 2985:. 2975:. 2965:29 2963:. 2959:. 2934:. 2912:^ 2896:. 2865:. 2855:. 2845:17 2843:. 2839:. 2808:. 2773:. 2763:. 2751:. 2747:. 2715:. 2682:. 2672:. 2662:15 2660:. 2656:. 2644:^ 2630:. 2618:. 2595:. 2585:. 2495:. 2485:. 2473:. 2469:. 2457:^ 2443:. 2433:18 2431:. 2315:. 2307:. 2295:. 2291:. 2268:. 2258:. 2246:. 2242:. 2219:. 2209:58 2207:. 2203:. 2180:. 2172:. 2160:. 2156:. 2108:. 2096:. 2092:. 2069:. 2061:. 2049:. 2026:. 2016:39 2014:. 2010:. 1955:. 1907:. 1897:46 1868:. 1860:. 1848:. 1814:^ 1797:. 1775:. 1767:. 1759:. 1749:20 1743:. 1717:. 1691:. 1668:. 1660:. 1652:. 1642:78 1617:. 1609:. 1597:. 1571:. 1540:. 1532:. 1520:. 1495:. 1483:. 1460:. 1450:13 1448:. 1444:. 1408:. 1392:. 1369:. 1359:10 1357:. 1353:. 1330:. 1314:. 1291:. 1281:. 1250:. 1242:. 1232:15 1230:. 1226:. 1200:. 1073:, 996:. 946:, 673:, 669:, 665:, 661:, 481:. 189:. 4026:e 4019:t 4012:v 3936:. 3916:: 3893:. 3881:: 3858:. 3838:: 3830:: 3807:. 3787:: 3777:: 3754:. 3734:: 3726:: 3720:2 3703:. 3679:: 3652:. 3622:: 3595:. 3573:: 3546:. 3522:: 3516:2 3495:. 3473:: 3446:. 3424:: 3401:. 3381:: 3373:: 3350:. 3328:: 3322:2 3298:. 3276:: 3249:. 3235:. 3210:. 3183:. 3161:: 3134:. 3114:: 3091:. 3069:: 3042:. 3020:: 2993:. 2971:: 2944:. 2930:: 2906:. 2892:: 2873:. 2851:: 2824:. 2804:: 2781:. 2759:: 2753:3 2723:. 2690:. 2668:: 2638:. 2626:: 2603:. 2581:: 2558:. 2528:. 2503:. 2481:: 2451:. 2439:: 2416:. 2391:. 2348:. 2323:. 2311:: 2303:: 2276:. 2254:: 2227:. 2215:: 2188:. 2168:: 2141:. 2116:. 2104:: 2077:. 2065:: 2057:: 2034:. 2022:: 1995:. 1970:. 1941:. 1915:. 1903:: 1876:. 1856:: 1833:. 1808:. 1783:. 1763:: 1755:: 1728:. 1702:. 1676:. 1656:: 1648:: 1625:. 1613:: 1605:: 1583:. 1581:. 1567:: 1548:. 1536:: 1528:: 1505:. 1491:: 1468:. 1456:: 1416:. 1412:: 1404:: 1377:. 1365:: 1338:. 1334:: 1326:: 1299:. 1277:: 1258:. 1246:: 1238:: 1211:. 988:‘ 818:. 777:. 717:. 152:) 146:( 141:) 137:( 127:· 120:· 113:· 106:· 79:. 34:. 20:)

Index

Electron microscopes
Scanning tunneling microscope


ant

verification
improve this article
adding citations to reliable sources
"Electron microscope"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
microscope
electrons
electron optics
electron diffraction
resolution
light microscopes
Transmission electron microscopy
Scanning transmission electron microscopy
Scanning electron microscope
Electron microprobe
Ultrafast scanning electron microscopy
Low-energy electron microscopy
Photoemission electron microscopy
Transmission electron microscopy § History

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.